NME01:Kapitola17
Z WikiSkripta FJFI ČVUT v Praze
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu NME01
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu NME01 | Kunzmart | 5. 6. 2021 | 16:33 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Kunzmart | 5. 6. 2021 | 16:59 | ||
Header | editovat | Hlavičkový soubor | Kunzmart | 5. 6. 2021 | 15:54 | header.tex | |
Kapitola1 | editovat | Reprezentace čísel v počítači | Kunzmart | 5. 6. 2021 | 15:55 | 01_reprezentace_cisel_v_pocitaci.tex | |
Kapitola2 | editovat | Chyby | Kunzmart | 5. 6. 2021 | 15:55 | 02_chyby.tex | |
Kapitola3 | editovat | Úlohy lineární algebry | Kunzmart | 5. 6. 2021 | 16:30 | 03_ulohy_lin_alg.tex | |
Kapitola4 | editovat | Řešení soustav Ax - b | Kunzmart | 5. 6. 2021 | 15:56 | 03a_reseni_soustav_Ax-b.tex | |
Kapitola5 | editovat | Vlastní čísla | Kunzmart | 5. 6. 2021 | 15:56 | 03b_vlastni_cisla.tex | |
Kapitola6 | editovat | Determinant | Kunzmart | 5. 6. 2021 | 15:57 | 03c_determinant.tex | |
Kapitola7 | editovat | Aproximace funkcí | Kunzmart | 5. 6. 2021 | 16:31 | 04_aproximace_funkci.tex | |
Kapitola8 | editovat | Interpolace | Kunzmart | 5. 6. 2021 | 15:57 | 04a_interpolace.tex | |
Kapitola9 | editovat | Čebyševova aproximace | Kunzmart | 5. 6. 2021 | 15:58 | 04b_cebysevovy_aproximace.tex | |
Kapitola10 | editovat | Metoda nejmenších čtverců | Kunzmart | 5. 6. 2021 | 15:58 | 04c_metoda_nejmensich_ctvercu.tex | |
Kapitola11 | editovat | Řešení nelineárních rovnic | Kunzmart | 5. 6. 2021 | 16:32 | 05_reseni_nelinearnich_rovnic.tex | |
Kapitola12 | editovat | Bisekce | Kunzmart | 5. 6. 2021 | 15:59 | 05a_bisekce.tex | |
Kapitola13 | editovat | Metoda sečen | Kunzmart | 5. 6. 2021 | 15:59 | 05b_metoda_secen.tex | |
Kapitola14 | editovat | Regula falsi | Kunzmart | 5. 6. 2021 | 16:00 | 05c_regula_falsi.tex | |
Kapitola15 | editovat | Metoda Newton-Raphsonova | Kunzmart | 5. 6. 2021 | 16:00 | 05d_newton_raphsonova_metoda.tex | |
Kapitola16 | editovat | Hledání kořenu polynomu | Kunzmart | 5. 6. 2021 | 16:00 | 05e_hledani_korenu_polynomu.tex | |
Kapitola17 | editovat | Mullerova metoda | Kunzmart | 5. 6. 2021 | 16:01 | 05f_mullerova_metoda.tex | |
Kapitola18 | editovat | Prostá iterace | Kunzmart | 5. 6. 2021 | 16:01 | 05g_prosta_iterace.tex | |
Kapitola19 | editovat | Metoda Newton-Raphson pro systémy rovnic | Kunzmart | 5. 6. 2021 | 16:01 | 05h_newton_raphsonova_metoda_pro_systemy_rovnic.tex | |
Kapitola20 | editovat | Hledání extrémů funkcí | Kunzmart | 5. 6. 2021 | 16:32 | 06_hledani_extremu_funkci.tex | |
Kapitola21 | editovat | Metoda zlatého řezu | Kunzmart | 5. 6. 2021 | 16:03 | 06a_metoda_zlateho_rezu.tex | |
Kapitola22 | editovat | Parabolická iterpolace | Kunzmart | 5. 6. 2021 | 16:04 | 06b_parabolicka_iterpolace.tex | |
Kapitola23 | editovat | Nelder Meadova metoda | Kunzmart | 5. 6. 2021 | 16:09 | 06c_nelder_meadova_metoda.tex | |
Kapitola24 | editovat | Gradientní metody | Kunzmart | 5. 6. 2021 | 16:09 | 06d_gradientni_metody.tex | |
Kapitola25 | editovat | Numerická integrace | Kunzmart | 5. 6. 2021 | 16:32 | 07_numericka_integrace.tex | |
Kapitola26 | editovat | Kvadraturní vzorce | Kunzmart | 5. 6. 2021 | 16:09 | 07a_kvadraturni_vzorce.tex | |
