NME01:Kapitola9
Z WikiSkripta FJFI ČVUT v Praze
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu NME01
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu NME01 | Kunzmart | 5. 6. 2021 | 16:33 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Kunzmart | 5. 6. 2021 | 16:59 | ||
Header | editovat | Hlavičkový soubor | Kunzmart | 5. 6. 2021 | 15:54 | header.tex | |
Kapitola1 | editovat | Reprezentace čísel v počítači | Kunzmart | 5. 6. 2021 | 15:55 | 01_reprezentace_cisel_v_pocitaci.tex | |
Kapitola2 | editovat | Chyby | Kunzmart | 5. 6. 2021 | 15:55 | 02_chyby.tex | |
Kapitola3 | editovat | Úlohy lineární algebry | Kunzmart | 5. 6. 2021 | 16:30 | 03_ulohy_lin_alg.tex | |
Kapitola4 | editovat | Řešení soustav Ax - b | Kunzmart | 5. 6. 2021 | 15:56 | 03a_reseni_soustav_Ax-b.tex | |
Kapitola5 | editovat | Vlastní čísla | Kunzmart | 5. 6. 2021 | 15:56 | 03b_vlastni_cisla.tex | |
Kapitola6 | editovat | Determinant | Kunzmart | 5. 6. 2021 | 15:57 | 03c_determinant.tex | |
Kapitola7 | editovat | Aproximace funkcí | Kunzmart | 5. 6. 2021 | 16:31 | 04_aproximace_funkci.tex | |
Kapitola8 | editovat | Interpolace | Kunzmart | 5. 6. 2021 | 15:57 | 04a_interpolace.tex | |
Kapitola9 | editovat | Čebyševova aproximace | Kunzmart | 5. 6. 2021 | 15:58 | 04b_cebysevovy_aproximace.tex | |
Kapitola10 | editovat | Metoda nejmenších čtverců | Kunzmart | 5. 6. 2021 | 15:58 | 04c_metoda_nejmensich_ctvercu.tex | |
Kapitola11 | editovat | Řešení nelineárních rovnic | Kunzmart | 5. 6. 2021 | 16:32 | 05_reseni_nelinearnich_rovnic.tex | |
Kapitola12 | editovat | Bisekce | Kunzmart | 5. 6. 2021 | 15:59 | 05a_bisekce.tex | |
Kapitola13 | editovat | Metoda sečen | Kunzmart | 5. 6. 2021 | 15:59 | 05b_metoda_secen.tex | |
Kapitola14 | editovat | Regula falsi | Kunzmart | 5. 6. 2021 | 16:00 | 05c_regula_falsi.tex | |
Kapitola15 | editovat | Metoda Newton-Raphsonova | Kunzmart | 5. 6. 2021 | 16:00 | 05d_newton_raphsonova_metoda.tex | |
Kapitola16 | editovat | Hledání kořenu polynomu | Kunzmart | 5. 6. 2021 | 16:00 | 05e_hledani_korenu_polynomu.tex | |
Kapitola17 | editovat | Mullerova metoda | Kunzmart | 5. 6. 2021 | 16:01 | 05f_mullerova_metoda.tex | |
Kapitola18 | editovat | Prostá iterace | Kunzmart | 5. 6. 2021 | 16:01 | 05g_prosta_iterace.tex | |
Kapitola19 | editovat | Metoda Newton-Raphson pro systémy rovnic | Kunzmart | 5. 6. 2021 | 16:01 | 05h_newton_raphsonova_metoda_pro_systemy_rovnic.tex | |
Kapitola20 | editovat | Hledání extrémů funkcí | Kunzmart | 5. 6. 2021 | 16:32 | 06_hledani_extremu_funkci.tex | |
Kapitola21 | editovat | Metoda zlatého řezu | Kunzmart | 5. 6. 2021 | 16:03 | 06a_metoda_zlateho_rezu.tex | |
Kapitola22 | editovat | Parabolická iterpolace | Kunzmart | 5. 6. 2021 | 16:04 | 06b_parabolicka_iterpolace.tex | |
Kapitola23 | editovat | Nelder Meadova metoda | Kunzmart | 5. 6. 2021 | 16:09 | 06c_nelder_meadova_metoda.tex | |
Kapitola24 | editovat | Gradientní metody | Kunzmart | 5. 6. 2021 | 16:09 | 06d_gradientni_metody.tex | |
Kapitola25 | editovat | Numerická integrace | Kunzmart | 5. 6. 2021 | 16:32 | 07_numericka_integrace.tex | |
Kapitola26 | editovat | Kvadraturní vzorce | Kunzmart | 5. 6. 2021 | 16:09 | 07a_kvadraturni_vzorce.tex | |
Kapitola27 | editovat | Integrály se singularitami | Kunzmart | 5. 6. 2021 | 16:10 | 07b_integraly_se_singularitami.tex | |
