02KVAN2:Kapitola4: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
(Sjednocení ^\dagger místo ^+, formátování)
(Nové odvození a výklad matice hustoty, přeformulované a přečíslované postuláty, závěr kapitoly zkrácen; typografie)
Řádka 1: Řádka 1:
 
%\wikiskriptum{02KVAN2}
 
%\wikiskriptum{02KVAN2}
\section{Matice hustoty}
+
\section{Matice hustoty a smíšené kvantové stavy}
Ve fyzice se setkáváme se situacemi, kdy nelze experimentálně získat úplnou informaci o stavu systému v daný okamžik (např. z důvodu příliš velkého počtu částic, nedostatečné kvality aparatury, či z nemožnosti dostatečně rychle zpracovat získaná data). V takovém případě se uchylujeme ke statistickému popisu. Nejprve si připomeneme, jak ke statistickému popisu přistupuje klasická hamiltonovská fyzika.
+
Ve fyzice se setkáváme se situacemi, kdy nelze experimentálně získat úplnou informaci o stavu systému v daný okamžik (např. z důvodu příliš velkého počtu částic, nedostatečné kvality aparatury, či z nemožnosti dostatečně rychle zpracovat získaná data). V~takovém případě se uchylujeme ke statistickému popisu. Nejprve si připomeneme, jak ke statistickému popisu přistupuje klasická hamiltonovská fyzika.
  
Ve statistické fyzice je stav systému popsán funkcí $\rho: TM \mapsto \real_0^+$, nazývanou hustota pravděpodobnosti, která každému bodu fázového prostoru $TM$ přiřadí pravděpodobnost (resp. její hustotu), že se systém v daný časový okamžik v daném stavu nalézá. Tato funkce musí splňovat normalizační podmínku
+
Ve statistické fyzice je stav systému popsán funkcí $\rho: TM \mapsto \real_0^+$, nazývanou \textbf{hustota pravděpodobnosti}, určující pravděpodobnostní rozdělení na fázovém prostoru. Tato funkce musí splňovat normalizační podmínku
 
\[
 
\[
 
\int\limits_{TM} \rho(x,p)dx\:dp = 1.
 
\int\limits_{TM} \rho(x,p)dx\:dp = 1.
Řádka 16: Řádka 16:
 
\[
 
\[
 
\parcder{\rho}{t} = - \sum_{k=1}^{3N} \left[  
 
\parcder{\rho}{t} = - \sum_{k=1}^{3N} \left[  
\parcder{}{x_k} \left( \rho \parcder{x_k}{t} \right) + \parcder{}{p_k} \left( \rho \parcder{x_k}{t} \right) \right].
+
\parcder{}{x_k} \left( \rho \frac{dx_k}{dt} \right) + \parcder{}{p_k} \left( \rho \frac{dp_k}{dt} \right) \right].
 
\]
 
\]
 
Za předpokladu, že pohyb každého bodu fázového prostoru je určen Hamiltonovými pohybovými rovnicemi
 
Za předpokladu, že pohyb každého bodu fázového prostoru je určen Hamiltonovými pohybovými rovnicemi
Řádka 22: Řádka 22:
 
\deriv{x_k}{t} = \parcder{H}{p_k}, \quad \deriv{p_k}{t} = - \parcder{H}{x_k},
 
\deriv{x_k}{t} = \parcder{H}{p_k}, \quad \deriv{p_k}{t} = - \parcder{H}{x_k},
 
\]
 
\]
je možno pro časový vývoj hustoty pravděpodobnosti odvodit Liouvillovu větu
+
plyne odsud pro časový vývoj hustoty pravděpodobnosti Liouvillova věta
 
\[
 
\[
 
\parcder{\rho}{t} = \sum_{k=1}^{3N} \left[ \parcder{H}{x_k} \parcder{\rho}{p_k} -  
 
\parcder{\rho}{t} = \sum_{k=1}^{3N} \left[ \parcder{H}{x_k} \parcder{\rho}{p_k} -  
Řádka 30: Řádka 30:
 
\begin{remark}
 
\begin{remark}
 
Za povšimnutí stojí, že časový vývoj pozorovatelné $a(x,p)$ je určen rovněž Poissonovou závorkou, ovšem s opačným znaménkem:
 
Za povšimnutí stojí, že časový vývoj pozorovatelné $a(x,p)$ je určen rovněž Poissonovou závorkou, ovšem s opačným znaménkem:
\begin{equation} \label{MatH:klasvyvpoz2}
+
\begin{equation*}
 
\parcder{a}{t} = \{ a,H \}.
 
\parcder{a}{t} = \{ a,H \}.
\end{equation}
+
\end{equation*}
 
\end{remark}
 
\end{remark}
  
 
V analogii očekáváme, že kvantové hustoty pravděpodobnosti budou operátory na $\hilbert$, které každému stavu přiřadí pravděpodobnost, že se v něm systém nachází.
 
V analogii očekáváme, že kvantové hustoty pravděpodobnosti budou operátory na $\hilbert$, které každému stavu přiřadí pravděpodobnost, že se v něm systém nachází.
  
V dalším odvozování uvažujeme konečný počet normalizovaných stavů $(\ket{\psi_m})_{m=1}^n$, ve kterých se systém může nacházet. Zobecnění výsledků, jež obdržíme, na spočetný, nebo dokonce nespočetný počet stavů se nedá obecně provést a sama kvantová mechanika jej bere jako postulát.  
+
V dalším odvozování uvažujeme konečný počet normalizovaných stavů $(\ket{\psi_m})_{m=1}^n$, ve kterých se systém může nacházet. Zobecnění výsledků, jež obdržíme, na spočetný počet stavů se formulují jako postuláty.
  
Stav systému v kvantové mechanice je popsán vektorem $\ket{\psi} \in \hilbert$. Tomuto stavu je možno přiřadit projektor $\hat{P}_{\ket{\psi}} = \ket{\psi} \bra{\psi}$. Snadno nahlédneme, že tento projektor nezávisí na výběru fáze, tedy $\hat{P}_{\ket{\psi}} = \hat{P}_{e^{i \varphi}\ket{\psi}}$, $\forall \varphi \in \real$.
+
Stav systému v kvantové mechanice je popsán vektorem $\ket{\psi} \in \hilbert$. Tomuto stavu je možno přiřadit projektor $\hat{P}_{\ket{\psi}} = \ket{\psi} \bra{\psi}$.
 +
Projektor $\hat{P}_{\ket{\psi}}$ má tu vlastnost, že stav $\ket{\psi}$ (a libovolný jeho komplexní násobek)%
 +
\footnote{Obzvlášť si všimněme, že takto přiřazený projektor nezávisí na výběru fáze, tedy $\hat{P}_{\ket{\psi}} = \hat{P}_{e^{i \varphi}\ket{\psi}}$, $\forall \varphi \in \real$.}
 +
je jeho vlastním stavem příslušejícím vlastnímu číslu $1$ a že stavy ortogonální na $\ket{\psi}$ patří do nulového prostoru. To budeme interpretovat, že stavu $\ket{\psi}$ je přiřazena pravděpodobnost $1$ a pravděpodobnost přechodu do stavu kolmého na $\ket{\psi}$ je nulová.
  
Pokud je systém s pravděpodobností $P_m$ ve stavu popsaném vektorem $\ket{\psi_m}$, potom je přirozené uvažovat operátor  
+
Pokud je systém s pravděpodobností $P_m$ ve stavu popsaném vektorem $\ket{\psi_m}$, potom stejná myšlenková úvaha napovídá uvažovat operátor  
 
\begin{equation} \label{MatH:defmathust}
 
\begin{equation} \label{MatH:defmathust}
\hat{\rho} = \sum_{m=1}^n P_m \ket{\psi_m} \bra{\psi_m}.
+
\hat{\rho} = \sum_{m=1}^n P_m \ket{\psi_m} \bra{\psi_m},
 
\end{equation}
 
\end{equation}
Podmínku normalizace
+
ukážeme, že tento operátor skutečně obsahuje veškeré informace pro popis kvantového systému a předpovědi výsledků měření.
\[
+
\sum_{m=1}^n P_m = 1
+
\]
+
je možno na úrovni $\hat{\rho}$ vyjádřit pomocí stopy operátoru $\Tr \hat{\rho} = 1$.
+
  
 
\begin{define}
 
\begin{define}
Buď $\hat{B}$ operátor na $\hilbert$, $(\ket{i})$ ortonormální báze $\hilbert$. Potom definujeme \textbf{stopu operátoru} $\hat{B}$ dle předpisu
+
Buď $\hat{B}$ operátor na $\hilbert$, $(\ket{i})_{i\in\mathscr{I}}$ ortonormální báze $\hilbert$. Potom definujeme \textbf{stopu operátoru} $\hat{B}$ dle předpisu
 
\[
 
\[
 
\Tr \hat{B} = \sum_i \brapigket{i}{\hat{B}}{i}.
 