Kapitola27 | editovat | Integrály se singularitami | Kunzmart | 5. 6. 2021 | 16:10 | 07b_integraly_se_singularitami.tex | |
Kapitola28 | editovat | Gaussovy kvadratury | Kunzmart | 5. 6. 2021 | 16:20 | 07c_gaussovy_kvadratury.tex | |
Kapitola29 | editovat | Integrace Monte Carlo | Kunzmart | 5. 6. 2021 | 16:20 | 07d_integrace_monte_carlo.tex | |
Kapitola30 | editovat | Obyčejné diferenciální rovnice | Kunzmart | 5. 6. 2021 | 16:33 | 08_obycejne_diferencialni_rce.tex | |
Kapitola31 | editovat | Eulerova metoda | Kunzmart | 5. 6. 2021 | 16:21 | 08a_eulerova_metoda.tex | |
Kapitola32 | editovat | Metoda středního bodu | Kunzmart | 5. 6. 2021 | 16:21 | 08b_metoda_stredniho_bodu.tex | |
Kapitola33 | editovat | Heunova metoda | Kunzmart | 5. 6. 2021 | 16:22 | 08c_heunova_metoda.tex | |
Kapitola34 | editovat | Runge Kuttovy metody | Kunzmart | 5. 6. 2021 | 16:22 | 08d_runge_kuttovy_metody.tex | |
Kapitola35 | editovat | Metoda leap frog | Kunzmart | 5. 6. 2021 | 16:22 | 08e_metoda_leap_frog.tex | |
Kapitola36 | editovat | Metoda prediktor korektor | Kunzmart | 5. 6. 2021 | 16:22 | 08f_metoda_prediktor_korektor.tex | |
Kapitola37 | editovat | Metoda střelby | Kunzmart | 5. 6. 2021 | 16:23 | 08g_metoda_strelby.tex | |
Kapitola38 | editovat | Metoda konečných diferencí | Kunzmart | 5. 6. 2021 | 16:23 | 08h_metoda_konecnych_diferenci.tex | |
Kapitola39 | editovat | Variační metody | Kunzmart | 5. 6. 2021 | 16:23 | 08i_variacni_metody.tex |
Zdrojový kód
% \wikiskriptum{NME01} \subsection{M\"ullerova metoda} \begin{itemize} \item generalizuje metodu sečen a používá kvadratickou interpolaci mezi 3 body \(x_{i},x_{i-1},x_{i-2}\) \item umožňuje nalézt i \underline{komplexní kořeny} \item \underline{odvození:} \begin{enumerate}[label=\roman*)] \item volíme kvadratický polynom \(\boxed{p(x) = a(x-x_{i-1})^2 + b(x-x_{i-1}) + c}\) \item protože \(p(x)\) prochází danými body, získáme soustavu: \[ \begin{aligned} p(x_{i-2}) = a (x_{i-2})^2 + b(x_{i-2}-x_{i-1}) + c & = f(x_{i-2}) \\ p(x_{i-1}) = a{\underbrace{(x_{i-1}-x_{i-1})}_{=0}}^2 + b\underbrace{(x_{i-1} -x_{i-1})}_{=0} + c = c & = f(x_{i-1}) \\ p(x_i) = a(x_i - x_{i-1})^2 + b(x_{i}-x_{i-1}) + c & = f(x_{i}) \end{aligned} \] \item provedeme substituci: \[ h_1\coloneqq x_i - x_{i-1} \land h_2 \coloneqq x_{i-1} - x_{i-2} \] \(\implies\) dosazením a po úpravě dostaneme: \[ \begin{aligned} ah_1^2+bh_1 & = f(x_i) -f(x_{i-1}) \\ ah_2^2 - bh_2 & = f(x_{i-2}) - f(x_{i-1}) \\ \end{aligned} \] \item ze znalosti koeficientů \(a,b,c\) dopočítáme: \[ \begin{aligned} x_{i+1}:\qquad & p(x_{i+1})=a{\underbrace{(x_{i+1}-x_{i-1})}_{= \frac{1}{r}}}^2 + b(x_{i+1}-x_{i-1}) + c = 0 \\ & \implies \quad 0=cr^2+br+a \rightarrow r_{1,2}=\frac{-b\pm\sqrt{b^2-4ac} }{2c}=\frac{1}{x_{i+1}-x_{i-1}} \end{aligned} \] \item \(\lefteqn{\phantom{x_{i+1}= x_{i-1}-}\hookannotateunder{\phantom{\boxed{\frac{2c}{b\mp a\sqrt{ b^2-4ac}}}}}{\underline{iterační vztah}}} \boxed{x_{i+1}= x_{i-1}-\frac{2c}{b \mp \sqrt{ b^2-4ac}}}\), kde znaménko ve jmenovateli volíme tak, aby byl jmenovatel největší v absolutní\\ hodnotě \(\leftarrow\) snažíme se snížit relativní chybu způsobenou zaokrouhlením \end{enumerate} \end{itemize}