Kapitola28 | editovat | Gaussovy kvadratury | Kunzmart | 5. 6. 2021 | 16:20 | 07c_gaussovy_kvadratury.tex | |
Kapitola29 | editovat | Integrace Monte Carlo | Kunzmart | 5. 6. 2021 | 16:20 | 07d_integrace_monte_carlo.tex | |
Kapitola30 | editovat | Obyčejné diferenciální rovnice | Kunzmart | 5. 6. 2021 | 16:33 | 08_obycejne_diferencialni_rce.tex | |
Kapitola31 | editovat | Eulerova metoda | Kunzmart | 5. 6. 2021 | 16:21 | 08a_eulerova_metoda.tex | |
Kapitola32 | editovat | Metoda středního bodu | Kunzmart | 5. 6. 2021 | 16:21 | 08b_metoda_stredniho_bodu.tex | |
Kapitola33 | editovat | Heunova metoda | Kunzmart | 5. 6. 2021 | 16:22 | 08c_heunova_metoda.tex | |
Kapitola34 | editovat | Runge Kuttovy metody | Kunzmart | 5. 6. 2021 | 16:22 | 08d_runge_kuttovy_metody.tex | |
Kapitola35 | editovat | Metoda leap frog | Kunzmart | 5. 6. 2021 | 16:22 | 08e_metoda_leap_frog.tex | |
Kapitola36 | editovat | Metoda prediktor korektor | Kunzmart | 5. 6. 2021 | 16:22 | 08f_metoda_prediktor_korektor.tex | |
Kapitola37 | editovat | Metoda střelby | Kunzmart | 5. 6. 2021 | 16:23 | 08g_metoda_strelby.tex | |
Kapitola38 | editovat | Metoda konečných diferencí | Kunzmart | 5. 6. 2021 | 16:23 | 08h_metoda_konecnych_diferenci.tex | |
Kapitola39 | editovat | Variační metody | Kunzmart | 5. 6. 2021 | 16:23 | 08i_variacni_metody.tex |
Zdrojový kód
% \wikiskriptum{NME01} \subsection{Čebyševovy polynomy} \begin{itemize} \item k aproximaci konstruujeme Čebyševovy polynomy \item \underline{Čebyševova úloha} = \underline{hledání funkce h(x)}, která na daném intervalu \(\left<a,b \right>\) minimalizuje maximální hodnotu chyby: \(\max_{x \in \left<a,b \right>}|f(x) - h(x)|\), kde \(h(x)\) je určitá třída funkcí (úloze se říká nejlepší stejnoměrná aproximace) \(\rightarrow\) k výpočtu tzv. \underline{Remezův algoritmus} \item \underline{aproximace Čebyševovými polynomy:} \begin{itemize} \item \underline{lehce se konstruuje} a je téměř \underline{přesná}, jako nejlepší stejnoměrná aproximace \begin{itemize} \item[\(\implies\)] \underline{využívá se pro výpočty funkcí} \end{itemize} \item pro aproximaci se nejprve libovolný \underline{interval transformuje na interval \(\left< -1,1 \right>\)} \begin{itemize} \item [\(\hookrightarrow\)] tj. každému \(t \in \left<a, b \right>\) přiřadíme hodnotu \(x \in \left< -1, 1 \right>\) předpisem \(\boxed{\frac{2t-(a+b)}{b-a}}\) \end{itemize} \item Čebyševův polynom je \underline{definován:} \[ \boxed{T_{n}(x) = \cos (n\arccos x)}\] nebo rekurentní definicí \[ \boxed{ \left. \begin{aligned} & T_0(x) = 1 \\ & T_1(x) = x \end{aligned} \right\} \rightarrow T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) } \] \item [\underline{pozn.:}] \underline{Čebyševovy polynomy} jsou \underline{ortogonální} s vahou \(w(x) = \frac{1}{\sqrt{1-x^2}}\) \item funkci \(f(x)\) pak pomocí Čebyševova polynomu aproximujeme následovně: \[ \boxed{ \begin{aligned} & f(x) \approx T(x) = \frac{1}{2}c_0 + \sum_{j=1}^{N-1} c_jT_j(x) \\ & c_j = \frac{2}{N}\sum_{k=1}^{N} f[\cos\text{\stackengine{\stackgap}{\(\underbrace{\left(\frac{\pi (k-\frac{1}{2})}{N}\right)}\)}{\hspace{2em}\scriptsize\(\hookrightarrow \underline{\text{kořeny } T_n(x)}\)}{U}{l}{F}{T}{\stacktype}}]\cdot \cos\left(\frac{\pi j(k-\frac{1}{2})}{N}\right) \end{aligned} } \leftarrow \text{\scriptsize z teorie Fourierových řad} \] \end{itemize} \end{itemize}