\Tr \hat{B} = \sum_i \brapigket{i}{\hat{B}}{i}.
Řádka 58: Řádka 57:
 
\end{define}
 
\end{define}
  
\begin{remark}
+
S touto definicí je podmínku normalizace
Pokud $|\Tr \hat{B}| < + \infty$, lze ukázat, že hodnota $\Tr \hat{B}$ nezávisí na výběru báze $(\ket{i})$.
+
\[
\end{remark}
+
\sum_{m=1}^n P_m = 1
 +
\]
 +
možno na úrovni $\hat{\rho}$ vyjádřit jako $\Tr \hat{\rho} = 1$.
 +
 
 +
Se stopou operátoru se v této kapitole budeme setkávat často, shrňme proto
 +
(bez důkazů) několik jejích základních vlastností. Ty platí pro třídu tzv.
 +
jaderných operátorů, o kterých se přednáší více ve funkcionální analýze;
 +
v případech, které budou pro nás relevantní, nejsou předpoklady limitujícím faktorem.
 +
\begin{enumerate}
 +
\item Stopa je lineární: $\Tr \left( \alpha \hat{A} + \beta \hat{B} \right)
 +
= \alpha \Tr \hat{A} + \beta \Tr \hat{B}$.
 +
\item Hodnota $\Tr \hat{B}$ nezávisí na výběru báze $(\ket{i})$, jinými slovy je též invariantní vůči podobnostní transformaci $\hat{B} \mapsto \hat{S}\hat{B}\hat{S}^{-1}$. Volbou báze, v níž je operátor diagonalizovatelný, snadno odvodíme $\Tr \hat{B} = \sum \sigma(\hat{B})$, kde sčítání bere v úvahu algebraické násobnosti.%
 +
\footnote{Připomeňme, že další známý invariant podobnostních transformací, determinant, je zase roven součinu všech hodnot spektra.}
 +
\item Pravidlo \textbf{cyklické záměny}: $\Tr(\hat{A} \hat{B}) = \Tr(\hat{A} \hat{B})$. To platí, i pokud operátory $\hat{A}$, $\hat{B}$ zobrazují mezi různými Hilbertovy prostory (například pokud odpovídají obdélníkovým maticím). V případě součinu více operátorů platí v libovolném uzávorkování, např. $\Tr(\hat{A} \hat{B} \hat{C}) = \Tr\bigl( (\hat{A} \hat{B}) \hat{C}\bigr) = \Tr(\hat{C} \hat{A} \hat{B})$, ne však $\Tr(\hat{C} \hat{B} \hat{A})$.
 +
\end{enumerate}
  
 
\begin{theorem}
 
\begin{theorem}
Nechť $\ket{\psi} \in \hilbert$, $\braket{\psi}{\psi}=1$, $\hat{\rho}$ operátor definovaný dle \eqref{MatH:defmathust} splňující
+
Nechť $\hat{\rho}$ je operátor definovaný dle \eqref{MatH:defmathust}  
 +
s pravděpodobnostmi $P_m > 0$. Pak pro každé $\ket{\psi} \in \hilbert$ platí
 
\[
 
\[
\hat{\rho} \ket{\psi} = \rho \ket{\psi}.
+
\brapigket{\psi}{\hat{\rho}}{\psi} \ge 0.
 
\]
 
\]
Potom $\rho \in \real_0^+$ ($\hat{\rho}$ je pozitivní operátor).
+
(tedy $\hat{\rho}$ je pozitivní operátor).
 
\end{theorem}
 
\end{theorem}
 
\begin{proof}
 
\begin{proof}
 
Dle definice $\hat{\rho}$ platí
 
Dle definice $\hat{\rho}$ platí
 
\[
 
\[
\hat{\rho} \ket{\psi} = \sum_{m=1}^n P_m \ket{\psi_m} \braket{\psi_m}{\psi} = \rho \ket{\psi}.
+
\hat{\rho} \ket{\psi} = \sum_{m=1}^n P_m \ket{\psi_m} \braket{\psi_m}{\psi}.
 
\]
 
\]
 
Vynásobením této rovnosti zleva bra $\bra{\psi}$ dostáváme
 
Vynásobením této rovnosti zleva bra $\bra{\psi}$ dostáváme
 
\[
 
\[
\sum_{m=1}^n P_m |\braket{\psi_m}{\psi}|^2 = \rho \braket{\psi}{\psi},
+
  \brapigket{\psi}{\hat{\rho}}{\psi} = \sum_{m=1}^n P_m |\braket{\psi_m}{\psi}|^2,
 
\]
 
\]
odkud již plyne $\rho \in \real_0^+$.
+
což je součet samých nezáporných členů.
 
\end{proof}
 
\end{proof}
  
Operátor \eqref{MatH:defmathust} je tedy pozitivní, má jednotkovou stopu a navíc (jak snadno nahlédneme z jeho definice) je samosdružený. Zobecněním získáváme první hledaný postulát.
+
Operátor \eqref{MatH:defmathust} je tedy pozitivní, má jednotkovou stopu a navíc (jak snadno nahlédneme z jeho definice) je samosdružený. Kvantová mechanika postuluje, že každý takový operátor popisuje možný fyzikální stav systému.
  
 
\begin{define}[Postulát 1]\label{MatH:defmathustdef}
 
\begin{define}[Postulát 1]\label{MatH:defmathustdef}
 
Stavy v kvantové mechanice jsou popsány operátory $\hat{\rho}$ nazývanými \textbf{matice hustoty} (operátor hustoty, statistický operátor) s vlastnostmi
 
Stavy v kvantové mechanice jsou popsány operátory $\hat{\rho}$ nazývanými \textbf{matice hustoty} (operátor hustoty, statistický operátor) s vlastnostmi
 
\begin{enumerate}[$(i)$]
 
\begin{enumerate}[$(i)$]
\item $Tr \hat{\rho} = 1$,
+
\item $\Tr \hat{\rho} = 1$,
\item $\hat{\rho}$ je pozitivní ($\forall \ket{\psi} \in \hilbert: \brapigket{\psi}{\hat{\rho}}{\psi} \geq 0$),
+
\item $\hat{\rho}$ je samosdružený ($\hat{\rho} = \hat{\rho}^\dagger$),
\item $\hat{\rho}$ je samosdružený ($\hat{\rho} = \hat{\rho}^\dagger$).
+
\item $\hat{\rho}$ je pozitivní ($\forall \ket{\psi} \in \hilbert: \brapigket{\psi}{\hat{\rho}}{\psi} \geq 0$).
 
\end{enumerate}
 
\end{enumerate}
Matice hustoty mající hodnost rovnu jedné nazýváme \textbf{čisté stavy}. Všechny ostatní nazýváme \textbf{smíšené stavy}.
+
Matice hustoty mající hodnost rovnu jedné (což jsou právě všechny projektory na jednorozměrné podprostory $\hilbert$) nazýváme \textbf{čisté stavy}. Všechny ostatní stavy nazýváme \textbf{smíšené}.
 
\end{define}
 
\end{define}
  
 
\begin{remark}
 
\begin{remark}
Podmínky $(i)+(ii)$ implikují omezenost $\hat{\rho}$.
+
Podmínky $(i)+(iii)$ implikují omezenost $\hat{\rho}$.
 
\end{remark}
 
\end{remark}
  
Přestupme nyní k určení střední hodnoty pozorovatelné $\hat{A}$ ve stavu popsaném maticí hustoty $\hat{\rho}$ (označmě $\stredni{\hat{A}}_{\hat{\rho}} $) definované ve smyslu \eqref{MatH:defmathust}. V analogii s klasickou fyzikou píšeme
+
Protože výpočet hodnosti není v obecném případě praktický, setkáváme se i s jinými ekvivalentními způsoby, jak poznat čisté stavy od smíšených, případně míru smíšenosti kvantifikovat. Základní takovou měrou je \textbf{čistota stavu} definovaná jako $\Tr \bigl(\hat{\rho}^2\bigr)$. Čisté stavy splňují $\Tr \hat{\rho}^2 = 1$ a pro všechny ostatní leží čistota v intervalu $(0,1)$.
\[
+
\stredni{\hat{A}}_{\hat{\rho}} = \sum_{m=1}^n P_m \stredni{\hat{A}}_{\ket{\psi_m}},
+
\]
+
kde $\stredni{\hat{A}}_{\ket{\psi_m}}$ je střední hodnota pozorovatelné $\hat{A}$ ve stavu $\ket{\psi_m}$. Buď $(\ket{i})$ ortonormální báze $\hilbert$, potom
+
\begin{align*}
+
\stredni{\hat{A}}_{\hat{\rho}} &= \sum_{m=1}^n P_m \sum_i \brapigket{\psi_m}{\hat{A}}{i} \braket{i}{\psi_m} =
+
\sum_{m=1}^n \sum_i \braket{i}{\psi_m} P_m \brapigket{\psi_m}{\hat{A}}{i} = \\
+
&= \sum_{m=1}^n \Tr\left(P_m \ket{\psi_m}\bra{\psi_m} \hat{A}\right) = \Tr\left(\hat{\rho}\hat{A}\right).
+
\end{align*}
+
  
\begin{remark}
+
Čisté stavy popisuje matice hustoty tvaru $\hat{\rho}_{\ket{\psi}} = \ket{\psi}\bra{\psi}$. Přechod zpět k vektorovému vyjádření $\ket{\psi}$ je nejednoznačný, matice hustoty smazává informaci o komplexní fázi vektoru. To však fyzikálně ničemu nevadí, protože víme, že i ve vektorové formulaci kvantové mechaniky fáze (stejně jako délka vektoru) nemá vůbec žádnou fyzikální podstatu. V jistém ohledu je tak formulace pomocí matice hustoty dokonce blíže měřitelné realitě díky tomu, že tuto nejednoznačnost v popisu stavu neobsahuje.
Pokud $|\Tr \hat{A}| < + \infty$, platí $\Tr\left(\hat{\rho}\hat{A}\right) = \Tr\left(\hat{A}\hat{\rho}\right)$.
+
\end{remark}
+
  
\begin{define}[Postulát 2]
+
Poznamenejme ještě, že ani v rámci projektorů není rozklad \eqref{MatH:defmathust} jednoznačný: v~obecném případě může existovat více různých kombinací stavů a jejich přiřazených pravděpodobností, které dávají stejné $\hat{\rho}$. Pomocí vzorců, které jsou vyjádřené prostřednictvím $\hat{\rho}$, pak takové situace není možné vzájemně od sebe poznat, jejich chování je identické.
Střední hodnota $\stredni{\hat{A}}_{\hat{\rho}}$ pozorovatelné $\hat{A}$ ve stavu popsaném maticí hustoty $\hat{\rho}$ je rovna
+
 
\begin{equation} \label{MatH:defstrhen}
+
%%%%%
\stredni{\hat{A}}_{\hat{\rho}} = \Tr\left(\hat{\rho}\hat{A}\right) = \Tr\left(\hat{A}\hat{\rho}\right).
+
\end{equation}
+
\end{define}
+
  
Věnujme se nyní časovému vývoji $\hat{\rho}$. Předpokládejme, že se vývoj každého stavu $\ket{\psi_m(t)}$ řídí Schrödingerovou rovnicí
+
Věnujme se nyní časovému vývoji $\hat{\rho}$. Předpokládejme, že se vývoj každého ze stavů $\ket{\psi_m(t)}$ řídí Schrödingerovou rovnicí
 
\begin{equation} \label{MatH:SRmathust}
 
\begin{equation} \label{MatH:SRmathust}
 
i \hbar \deriv{}{t} \ket{\psi_m(t)} = \hat{H} \ket{\psi_m(t)}, \quad \text{resp.} \quad
 
i \hbar \deriv{}{t} \ket{\psi_m(t)} = \hat{H} \ket{\psi_m(t)}, \quad \text{resp.} \quad
 
