NME01:Kapitola19
Z WikiSkripta FJFI ČVUT v Praze
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu NME01
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu NME01 | Kunzmart | 5. 6. 2021 | 17:33 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Kunzmart | 5. 6. 2021 | 17:59 | ||
Header | editovat | Hlavičkový soubor | Kunzmart | 5. 6. 2021 | 16:54 | header.tex | |
Kapitola1 | editovat | Reprezentace čísel v počítači | Kunzmart | 5. 6. 2021 | 16:55 | 01_reprezentace_cisel_v_pocitaci.tex | |
Kapitola2 | editovat | Chyby | Kunzmart | 5. 6. 2021 | 16:55 | 02_chyby.tex | |
Kapitola3 | editovat | Úlohy lineární algebry | Kunzmart | 5. 6. 2021 | 17:30 | 03_ulohy_lin_alg.tex | |
Kapitola4 | editovat | Řešení soustav Ax - b | Kunzmart | 5. 6. 2021 | 16:56 | 03a_reseni_soustav_Ax-b.tex | |
Kapitola5 | editovat | Vlastní čísla | Kunzmart | 5. 6. 2021 | 16:56 | 03b_vlastni_cisla.tex | |
Kapitola6 | editovat | Determinant | Kunzmart | 5. 6. 2021 | 16:57 | 03c_determinant.tex | |
Kapitola7 | editovat | Aproximace funkcí | Kunzmart | 5. 6. 2021 | 17:31 | 04_aproximace_funkci.tex | |
Kapitola8 | editovat | Interpolace | Kunzmart | 5. 6. 2021 | 16:57 | 04a_interpolace.tex | |
Kapitola9 | editovat | Čebyševova aproximace | Kunzmart | 5. 6. 2021 | 16:58 | 04b_cebysevovy_aproximace.tex | |
Kapitola10 | editovat | Metoda nejmenších čtverců | Kunzmart | 5. 6. 2021 | 16:58 | 04c_metoda_nejmensich_ctvercu.tex | |
Kapitola11 | editovat | Řešení nelineárních rovnic | Kunzmart | 5. 6. 2021 | 17:32 | 05_reseni_nelinearnich_rovnic.tex | |
Kapitola12 | editovat | Bisekce | Kunzmart | 5. 6. 2021 | 16:59 | 05a_bisekce.tex | |
Kapitola13 | editovat | Metoda sečen | Kunzmart | 5. 6. 2021 | 16:59 | 05b_metoda_secen.tex | |
Kapitola14 | editovat | Regula falsi | Kunzmart | 5. 6. 2021 | 17:00 | 05c_regula_falsi.tex | |
Kapitola15 | editovat | Metoda Newton-Raphsonova | Kunzmart | 5. 6. 2021 | 17:00 | 05d_newton_raphsonova_metoda.tex | |
Kapitola16 | editovat | Hledání kořenu polynomu | Kunzmart | 5. 6. 2021 | 17:00 | 05e_hledani_korenu_polynomu.tex | |
Kapitola17 | editovat | Mullerova metoda | Kunzmart | 5. 6. 2021 | 17:01 | 05f_mullerova_metoda.tex | |
Kapitola18 | editovat | Prostá iterace | Kunzmart | 5. 6. 2021 | 17:01 | 05g_prosta_iterace.tex | |
Kapitola19 | editovat | Metoda Newton-Raphson pro systémy rovnic | Kunzmart | 5. 6. 2021 | 17:01 | 05h_newton_raphsonova_metoda_pro_systemy_rovnic.tex | |
Kapitola20 | editovat | Hledání extrémů funkcí | Kunzmart | 5. 6. 2021 | 17:32 | 06_hledani_extremu_funkci.tex | |
Kapitola21 | editovat | Metoda zlatého řezu | Kunzmart | 5. 6. 2021 | 17:03 | 06a_metoda_zlateho_rezu.tex | |
Kapitola22 | editovat | Parabolická iterpolace | Kunzmart | 5. 6. 2021 | 17:04 | 06b_parabolicka_iterpolace.tex | |
Kapitola23 | editovat | Nelder Meadova metoda | Kunzmart | 5. 6. 2021 | 17:09 | 06c_nelder_meadova_metoda.tex | |
Kapitola24 | editovat | Gradientní metody | Kunzmart | 5. 6. 2021 | 17:09 | 06d_gradientni_metody.tex | |