- i \hbar \deriv{}{t} \bra{\psi_m(t)} =  \bra{\psi_m(t)} \hat{H}  
 
- i \hbar \deriv{}{t} \bra{\psi_m(t)} =  \bra{\psi_m(t)} \hat{H}  
 
\end{equation}
 
\end{equation}
a že k jiné změně směsi stavů nedochází. Matici hustoty $\hat{\rho}$ je tedy možno zapsat
+
a že k jiné změně směsi (např. dalšímu směšování) stavů nedochází. Časový vývoj matice hustoty $\hat{\rho}$ je tedy možno zapsat
 
\[
 
\[
 
\hat{\rho}(t)= \sum_{m=1}^n P_m \ket{\psi_m(t)} \bra{\psi_m(t)}
 
\hat{\rho}(t)= \sum_{m=1}^n P_m \ket{\psi_m(t)} \bra{\psi_m(t)}
Řádka 137: Řádka 137:
 
\end{align*}
 
\end{align*}
  
\begin{define}[Postulát 3]
+
\begin{define}[Postulát 2]
Časový vývoj matice hustoty $\hat{\rho}(t)$ se řídí von Neumanovou rovnicí
+
Pro izolovaný fyzikální systém se časový vývoj matice hustoty $\hat{\rho}(t)$ řídí rovnicí%
 +
\footnote{Známá je jako \textsl{von Neumannova rovnice}.}
 
\begin{equation} \label{MatH:defvonNeum}
 
\begin{equation} \label{MatH:defvonNeum}
 
i \hbar \deriv{}{t} \hat{\rho}(t) = \komut{\hat{H}}{\hat{\rho}(t)}.
 
i \hbar \deriv{}{t} \hat{\rho}(t) = \komut{\hat{H}}{\hat{\rho}(t)}.
Řádka 145: Řádka 146:
  
 
\begin{remark}
 
\begin{remark}
Srovnáním von Neumanovy rovnice \eqref{MatH:defvonNeum} s rovnicí popisující časový vývoj operátoru v Heisenbergově reprezentaci \eqref{ZQM:HeissOpEq} zjišťujeme, že komutátory vystupující na pravých stranách těchto rovnic jsou vzájemně opačné. Je to však ve shodě s vývojem pozorovatelných a hustoty pravděpodobnosti v klasické mechanice (ronvice \eqref{ZQM:klasvyvpoz1} a \eqref{MatH:klasvyvpoz2})
+
V soustavách, které nejsou izolované, může docházet i ke změnám pravděpodobnostního rozdělení. Pro soustavy, které mohou jednosměrně interagovat s klasickým okolím, pak existuje úplnější verze výše uvedeného vztahu, rozšířená o další členy a známá jako Lindbladova rovnice či řídící rovnice (\textsl{master equation}). Je také plně vyjádřitelná pomocí operátoru $\hat{\rho}$, bez nutnosti znát detaily jeho rozkladu \eqref{MatH:defmathust}. V tomto předmětu se jí nebudeme hlouběji věnovat.
 
\end{remark}
 
\end{remark}
  
Zbývá nám vyřešit, jak se změní matice hustoty $\hat{\rho}$, provedeme-li na systému měření pozorovatelné $\hat{A}$. Mějme čistý stav $\ket{\psi}$, na němž naměříme hodnotu $a$ pozorovatelné $\hat{A}$ (symbolicky $\hat{A}=a$). V důsledku měření přejde systém do stavu $\hat{P}_{\hat{A}=a}\ket{\psi}$, kde $\hat{P}_{\hat{A}=a}$ je projektor na vlastní podprostor příslušející vlastní hodnotě $a$ (projekční postulát).
+
%%%%%
  
Mějme ortonormální bázi vektorů $(\ket{a,k})_{k=1}^l$ tvořící vlastní podprostor operátoru $\hat{A}$ příslušející jeho vlastní hodnotě $a$, tedy
+
Podívejme se nyní, jak bude potřeba upravit naše dosavadní znalosti o měření fyzikálních veličin v kvantové fyzice. Ve srovnání s minulým semestrem bude třeba přeformulovat
 +
\begin{itemize}
 +
\item pravděpodobnost naměření výsledku $a$ pozorovatelné $\hat{A}$,
 +
\item střední hodnotu pozorovatelné $\hat{A}$ v daném fyzikálním stavu,
 +
\item změnu stavu v důsledku měření.
 +
\end{itemize}
 +
Ve všech případech samozřejmě platí, že můžeme výsledky spočítat v jednotlivých členech $\ket{\psi_m}$ rozkladu \eqref{MatH:defmathust} a spočítat průměr vážený odpovídajícími pravděpodobnostmi. Tak budeme postupovat i při odvození očekávaných tvarů, které pak potvrdíme formou postulátů.
 +
 
 +
Mějme ortonormální bázi vektorů $(\ket{a,k})_{k=1}^l$ tvořící vlastní podprostor operátoru $\hat{A}$ (přiřazeného měřitelné veličině $A$) příslušející jeho vlastní hodnotě $a$, tedy
 
\[
 
\[
 
\hat{A} \ket{a,k} = a \ket{a,k} \quad k = 1, \ldots, l.
 
\hat{A} \ket{a,k} = a \ket{a,k} \quad k = 1, \ldots, l.
 
\]  
 
\]  
 
Ze zimy víme, že pravděpodobnost $W_{\hat{A}=a,\ket{\psi}}$, že při měření pozorovatelné $\hat{A}$ na systému ve stavu $\ket{\psi}$ naměříme hodnotu $a$, je rovna
 
Ze zimy víme, že pravděpodobnost $W_{\hat{A}=a,\ket{\psi}}$, že při měření pozorovatelné $\hat{A}$ na systému ve stavu $\ket{\psi}$ naměříme hodnotu $a$, je rovna
\begin{equation} \label{MatH:MereniPoz1}
+
\begin{equation*}
 
W_{\hat{A}=a,\ket{\psi}} = \sum_{k=1}^l |\braket{\psi}{a,k}|^2 = \sum_{k=1}^l \braket{\psi}{a,k}\braket{a,k}{\psi} =
 
W_{\hat{A}=a,\ket{\psi}} = \sum_{k=1}^l |\braket{\psi}{a,k}|^2 = \sum_{k=1}^l \braket{\psi}{a,k}\braket{a,k}{\psi} =
 
\brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi},
 
\brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi},
\end{equation}
+
\end{equation*}
 
kde $\hat{P}_{\hat{A}=a}$ je projekční operátor splňující  
 
kde $\hat{P}_{\hat{A}=a}$ je projekční operátor splňující  
 +
\begin{equation}
 +
  \hat{P}_{\hat{A}=a} = \sum_{k=1}^l \ket{a,k}\bra{a,k} = \hat{P}_{\hat{A}=a}^\dagger, \quad
 +
  \hat{P}_{\hat{A}=a} = \hat{P}_{\hat{A}=a}^2.
 +
\label{MatH:projektory}
 +
\end{equation}
 +
Je přirozené očekávat, že pravděpodobnost $W_{\hat{A}=a,\hat{\rho}}$ naměření $\hat{A}=a$ na systému popsaného maticí hustoty $\hat{\rho}$ definované dle \eqref{MatH:defmathust} bude rovna
 +
\begin{equation*}
 +
W_{\hat{A}=a,\hat{\rho}} = \sum_{m=1}^n P_m W_{\hat{A}=a,\ket{\psi_m}} =
 +
    \sum_{m=1}^n P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m}.
 +
\end{equation*}
 +
K úpravě do pěknějšího tvaru si dopomůžeme následujícím trikem, který pak využijeme i do budoucna. Buď $(\ket{i})_{i\in\mathscr{I}}$ (libovolná) ortonormální báze $\hilbert$, potom
 +
\begin{equation*}
 +
W_{\hat{A}=a,\hat{\rho}}
 +
    = \sum_{m=1}^n P_m \sum_i \braket{\psi_m}{i} \brapigket{i}{\hat{P}_{\hat{A}=a}}{\psi_m}
 +
    = \sum_{m=1}^n \sum_i \brapigket{i}{\hat{P}_{\hat{A}=a}}{\psi_m} P_m \braket{\psi_m}{i}
 +
    = \Tr\left(\hat{P}_{\hat{A}=a} \hat{\rho}\right).
 +
\end{equation*}
 +
 +
Tyto pravděpodobnosti můžeme využít k výpočtu střední hodnoty při měření operátoru $\hat{A}$ na stavu $\hat{\rho}$ (označme $\stredni{\hat{A}}_{\hat{\rho}}$) -- využitím linearity stopy:
 
\[
 
\[
\hat{P}_{\hat{A}=a} = \sum_{k=1}^l \ket{a,k}\bra{a,k}, \quad
+
\stredni{\hat{A}}_{\hat{\rho}} = \sum_{a\in\sigma(\hat{A})} a W_{\hat{A}=a,\hat{\rho}} = \Tr\Bigl(\underbrace{\sum\nolimits_{a\in\sigma(\hat{A})} a \hat{P}_{\hat{A}=a}}_{\text{spektrální rozklad $\hat{A}$}} \hat{\rho}\Bigr) = \Tr\left(\hat{A}\hat{\rho}\right).
\hat{P}_{\hat{A}=a} = \hat{P}_{\hat{A}=a} \hat{P}_{\hat{A}=a}.
+
 
\]
 
\]
Je přirozené očekávat, že pravděpodobnost $W_{\hat{A}=a,\hat{\rho}}$ naměření $\hat{A}=a$ na systému popsaného maticí hustoty $\hat{\rho}$ definované dle \eqref{MatH:defmathust} bude rovna
+
Ke stejnému výsledku můžeme alternativně dospět i použitím vzorce pro $\stredni{\hat{A}}_{\ket{\psi_m}}$:
 
\begin{align*}
 
\begin{align*}
W_{\hat{A}=a,\hat{\rho}} &= \sum_{m=1}^n P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m} = \\
+
\stredni{\hat{A}}_{\hat{\rho}} &= \sum_{m=1}^n P_m \stredni{\hat{A}}_{\ket{\psi_m}}
&= \sum_{m=1}^n P_m \sum_i \braket{\psi_m}{i} \brapigket{i}{\hat{P}_{\hat{A}=a}}{\psi_m} =
+
= \sum_{m=1}^n P_m \brapigket{\psi_m}{\hat{A}}{\psi_m}
\Tr\left(\hat{P}_{\hat{A}=a} \hat{\rho}\right),
+
= \sum_{m=1}^n P_m \sum_i \brapigket{\psi_m}{\hat{A}}{i} \braket{i}{\psi_m} =\\
 +
&= \sum_{m=1}^n \sum_i \braket{i}{\psi_m} P_m \brapigket{\psi_m}{\hat{A}}{i}
 +
  = \sum_{m=1}^n \Tr\left(P_m \ket{\psi_m}\bra{\psi_m} \hat{A}\right) = \Tr\left(\hat{\rho}\hat{A}\right).
 
\end{align*}
 
\end{align*}
kde $(\ket{i})$ představuje ortonormální bázi $\hilbert$.
 
  
\begin{define}[Postulát 4]
+
Zbývá nám vyřešit, jak se změní matice hustoty $\hat{\rho}$, provedeme-li na systému měření pozorovatelné $\hat{A}$. Mějme čistý stav $\ket{\psi}$, na němž naměříme hodnotu $a$ pozorovatelné $\hat{A}$. V důsledku měření přejde systém do stavu $\hat{P}_{\hat{A}=a}\ket{\psi}$, kde $\hat{P}_{\hat{A}=a}$ je projektor na vlastní podprostor příslušející vlastní hodnotě $a$ (projekční postulát). Tento stav není normalizovaný, ale lze normalizovat právě tehdy, když existuje nenulová pravděpodobnost události. Fázi přiřazenou v nové normalizaci kvantová mechanika ponechává neurčenou.
Pravděpodobnost $W_{\hat{A}=a,\hat{\rho}}$, že při měření pozorovatelné $\hat{A}$ na systému nacházejícím se ve stavu popsaném maticí hustoty $\hat{\rho}$ obdržíme hodnotu $a$, je rovna
+
\begin{equation} \label{MatH:defpravdnam}
+
W_{\hat{A}=a,\hat{\rho}} = \Tr\left(\hat{P}_{\hat{A}=a} \hat{\rho}\right).
+
\end{equation}
+
\end{define}
+
  
Pokud na čistém stavu $\ket{\psi}$ provádíme opakované měření pozorovatelné $\hat{A}$ a systém nejsme schopní roztřídit dle výsledku (např. z důvodu velkého počtu měření), získáváme smíšený stav. Držme se opět definice matice hustoty \eqref{MatH:defmathust}. Systém v počátečním čistém stavu $\ket{\psi}$ (předpokládejme $\braket{\psi}{\psi} = 1$) je popsán maticí hustoty $\hat{\rho}_{\ket{\psi}} = \ket{\psi}\bra{\psi}$. Po provedení měření $\hat{A}=a$ systém přechází do stavu $\hat{P}_{\hat{A}=a}\ket{\psi}$ (vzniklý vektor již nemusí být normalizovaný k jedničce) s maticí hustoty $\hat{\rho}_{\hat{A}=a,\ket{\psi}}$ definovanou obdobně
+
Pokud výsledek $a$ získáme při měření smíšeného stavu $\hat{\rho}$, uvažujme opět konvexní kombinaci výsledných stavů po projekci, ale s pravděpodobnostmi $P_m$ ještě vynásobenými pravděpodobnostmi, že konkrétní stav $\ket{\psi_m}$ výsledek $a$ vůbec dá:
\begin{equation} \label{MatH:MereniPoz2}
+
\begin{equation}
\hat{\rho}_{\hat{A}=a,\ket{\psi}} = \frac{\hat{P}_{\hat{A}=a} \ket{\psi} \bra{\psi} \hat{P}_{\hat{A}=a}}
+
\hat{\rho}_{\hat{A}=a}^{?} = \sum_{a\in\sigma(\hat{A})} P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m} \frac{%
{\braket{\hat{P}_{\hat{A}=a} \psi}{\hat{P}_{\hat{A}=a} \psi}} =
+
\bigl(\hat{P}_{\hat{A}=a}\ket{\psi_m}\bigr) \bigl(\hat{P}_{\hat{A}=a}\ket{\psi_m}\bigr)^\dagger%
\frac{\hat{P}_{\hat{A}=a} \ket{\psi} \bra{\psi} \hat{P}_{\hat{A}=a}}
+
}{%
{\brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi}}.
+
\bigl(\hat{P}_{\hat{A}=a}\ket{\psi_m}\bigr)^\dagger \bigl(\hat{P}_{\hat{A}=a}\ket{\psi_m}\bigr)
 +
}
 +
\label{MatH:rhopomereni1}
 
\end{equation}
 
\end{equation}
Dle předpokladu však na čistém stavu $\ket{\psi}$ neměříme pouze hodnotu $\hat{A}=a$, nýbrž hodnoty z celého spektra operátoru $A$. Zohledněním tohoto faktu můžeme výsledný smíšený stav charakterizovat maticí hustoty $\hat{\rho}_{\hat{A},\ket{\psi}}$ definovanou jako
+
Druhý člen v čitateli se pokrátí s jmenovatelem třetího díky idempotenci projektorů \eqref{MatH:projektory} a zůstane
\begin{align*}
+
\begin{equation*}
\hat{\rho}_{\hat{A},\ket{\psi}} &= \sum_{a \in \sigma(\hat{A})} W_{\hat{A}=a,\ket{\psi}} \hat{\rho}_{\hat{A}=a,\ket{\psi}} =
+
\hat{\rho}_{\hat{A}=a}^{?} = \sum_{a\in\sigma(\hat{A})} P_m
\sum_{a \in \sigma(\hat{A})} \brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi}
+
\hat{P}_{\hat{A}=a}\ket{\psi_m}\bra{\psi_m}\hat{P}_{\hat{A}=a}^\dagger
\frac{\hat{P}_{\hat{A}=a} \ket{\psi} \bra{\psi} \hat{P}_{\hat{A}=a}}
+
= \hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}.
{\brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi}} = \\
+
\end{equation*}
&= \sum_{a \in \sigma(\hat{A})} \hat{P}_{\hat{A}=a} \hat{\rho}_{\ket{\psi}} \hat{P}_{\hat{A}=a},
+
Takový stav by ale nebyl správně normalizovaný. Ukazuje se, že jeho stopa je
\end{align*}
+
\begin{equation*}
kde bylo užito rovností \eqref{MatH:MereniPoz1} a \eqref{MatH:MereniPoz2}.
+
\Tr\hat{\rho}_{\hat{A}=a}^{?} = \Tr \bigl( \hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a} \bigr) = \Tr \bigl( \hat{\rho} \hat{P}_{\hat{A}=a}^2 \bigr) = W_{\hat{A}=a,\hat{\rho}}.
 +
\end{equation*}
 +
Důvod je jednoduchý, upravené pravděpodobnosti $P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m}$ vystupující v \eqref{MatH:rhopomereni} netvoří pravděpodobností rozdělení. Jejich součtem místo jednotky je pravděpodobnost, že k měření $a$ vůbec dojde. Celý výraz bychom tedy jí měli vydělit, protože při zkoumání stavu po měření nás už zajímají jen situace, kdy měření proběhlo úspěšně.%
 +
\footnote{To jinými slovy říká, že ve výrazu \eqref{MatH:rhopomereni} jsme správně měli použít \textsl{podmíněné} pravděpodobnosti.}
 +
To vlastně znamená operátor $\Tr\hat{\rho}_{\hat{A}=a}^{?}$ opravit vydělením jeho vlastní stopou:
 +
\[
 +
\hat{\rho}_{\hat{A}=a} = \frac{\hat{\rho}_{\hat{A}=a}^{?}}{\Tr\hat{\rho}_{\hat{A}=a}^{?}} = \frac{\hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}}{\Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}\bigr)}.
 +
\]
  
\begin{define}[Postulát 5]
+
Vidíme, že všechny výsledky výše je možné vyjádřit pomocí operátoru $\hat{\rho}$ bez potřeby znalosti jeho kompozice tvaru \eqref{MatH:defmathust}. To shrnuje náš třetí postulát.
Pokud byl systém na počátku ve stavu popsaném maticí $\hat{\rho}$, po měření pozorovatelné $\hat{A}$ se nachází ve stavu popsaném maticí $\hat{\rho}_{\hat{A}}$ definovanou
+
 
\begin{equation} \label{MatH:defpuchfilt}
+
\begin{define}[Postulát 3]
\hat{\rho}_{\hat{A}} = \sum_{a \in \sigma(\hat{A})} \hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}.
+
Při měření pozorovatelné $\hat{A}$ na kvantovém stavu popsaném maticí hustoty $\hat{\rho}$ může výsledek $a \in \sigma(\hat{\rho})$ nastat s pravděpodobností
 +
\begin{equation}
 +
  W_{\hat{A}=a,\hat{\rho}} = \Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho}\bigr).
 +
\label{MatH:defpravdnam}
 +
\end{equation}
 +
Kvantový stav v tom případě přejde na
 +
\begin{equation}
 +
  \hat{\rho}_{\hat{A}=a} = \frac{\hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}}{\Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}\bigr)}.
 +
\label{MatH:rhopomereni}
 +
\end{equation}
 +
Střední hodnota pozorovatelné $\hat{A}$ odpovídající těmto výsledkům je rovna
 +
\begin{equation}
 +
\stredni{\hat{A}}_{\hat{\rho}} = \Tr\left(\hat{\rho}\hat{A}\right) = \Tr\left(\hat{A}\hat{\rho}\right).
 +
\label{MatH:defstrhen}
 