Kapitola25 | editovat | Numerická integrace | Kunzmart | 5. 6. 2021 | 17:32 | 07_numericka_integrace.tex | |
Kapitola26 | editovat | Kvadraturní vzorce | Kunzmart | 5. 6. 2021 | 17:09 | 07a_kvadraturni_vzorce.tex | |
Kapitola27 | editovat | Integrály se singularitami | Kunzmart | 5. 6. 2021 | 17:10 | 07b_integraly_se_singularitami.tex | |
Kapitola28 | editovat | Gaussovy kvadratury | Kunzmart | 5. 6. 2021 | 17:20 | 07c_gaussovy_kvadratury.tex | |
Kapitola29 | editovat | Integrace Monte Carlo | Kunzmart | 5. 6. 2021 | 17:20 | 07d_integrace_monte_carlo.tex | |
Kapitola30 | editovat | Obyčejné diferenciální rovnice | Kunzmart | 5. 6. 2021 | 17:33 | 08_obycejne_diferencialni_rce.tex | |
Kapitola31 | editovat | Eulerova metoda | Kunzmart | 5. 6. 2021 | 17:21 | 08a_eulerova_metoda.tex | |
Kapitola32 | editovat | Metoda středního bodu | Kunzmart | 5. 6. 2021 | 17:21 | 08b_metoda_stredniho_bodu.tex | |
Kapitola33 | editovat | Heunova metoda | Kunzmart | 5. 6. 2021 | 17:22 | 08c_heunova_metoda.tex | |
Kapitola34 | editovat | Runge Kuttovy metody | Kunzmart | 5. 6. 2021 | 17:22 | 08d_runge_kuttovy_metody.tex | |
Kapitola35 | editovat | Metoda leap frog | Kunzmart | 5. 6. 2021 | 17:22 | 08e_metoda_leap_frog.tex | |
Kapitola36 | editovat | Metoda prediktor korektor | Kunzmart | 5. 6. 2021 | 17:22 | 08f_metoda_prediktor_korektor.tex | |
Kapitola37 | editovat | Metoda střelby | Kunzmart | 5. 6. 2021 | 17:23 | 08g_metoda_strelby.tex | |
Kapitola38 | editovat | Metoda konečných diferencí | Kunzmart | 5. 6. 2021 | 17:23 | 08h_metoda_konecnych_diferenci.tex | |
Kapitola39 | editovat | Variační metody | Kunzmart | 5. 6. 2021 | 17:23 | 08i_variacni_metody.tex |
Zdrojový kód
% \wikiskriptum{NME01} \subsection{Newton-Raphsonova metoda pro systémy rovnic} \begin{itemize} \item máme soustavu nelineárních rovnic \(\vec{f}\left(\vec{\xi}\right)=\vec{0}\), kde \(\vec{\xi}\) je přesné řešení, které můžeme vyjádřit ve tvaru \(\vec{\xi}=\vec{x}+\delta\vec{x}\) \item \underline{odvození:} \begin{enumerate}[label=\roman*)] \item Taylorova věta pro funkci více proměnných \[ f_j\left(\vec{\xi}\right) = f_j(\vec{x}+\delta\vec{x}) = f_j(\vec{x}) + \sum_{k=1}^{n} \annotateunder{\frac{\partial f_j}{\partial x_k}}{\text{složka Jakobiho matice \((\mathbb{J})_{jk}\)}} \delta x_k + \mathcal{O}(\delta \vec{x}^2) \] \item položíme rovno \(\vec{0}\) a přepíšeme: \[ \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \ldots & \frac{\partial f_n}{\partial x_n} \end{pmatrix} \begin{pmatrix} \delta x_1 \\ \vdots \\ \delta x_n \end{pmatrix} = - \begin{pmatrix} f_1(\vec{x}) \\ \vdots \\ f_n(\vec{x}) \end{pmatrix} \Leftrightarrow \delta \vec{x}^{(k)} = - \left(\mathbb{J}\left(\vec{x}^{(k)}\right)\right)^{-1}\vec{f}\left(\vec{x}^{(k)}\right) \] \item na závěr získáme iterativní vztah: \[ \boxed{\delta\vec{x}^{(k+1)}=\vec{x}^{(k)}+\delta\vec{x}^{(k)}} \] \end{enumerate} \item [\underline{pozn.:}] metoda pro \underline{vhodnou volbu} počátečního odhadu \underline{\(\vec{x}^{(0)}\)} \underline{konverguje téměř vždy!} \end{itemize}