\end{equation}
 
\end{equation}
 
\end{define}
 
\end{define}
 +
 +
Formalizmus smíšených stavů nám umožňuje klást si i nový druh otázky, na který „vektorová“ kvantová mechanika nemohla nabídnout smysluplnou odpověď -- jmenovitě, jak popisovat měření, u kterých výsledek nedokážeme rozlišit (např. z důvodu velkého množství měření, měření provedené jiným pozorovatelem, omezené rozlišovací schopnosti apod.) -- a tím ilustrovat kvantovou operaci, u které dochází ke změnám vlastních čísel $\hat{\rho}$.
 +
 +
V takovém případě můžeme jednoduše matice hustoty \eqref{MatH:rhopomereni} smísit s pravděpodobnostmi, kdy který případ nastane, danými \eqref{MatH:defpravdnam}. Výsledkem je
 +
\begin{equation}
 +
  \hat{\rho}_{\hat{A}} = \sum_{a \in \sigma(\hat{A})} \Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho}\bigr) \frac{\hat{P}_{\hat{A}=a} \hat{\rho}\hat{P}_{\hat{A}=a}}{\Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho}\bigr)} = \sum_{a \in \sigma(\hat{A})} \hat{P}_{\hat{A}=a} \hat{\rho}\hat{P}_{\hat{A}=a}.
 +
  \label{MatH:defpuchfilt}
 +
\end{equation}
 +
 +
Transformace \eqref{MatH:defpuchfilt} typicky vyrábí i z čistých stavů smíšené a smíšeným stavům dále snižuje čistotu. S podobnými operacemi se můžeme setkat i v jiných situacích, než při provádění kvantových měření bez zaznamenávání výsledků. Podobné transformace popisují další jevy doprovázené ztrátou kvantové koherence -- vliv tepelného šumu, interakce s okolím v případě nedostatečně odizolovaného systému, \ldots
  
 
\begin{example}
 
\begin{example}
 
Matice hustoty na $\hilbert = \komplex^2$.
 
Matice hustoty na $\hilbert = \komplex^2$.
  
Matice hustoty $\hat{\rho} \in \komplex^{2,2}$ musí dle definice \ref{MatH:defmathustdef} splňovat 3 podmínky. Při jejím hledáním přejdeme do báze $(\hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3, \opone)$, kde $\hat{\sigma}_i$ jsou Pauliho matice \eqref{ZQM:PaulihoMatice} a $\opone$ představuje jednotkový operátor.
+
Matice hustoty $\hat{\rho} \in \komplex^{2,2}$ musí dle definice \ref{MatH:defmathustdef} splňovat tři podmínky. Při jejím hledáním přejdeme do báze $(\hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3, \opone)$, kde $\hat{\sigma}_i$ jsou Pauliho matice \eqref{ZQM:PaulihoMatice} a $\opone$ představuje jednotkový operátor.
  
Jelikož $\hat{\sigma}_i = \hat{\sigma}_i^\dagger$ a $\opone = \opone^\dagger$, je i operátor $\hat{\rho}$ definovaný jako
+
Jelikož $\hat{\sigma}_i = \hat{\sigma}_i^\dagger$ a $\opone = \opone^\dagger$, je operátor $\hat{\rho}$ definovaný obecná lineární kombinace
 
\[
 
\[
\hat{\rho} = \sum_{i=1}^3 \alpha_i \hat{\sigma}_i + \alpha_4 \opone, \quad \text{kde} \quad \alpha_i \in \real
+
\hat{\rho} = \sum_{i=1}^3 \alpha_i \hat{\sigma}_i + \alpha_4 \opone, \quad \alpha_i \in \komplex
 
\]
 
\]
samosdružený, tedy $\hat{\rho} = \hat{\rho}^\dagger$ a podmínka $(iii)$ v definici \ref{MatH:defmathustdef} je tak triviálně splněna. Dále snadno nahlédneme, že $\Tr \sigma_i = 0$ a $\Tr \opone = 2$. Abychom zaručili jednotkovou stopu matice hustoty $\hat{\rho}$, budeme hledat její vyjádření ve tvaru
+
samosdružený, a tak splněna podmínka $(ii)$, právě tehdy, kdy koeficienty $\alpha_i$ jsou reálné.
 +
Dále snadno nahlédneme, že $\Tr \sigma_i = 0$ a $\Tr \opone = 2$. Abychom zaručili jednotkovou stopu matice hustoty $\hat{\rho}$, musí být $\alpha_4 = \frac12$. Budeme tedy níže hledat její vyjádření $\hat{\rho}$ již jen ve tvaru
 
\begin{equation} \label{MatH:C2MatHust}
 
\begin{equation} \label{MatH:C2MatHust}
 
\hat{\rho} = \frac{1}{2} \left( \opone + \sum_{i=1}^3 \alpha_i \hat{\sigma}_i \right) =
 
\hat{\rho} = \frac{1}{2} \left( \opone + \sum_{i=1}^3 \alpha_i \hat{\sigma}_i \right) =
 
\frac{1}{2}
 
\frac{1}{2}
\left( \begin{array}{cc}
+
\begin{pmatrix}
    1+\alpha_3 & \alpha_1 - i\alpha_2 \\
+
    1+\alpha_3 & \alpha_1 - i\alpha_2 \\
    \alpha_1 + i\alpha_2 & 1-\alpha_3 \\ \end{array} \right),
+
    \alpha_1 + i\alpha_2 & 1-\alpha_3 \\
 +
  \end{pmatrix},
 
\end{equation}
 
\end{equation}
kde bylo užito explicitních tvarů Pauliho matic \eqref{ZQM:PaulihoMatice}. Zbývá nám zaručit pozitivnost $\hat{\rho}$. Snadno nahlédneme, že vlastní čísla matice \eqref{MatH:C2MatHust} jsou rovna
+
kde bylo užito explicitních tvarů Pauliho matic \eqref{ZQM:PaulihoMatice} a navíc jsme pro pohodlnost přeznačili $\alpha_i \mapsto \alpha_i/2$. Zbývá nám zaručit pozitivnost $\hat{\rho}$. Snadno nahlédneme, že vlastní čísla matice \eqref{MatH:C2MatHust} jsou rovna
 
\[
 
\[
 
\lambda^{(\pm)} = \frac{1 \pm \sqrt{\alpha_1^2 +\alpha_2^2 +\alpha_3^2}}{2},
 
\lambda^{(\pm)} = \frac{1 \pm \sqrt{\alpha_1^2 +\alpha_2^2 +\alpha_3^2}}{2},
 
\]
 
\]
 
a tudíž je podmínkou pozitivity $\hat{\rho}$ nerovnost
 
a tudíž je podmínkou pozitivity $\hat{\rho}$ nerovnost
 +
\begin{equation}
 +
  \alpha_1^2 +\alpha_2^2 +\alpha_3^2 \leq 1.
 +
  \label{MatH:Bloch}
 +
\end{equation}
 +
Poslední nerovnost tvoří množinu, jež bývá nazývána Blochovou koulí. Množina všech kvantových stavů je (i v obecnějších případech) vždy konvexní, přičemž na jejím povrchu leží čisté stavy, uvnitř potom stavy smíšené.
 +
 +
Předpokládejme nyní pro ilustraci čistý stav, tedy rovnost v \eqref{MatH:Bloch}. Ta zaručí vlastní čísla $\lambda^{(+)} = 1$ a $\lambda^{(-)} = 0$. Vektor popisující čistý stav $\ket{\psi}$ je vlastním vektorem $\hat{\rho}$ příslušející vlastnímu číslu $\lambda^{(+)}=1$. Jeden z jeho možných tvarů je
 
\[
 
\[
\alpha_1^2 +\alpha_2^2 +\alpha_3^2 \leq 1.
+
\ket{\psi} = \frac{1}{\sqrt{2(1-\alpha_3)}} \begin{pmatrix}
\]
+
    \alpha_1 - i\alpha_2 \\
Poslední nerovnost tvoří množinu, jež bývá nazývána Blochovou koulí. Ta je (i v obecnějších případech) vždy konvexní, přičemž na jejím povrchu leží čisté stavu, uvnitř potom stavy smíšené. Čistý stav $\ket{\psi}$ je vlastním vektorem $\hat{\rho}$ příslušející vlastnímu číslu $\lambda^{(+)}=1$. Jeden z jeho možných tvarů je
+
    1-\alpha_3 \\
\[
+
  \end{pmatrix}, \quad \braket{\psi}{\psi} = 1.  
\ket{\psi} = \frac{1}{\sqrt{2(1-\alpha_3)}} \left( \begin{array}{c}
+
    \alpha_1 - i\alpha_2 \\
+
    1-\alpha_3 \\ \end{array} \right), \quad \braket{\psi}{\psi} = 1.  
+
 
\]  
 
\]  
 
Snadno nahlédneme, že  
 
Snadno nahlédneme, že  
 
\[
 
\[
\ket{\psi} \bra{\psi} = \frac{1}{2(1-\alpha_3)} \left( \begin{array}{c}
+
\ket{\psi} \bra{\psi} = \frac{1}{2(1-\alpha_3)}
  \alpha_1 - i\alpha_2 \\
+
    \begin{pmatrix}
    1-\alpha_3 \\ \end{array} \right)
+
      \alpha_1 - i\alpha_2 \\
    \left( \begin{array}{cc}
+
      1-\alpha_3 \\
    \alpha_1 + i\alpha_2, & 1-\alpha_3 \\ \end{array} \right) = \hat{\rho}.
+
    \end{pmatrix}
 +
    \begin{pmatrix}
 +
      \alpha_1 + i\alpha_2, & 1-\alpha_3 \\
 +
    \end{pmatrix} = \hat{\rho}.
 
\]
 
\]
Předpokládejme hamiltonián $\hat{H}$ ve tvaru $\hat{H} = \left( \begin{array}{cc}
+
 
    E_1 & 0 \\
+
Zkoumejme časový vývoj matice hustoty. Předpokládejme hamiltonián $\hat{H}$ ve tvaru $\hat{H} = \begin{pmatrix}
    0 & E_2 \\ \end{array} \right)$, $E_1 \leq E_2$. Položme $\alpha_i = \alpha_i(t)$. Víme, že časový vývoj matice hustoty $\hat{\rho}$ se řídí von Neumanovou rovnicí \eqref{MatH:defvonNeum}, která po dosazení $\hat{H}$, $\hat{\rho}$ a po úpravě získává tvar
+
  E_1 & 0 \\
 +
  0 & E_2 \\
 +
\end{pmatrix}$, $E_1 \leq E_2$. Položme $\alpha_i = \alpha_i(t)$. Víme, že časový vývoj $\hat{\rho}$ se řídí von Neumannovou rovnicí \eqref{MatH:defvonNeum}, která po dosazení $\hat{H}$, $\hat{\rho}$ a po úpravě získává tvar
 
\[
 
\[
i \hbar \left( \begin{array}{cc}
+
i \hbar \begin{pmatrix}
    \dot{\alpha}_3 & \dot{\alpha}_1 - i\dot{\alpha}_2 \\
+
            \dot{\alpha}_3 & \dot{\alpha}_1 - i\dot{\alpha}_2 \\
    \dot{\alpha}_1 + i\dot{\alpha}_2 & \dot{\alpha}_3 \\ \end{array} \right) = (E_1 - E_2)
+
            \dot{\alpha}_1 + i\dot{\alpha}_2 & \dot{\alpha}_3 \\
     \left( \begin{array}{cc}
+
          \end{pmatrix} = (E_1 - E_2)
    0 & \alpha_1 - i\alpha_2 \\
+
     \begin{pmatrix}
    -\alpha_1 - i\alpha_2 & 0 \\ \end{array} \right).
+
            0 & \alpha_1 - i\alpha_2 \\
 +
            -\alpha_1 - i\alpha_2 & 0 \\
 +
          \end{pmatrix}.
 
\]
 
\]
 
Řešení pro $\alpha_3(t)$ je triviální. Řešení $\alpha_1(t)$, $\alpha_1(t)$ se naleze elegantně přechodem k nové funkci $z(t)=\alpha_1(t)-i\alpha_2(t)$. Časový vývoj matice hustoty $\hat{\rho}=\hat{\rho}(t)$ je pak možno zapsat
 
Řešení pro $\alpha_3(t)$ je triviální. Řešení $\alpha_1(t)$, $\alpha_1(t)$ se naleze elegantně přechodem k nové funkci $z(t)=\alpha_1(t)-i\alpha_2(t)$. Časový vývoj matice hustoty $\hat{\rho}=\hat{\rho}(t)$ je pak možno zapsat
 
\[
 
\[
\hat{\rho}(t) = \frac{1}{2} \left( \begin{array}{cc}
+
\hat{\rho}(t) = \frac{1}{2} \begin{pmatrix}
    1 + \alpha_3(0) & \bigl[\alpha_1(0) - i\alpha_2(0)\bigr] \exp \left\{ - \frac{i}{\hbar} (E_1 - E_2) t  \right\} \\
+
    1 + \alpha_3(0) & \bigl[\alpha_1(0) - i\alpha_2(0)\bigr] \exp \left\{ - \frac{i}{\hbar} (E_1 - E_2) t  \right\} \\
    \bigl[\alpha_1(0) + i\alpha_2(0)\bigr] \exp \left\{ \frac{i}{\hbar} (E_1 - E_2) t  \right\} & 1 - \alpha_3(0) \\  
+
    \bigl[\alpha_1(0) + i\alpha_2(0)\bigr] \exp \left\{ \frac{i}{\hbar} (E_1 - E_2) t  \right\} & 1 - \alpha_3(0) \\  
    \end{array} \right).
+
  \end{pmatrix}.
 
\]
 
\]
Dále určíme střední hodnotu energie v čase $t=0$ ve stavu $\hat{\rho}$ ($\hat{\rho}$ a $\hat{H}$ zůstávají stále stejné). K tomuto účelu si zvolíme bázi v prostoru $\hilbert = \komplex^2: \Biggl(\ket{1} = \left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right), \ket{2} = \left( \begin{array}{c} 0 \\ 1 \\ \end{array} \right)\Biggr)$. Ze \eqref{MatH:defstrhen} víme, že střední hodnota energie systému ve stavu $\hat{\rho}$ je určena
+
 
 +
Dále zkusíme určit střední hodnotu energie v čase $t=0$ ve stavu $\hat{\rho}$ v případě výše zavedených $\hat{\rho}$ a $\hat{H}$. K tomuto účelu si pojmenujeme standardní bázi v prostoru $\hilbert = \komplex^2$:
 +
\[
 +
\ket{1} = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}, \ket{2} = \begin{pmatrix} 0 \\ 1 \\ \end{pmatrix}.
 +
\]
 +
Ze \eqref{MatH:defstrhen} víme, že střední hodnota energie systému ve stavu $\hat{\rho}$ je určena
 
\[
 
\[
 
\stredni{\hat{H}}_{\hat{\rho}} = \Tr \left(\hat{\rho}\hat{H}\right) = \sum_{i=1}^2 \brapigket{i}{\hat{\rho}\hat{H}}{i} =
 
\stredni{\hat{H}}_{\hat{\rho}} = \Tr \left(\hat{\rho}\hat{H}\right) = \sum_{i=1}^2 \brapigket{i}{\hat{\rho}\hat{H}}{i} =
Řádka 267: Řádka 340:
 
Snadno nahlédneme $\stredni{\hat{H}}_{\hat{\rho}} \in \left\langle E_1, E_2 \right\rangle$, neboť $\alpha_3 \in \left\langle -1, 1 \right\rangle$. Pravděpodobnost $W_{\hat{H}=E_1}$ naměření $\hat{H}=E_1$ je dle \eqref{MatH:defpravdnam} rovna  
 
Snadno nahlédneme $\stredni{\hat{H}}_{\hat{\rho}} \in \left\langle E_1, E_2 \right\rangle$, neboť $\alpha_3 \in \left\langle -1, 1 \right\rangle$. Pravděpodobnost $W_{\hat{H}=E_1}$ naměření $\hat{H}=E_1$ je dle \eqref{MatH:defpravdnam} rovna  
 
\[
 
\[
W_{\hat{H}=E_1} = \Tr\left(\hat{P}_{\hat{H}=E_1} \hat{\rho}\right) = \frac{1}{2} (1 + \alpha_3),
+
W_{\hat{H}=E_1} = \Tr\left(\hat{P}_{\hat{H}=E_1} \hat{\rho}\right)
 +
  = \brapigket{1}{\hat{\rho}}{1}
 +
  = \frac{1}{2} (1 + \alpha_3),
 
\]
 
\]
kde $\hat{P}_{\hat{H}=E_1}$ představuje projekční operátor tvaru $\hat{P}_{\hat{H}=E_1} = \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \\ \end{array} \right)$. Po průchodu filtrem přechází matice hustoty $\hat{\rho}$ na novou matici $\hat{\rho}_{\hat{H}}$ podle vztahu \eqref{MatH:defpuchfilt}. Přímo můžeme psát
+
protože $\hat{P}_{\hat{H}=E_1}$ představuje projekční operátor tvaru $\hat{P}_{\hat{H}=E_1} = \ket{1}\bra{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ \end{pmatrix}$.
 +
 
 +
Po průchodu filtrem přechází matice hustoty $\hat{\rho}$ na novou matici $\hat{\rho}_{\hat{H}}$ podle vztahu \eqref{MatH:defpuchfilt}. Přímo můžeme psát
 
\[
 
\[
 
\hat{\rho}_{\hat{H}} = \sum_{E=E_1,E_2} \hat{P}_{\hat{H}=E} \hat{\rho} \hat{P}_{\hat{H}=E} = \frac{1}{2}
 
\hat{\rho}_{\hat{H}} = \sum_{E=E_1,E_2} \hat{P}_{\hat{H}=E} \hat{\rho} \hat{P}_{\hat{H}=E} = \frac{1}{2}
\left( \begin{array}{cc}
+
\begin{pmatrix}
    1+\alpha_3 & 0 \\
+
    1+\alpha_3 & 0 \\
    0 & 1-\alpha_3 \\ \end{array} \right).
+
    0 & 1-\alpha_3 \\
 +
  \end{pmatrix}.
 
\]
 
\]
 
Měřením energie tedy byla vytvořena stacionární matice hustoty.  
 
Měřením energie tedy byla vytvořena stacionární matice hustoty.  
Řádka 286: Řádka 364:
 
\rho(x,p) = A \: \exp\left\{-\beta H(x,p) \right\},
 
\rho(x,p) = A \: \exp\left\{-\beta H(x,p) \right\},
 
\]
 
\]
kde A je normalizační konstanta. Očekáváme, že kvantově-mechanický soubor určený hamiltoniánem $\hat{H}$ bude popsán maticí hustoty $\hat{\rho}$ definovanou
+
kde $A$ je normalizační konstanta. Očekáváme, že kvantověmechanický soubor určený hamiltoniánem $\hat{H}$ bude popsán maticí hustoty $\hat{\rho}$ definovanou
 
\[
 
\[
 
\hat{\rho} = \frac{1}{\Tr e^{-\beta\hat{H}}} e^{-\beta\hat{H}},
 
\hat{\rho} = \frac{1}{\Tr e^{-\beta\hat{H}}} e^{-\beta\hat{H}},
 
\]
 
\]
Dělením stopou $\Tr e^{-\beta\hat{H}}$ je zajištěna jednotková stopa $\hat{\rho}$, samosdružennost $\hat{\rho}$ plyne ze samosdružennosti $\hat{H}$ a pozitivnost $\hat{\rho}$ je snadným důsledkem teorie uvedené u Ritzovy variační metody v následující kapitole. $\hat{\rho}$ je tedy maticí hustoty v korektním smyslu. Ze zimy víme, že soubor vlastních funkcí jednorozměrného harmonického oscilátoru $(\ket{n})_{n=0}^{+\infty}$ tvoří úplnou ortonormální bázi $\hilbert$. Navíc
+
Dělením stopou $\Tr e^{-\beta\hat{H}}$ je zajištěna jednotková stopa $\hat{\rho}$, samosdruženost $\hat{\rho}$ plyne ze samosdruženosti $\hat{H}$ a pozitivnost $\hat{\rho}$ je evidentní z pozitivity funkce $\exp$ ve vyjádření v~diagonální bázi. $\hat{\rho}$ je tedy maticí hustoty v korektním smyslu. Ze zimy víme, že soubor vlastních funkcí jednorozměrného harmonického oscilátoru $(\ket{n})_{n=0}^{+\infty}$ tvoří úplnou ortonormální bázi $\hilbert$. Navíc
 
\[
 
\[
\hat{H}\ket{n} = \hbar \omega (n+\frac{1}{2})\ket{n}.
+
\hat{H}\ket{n} = \hbar \omega \left(n+\frac{1}{2}\right)\ket{n}.
 
\]
 
\]
 
Střední hodnotu energie určíme ze \eqref{MatH:defstrhen}
 
Střední hodnotu energie určíme ze \eqref{MatH:defstrhen}
Řádka 335: Řádka 413:
 
\end{cases}
 
\end{cases}
 
\]
 
\]
Zamyšlení nad získanými limitními výsledky nechám na čtenáři.
+
Zamyšlení nad získanými limitními výsledky ponecháme na čtenáři.
 
\end{example}
 
\end{example}
  
  
\subsection{Provázané stavy}
+
\subsection{Složené systémy a provázané stavy}
Mohlo by se zdát, že smíšené stavy vůbec nemusíme uvažovat v situacích, kdy máme přesné informace o systému, není to ale tak.
+
Mohlo by se zdát, že smíšené stavy vůbec nemusíme uvažovat v situacích, kdy máme přesné informace o systému, není tomu ale tak.
  
Uvažujme Hilbertův prostor $\mathbb{C}^2$ daný složením dvou identických systémů, každý s Hilbertovým prostorem $\mathbb{C}$ ($\mathbb{C} \otimes \mathbb{C}$ je izomorfní $\mathbb{C}^2$), 4 vektory báze takového prostoru označíme
+
Připomeňme si nejprve poslední zbývající postulát kvantové mechaniky. Ten je ve formulaci pomocí matice hustoty jen málo odlišný od zimy:
 +
 
 +
\begin{define}[Postulát 4]
 +
Pro fyzikální systémy $A$, $B$ s Hilbertovými prostory $\hilbert_A$, $\hilbert_B$ přiřazujeme složenému systému $AB$ Hilbertův prostor $\hilbert_{AB}$. Jestliže pak systémy $A$ a $B$ jsou nezávisle připraveny ve stavech $\rho^A$, $\rho^B$, přiřazujeme složenému systému stav
 +
\begin{equation}
 +
\rho^{AB} = \rho^A \otimes \rho^B.
 +
\label{MatH:slozene}
 +
\end{equation}
 +
\end{define}
 +
 
 +
Složené stavy můžeme dále superponovat a nyní i míchat. Žádná verze postulátu ale nemluví o opačné úloze -- jak zredukovat stav složeného systému na stav, který bychom mohli přiřadit jedné jeho součásti a využívat k počítání výsledků měřených pouze na ní.
 +
 
 +
Uvažujme pro příklad Hilbertův prostor $\mathbb{C}^4$ daný složením dvou identických systémů, každý s~Hilbertovým prostorem $\mathbb{C}^2$ ($\mathbb{C}^2 \otimes \mathbb{C}^2$ je izomorfní $\mathbb{C}^4$), 4 vektory báze takového prostoru označíme
 
\begin{equation}
 
\begin{equation}
 
\left\{ \ket{00}, \ket{01}, \ket{10}, \ket{11} \right\},
 
\left\{ \ket{00}, \ket{01}, \ket{10}, \ket{11} \right\},
 
\end{equation}
 
\end{equation}
což je zkrácený zápis tenzorového součinu, zavedený už v zimě. Zkoumejme stav
+
což je zkrácený zápis tenzorového součinu, zavedený už v zimě.
 +
 
 +
Zkoumejme lineární superpozici
 
\begin{equation}
 
\begin{equation}
\ket{\psi_1} = \frac{\ket{00} + \ket{11}}{\sqrt{2}},
+
\ket{\psi_1} = \frac{\ket{00} + \ket{11}}{\sqrt{2}}.
 +
  \label{MatH:bell1}
 
\end{equation}
 
\end{equation}
na tomto stavu je zajímavé, že pokud změříme jeden z podsystémů, víme hned, v jakém stavu je druhý podsystém (to vede na EPR paradox, diskuzi mezi EPR trojicí a N. Bohrem doporučujeme jako zajímavou četbu). Můžete sami navíc ověřit, že neexistují stavy $\ket{a}$ a $\ket{b}$ takové, aby $\ket{\psi_1} = \ket{a}\ket{b}$ -- tomu se říká (ne)faktorizovatelnost stavu.
+
Na tomto stavu je zajímavé, že pokud změříme jeden z podsystémů, způsobíme kolaps celé vlnové funkce, po němž víme s jistotu také to, v jakém stavu je druhý podsystém (to vede na EPR paradox,%
 +
\footnote{A. Einstein, B. Podolsky, N. Rosen 1935}
 +
diskuzi mezi EPR trojicí a N. Bohrem doporučujeme jako zajímavou četbu). To je důsledkem skutečnosti, že neexistují stavy $\ket{a}$ a $\ket{b}$ takové, aby $\ket{\psi_1} = \ket{a}\ket{b}$, jak si snadno ověříme. Stavy, které by takto šly rozložit, se nazývají \textbf{faktorizovatelné} nebo \textbf{separovatelné}. Všechny ostatní stavy, mezi které patří $\ket{\psi_1}$, se nazývají \textbf{provázané}.
  
To není jediný takový stav, další jsou
+
(Můžeme dokonce sestavit celou novou ortonormální bázi sestávající pouze z provázaných stavů, když doplníme $\ket{\psi_1}$ o
 
\begin{eqnarray}
 
\begin{eqnarray}
 
\ket{\psi_2} &=& \frac{\ket{00} - \ket{11}}{\sqrt{2}}, \\
 
\ket{\psi_2} &=& \frac{\ket{00} - \ket{11}}{\sqrt{2}}, \\
 
\ket{\psi_3} &=& \frac{\ket{10} + \ket{01}}{\sqrt{2}}, \\
 
\ket{\psi_3} &=& \frac{\ket{10} + \ket{01}}{\sqrt{2}}, \\
\ket{\psi_4} &=& \frac{\ket{01} - \ket{10}}{\sqrt{2}},
+
\ket{\psi_4} &=& \frac{\ket{01} - \ket{10}}{\sqrt{2}}.
 
\end{eqnarray}
 
\end{eqnarray}
dohromady se jim říká Bellovské stavy a tvoří tzv. Bellovu bázi našeho Hilbertova prostoru. Z toho, jak jsme zavedli matici hustoty, je jasné, že matice hustoty korespondující s $\ket{\psi_1}$ je
+
Této čtveřici se dohromady říká Bellovy nebo bellovské stavy.)
 +
 
 +
Pro faktorizované stavy na systému složeném z~podsystémů $A$ a $B$ je možné mluvit o~stavu, ve kterém se nachází každý z~podsystémů zvlášť (až na fázi, která může v~tenzorovém součinu být mezi oba činitele libovolně přerozdělena). Pro provázané stavy ale podsystémům přidělit jejich vlastní stav, ze kterého by stav celého systému bylo možno zrekonstruovat, nelze. Matice hustoty však nabízí alespoň částečnou pomoc.
 +
 
 +
Označme matici hustoty složeného systému $\rho^{AB}$. Například pro bellovský stav $\ket{\psi_1}$ je
 
\begin{equation}
 
\begin{equation}
\hat{\rho}_1 = \left( \frac{\ket{00} + \ket{11}}{\sqrt{2}} \right)\left( \frac{\bra{00} + \bra{11}}{\sqrt{2}} \right)
+
\hat{\rho}^{AB}_1 = \left( \frac{\ket{00} + \ket{11}}{\sqrt{2}} \right)\left( \frac{\bra{00} + \bra{11}}{\sqrt{2}} \right).
 
\end{equation}
 
\end{equation}
  
Řádka 367: Řádka 466:
 
\Tr \hat{\rho}^2 \leq 1,
 
\Tr \hat{\rho}^2 \leq 1,
 
\end{equation}
 
\end{equation}
které pro $\hat{\rho}_1$ dá jedničku, jak má.
+
které pro $\hat{\rho}^{AB}_1$ dá jedničku, jak má.
  
Pokud by obecná matice hustoty popisovala složený systém, je otázka, jaký stav (matici hustoty) přiřadit příslušnému podsystému.
+
Pokud potřebujeme mluvit odděleně o stavu podsystému $A$, přiřadíme mu \textbf{redukovanou matici hustoty} $\hat{\rho}^A$, který se z $\hat{\rho}^{AB}$ získá operací zvanou \textbf{částečná stopa} přes systém $B$, označenou a definovanou jako
 +
\begin{align*}
 +
\hat{\rho}^A =& \Tr_B \left( \hat{\rho}^{AB} \right), \\
 +
\Tr_B \left( \ket{a_1} \bra{a_2} \otimes \ket{b_1} \bra{b_2} \right) :=& \ket{a_1} \bra{a_2} \Tr\left(\ket{b_1} \bra{b_2}\right),
 +
\end{align*}
 +
pro všechna $\ket{a_1}, \ket{a_2} \in \mathscr{H}_A$, $\ket{b_1}, \ket{b_2} \in \mathscr{H}_B$. Hodnota částečné stopy pro všechny ostatní matice hustoty se získá rozkladem do báze operátorů tvaru $\ket{a_1} \bra{a_2} \otimes \ket{b_1} \bra{b_2}$ a předpokladem linearity operace $\Tr_B$.
  
Uvažujme dva systémy $A$ a $B$ a jejich složenému stavu přiřaďme $\hat{\rho}^{AB}$. Podsystému $A$ se pak přirozeně přiřazuje matice $\hat{\rho}^A$, kterou získáme \textit{částečnou stopou} přes systém $B$, označenou a definovanou jako
+
Takto získaný stav dává správné statistické předpovědi pro veškerá \textsl{lokální} měření na podsystému $A$. Navíc je kompatibilní s opačnou procedurou, kdy známe stavy podsystémů a složenému stavu přiřazujeme tenzorový součin jejich matic hustoty ($\hat{\rho}^A \otimes \hat{\rho}^B$):
\begin{eqnarray}
+
\[
\hat{\rho}^A &=& \Tr_B \left( \hat{\rho}^{AB} \right), \\
+
\Tr_B (\rho^A \otimes \rho^B) = \rho^A.
\Tr_B \left( \ket{a_1} \bra{a_2} \otimes \ket{b_1} \bra{b_2} \right) &\equiv & \ket{a_1} \bra{a_2} \Tr\left(\ket{b_1} \bra{b_2}\right),
+
\]
\end{eqnarray}
+
Nejedná se však o reverzibilní operaci. Provázaným stavům složeného systému $AB$ přiřadí částečné stopy přes $B$, resp. $A$ smíšené stavy $\hat{\rho}^A$, resp. $\hat{\rho}^B$, pro které obecně
pro $\ket{a_1}, \ket{a_2} \in \mathscr{H}_A$, $\ket{b_1}, \ket{b_2} \in \mathscr{H}_B$. Tento postup je jediný kompatibilní s opačnou procedurou, kdy známe stavy podsystémů a složenému stavu přiřazujeme tenzorový součin jejich matic hustoty ($\hat{\rho}^A \otimes \hat{\rho}^B$).
+
\[
 +
\rho^A \otimes \rho^B \ne \rho^{AB}.
 +
\]
 +
Konkrétně výsledek levé strany předchozí rovnice bude v těchto případech smíšený stav, přestože jsme začínali s čistým.
  
Pokud nyní zjistíme jaká matice hustoty odpovídá libovolnému podsystému v Bellovském stavu $\hat{\rho_1}$, zjistíme po krátkém výpočtu
+
Vraťme se nyní k našemu bellovskému stavu \eqref{MatH:bell1} a určeme pro ilustraci redukovanou matici hustoty podsystému $A$ (pro $B$ vychází stejně). Po krátkém výpočtu získáme
\begin{eqnarray}
+
\begin{equation*}
\hat{\rho}^1_1 &=& \Tr_2 \left( \hat{\rho}_1 \right) = \Tr_2 \left( \frac{\ket{00}\bra{00} + \ket{11}\bra{00} + \ket{00}\bra{11} + \ket{11}\bra{11}}{2}\right) \notag \\
+
  \begin{aligned}
&=& \frac{\ket{0}\bra{0} \braket{0}{0} + \ket{1}\bra{0} \braket{0}{1} + \ket{0}\bra{1} \braket{1}{0} + \ket{1}\bra{1} \braket{1}{1}}{2} \notag \\
+
    \hat{\rho}^A_1 &= \Tr_B \left( \hat{\rho}_1^{AB} \right) = \Tr_B \left( \frac{\ket{00}\bra{00} + \ket{11}\bra{00} + \ket{00}\bra{11} + \ket{11}\bra{11}}{2}\right) \notag \\
&=& \frac{I}{2}.
+
    &= \frac{\ket{0}\bra{0} \braket{0}{0} + \ket{1}\bra{0} \braket{0}{1} + \ket{0}\bra{1} \braket{1}{0} + \ket{1}\bra{1} \braket{1}{1}}{2} \notag \\
\end{eqnarray}
+
    &= \frac{1}{2} \opone.
A každý ví, že stopa kvadrátu takové matice ($I$ je identita) je
+
  \end{aligned}
\begin{equation}
+
\end{equation*}
\Tr \left((\hat{\rho}^1_1)^2\right) = \frac{1}{2} \leq 1,
+
A jelikož stopa jednotkové matice ve dvourozměrném systému je $2$, pro získaný stav najdeme čistotu
\end{equation}
+
\begin{equation*}
takže jsme přirozeně dostali smíšený stav z čistého. Je tedy vidět, že smíšené stavy se v kvantové mechanice vyskytnou, ať chceme nebo ne.
+
\Tr \left((\hat{\rho}^A_1)^2\right) = \frac{1}{2} \leq 1,
 +
\end{equation*}
 +
takže jsme dostali smíšený stav z čistého. Jedná se dokonce o nejvíce smíšený stav, jaký je na dvourozměrném stavovém prostoru možný: pro libovolné binární měření dává pravděpodobnost $1/2$ pro oba výsledky. Odsud vidíme, že smíšené stavy mají v kvantové mechanice využití i bez statistické neurčitosti.
  
Je možné si položit otázku, zda stav provázaný je provázaný v jakékoli bázi, odpověď na ni necháváme čtenáři k dokázání, ano -- provázanost je vlastností zvolené báze.
+
Čistotu redukovaného stavu (za předpokladu čistého stavu složeného systému) můžeme brát jako možnou míru provázanosti dvou podsystémů. V rámci daného tenzorového rozkladu systému na podsystémy je provázanost stavu nezávislá na volbě jejich jednotlivých bází. To je evidentní z nezávislosti částečné stopy na volbě báze systému, přes nějž ji sčítáme, a nezávislosti čistoty na volbě báze druhého.
  
Zajímavý náhled do problematiky faktorizace stavů vnáší teorém zvaný \textbf{Schmidtův rozklad}:\\
+
%Další možnost určení míry provázanosti stavu dává teorém zvaný \textbf{Schmidtův rozklad}:
Nechť $\ket{\psi}$ je čistý stav složeného systému ze systémů $A$ a $B$, potom existují ortonormální báze $\left\{ \ket{i_A} \right\}$, $\left\{ \ket{i_B} \right\}$ prostorů $\mathscr{H}_A$ a $\mathscr{H}_B$ takové, že
+
%
\begin{equation}
+
%Nechť $\ket{\psi}$ je čistý stav složeného systému ze systémů $A$ a $B$, potom existují ortonormální báze $\left\{ \ket{i_A} \right\}$, $\left\{ \ket{i_B} \right\}$ prostorů $\mathscr{H}_A$ a $\mathscr{H}_B$ takové, že
\ket{\psi} = \sum_i \lambda_i \ket{i_A} \ket{i_B},
+
%\begin{equation}
\end{equation}
+
% \ket{\psi} = \sum_i \lambda_i \ket{i_A} \ket{i_B},
kde navíc $\lambda_i \geq 0$ pro $\forall i$, $\sum_i \lambda_i^2 = 1$. $\lambda_i$ se nazývají Schmidtovy koeficienty.\\
+
%\end{equation}
Někdy se mu říká částečná faktorizace.
+
%kde navíc $\lambda_i \geq 0$ pro $\forall i$, $\sum_i \lambda_i^2 = 1$. $\lambda_i$ se nazývají Schmidtovy koeficienty.\\
 
+
%Někdy se mu říká částečná faktorizace.
Také se můžeme ptát jak moc je daný stav smíšený a ukazuje se, že jednou z dobrých měr je \textbf{von Neumannova entropie}, která je přímým analogem Shannonovy entropie z teorie informace. Pokud smíšený stav popíšeme jako
+
%
\begin{equation}
+
%Také se můžeme ptát jak moc je daný stav smíšený a ukazuje se, že jednou z dobrých měr je \textbf{von Neumannova entropie}, která je přímým analogem Shannonovy entropie z teorie informace. Pokud smíšený stav popíšeme jako
\hat{\rho} = \sum_i p_i \ket{i}\bra{i},
+
%\begin{equation}
\end{equation}
+
% \hat{\rho} = \sum_i p_i \ket{i}\bra{i},
von Neumannova entropie je definována
+
%\end{equation}
\begin{equation}
+
%von Neumannova entropie je definována
S(\hat{\rho}) = - \sum_i p_i \ln p_i. \label{eq:rozkladP}
+
%\begin{equation}
\end{equation}
+
% S(\hat{\rho}) = - \sum_i p_i \ln p_i. \label{eq:rozkladP}
Zobecnění takového vztahu tak, aby nebyl závislý na zvolené bázi je
+
%\end{equation}
\begin{equation}
+
%Zobecnění takového vztahu tak, aby nebyl závislý na zvolené bázi je
S(\hat{\rho}) = - \Tr \left(\hat{\rho} \ln \hat{\rho}\right).
+
%\begin{equation}
\end{equation}
+
% S(\hat{\rho}) = - \Tr \left(\hat{\rho} \ln \hat{\rho}\right).
 
+
%\end{equation}
Podíváme se, proč je zrovna tato entropie vhodnou mírou smíšenosti. Pro čistý stav platí
+
%
\begin{equation}
+
%Podíváme se, proč je zrovna tato entropie vhodnou mírou smíšenosti. Pro čistý stav platí
\hat{\rho}^2 = \hat{\rho},
+
%\begin{equation}
\end{equation}
+
% \hat{\rho}^2 = \hat{\rho},
takže jedno $p_i$ v \eqref{eq:rozkladP} je jednička a zbytek nuly, tudíž $S=0$ pro takový stav.
+
%\end{equation}
 
+
%takže jedno $p_i$ v \eqref{eq:rozkladP} je jednička a zbytek nuly, tudíž $S=0$ pro takový stav.
A pokud zkusíme spočíst takovou entropii pro redukovanou matici zmiňovaného Bellovského stavu, dostaneme
+
%
\begin{equation}
+
%A pokud zkusíme spočíst takovou entropii pro redukovanou matici zmiňovaného bellovského stavu, dostaneme
S(\hat{\rho}_1^1) = S(\frac{I}{2}) = \ln 2,
+
%\begin{equation}
\end{equation}
+
% S(\hat{\rho}_1^1) = S(\frac{I}{2}) = \ln 2,
což se dá snadno ukázat, že je maximální entropie takového systému. Stav, který jsme dostali z Bellovského stavu, byl maximálně smíšený! Obecně se dá ukázat, že Von Neumannova entropie je svázána se vzdáleností stavu od povrchu Blochovy sféry, o které doporučujeme studentům vyhledat víc informací, pokud ji ještě neviděli.
+
%\end{equation}
 +
%což se dá snadno ukázat, že je maximální entropie takového systému. Stav, který jsme dostali z bellovského stavu, byl maximálně smíšený! Obecně se dá ukázat, že Von Neumannova entropie je svázána se vzdáleností stavu od povrchu Blochovy sféry, o které doporučujeme studentům vyhledat víc informací, pokud ji ještě neviděli.

Verze z 18. 5. 2017, 13:18

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02KVAN2

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02KVAN2Hoskoant 6. 5. 201411:44
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůPotocvac 12. 6. 201711:17
Header editovatHlavičkový souborPotocvac 12. 6. 201718:07 header.tex
Kapitola0 editovatPředmluvaHoskoant 6. 5. 201410:48 predmluva.tex
Kapitola1 editovatAlgebraická teorie momentu hybnostiPotocvac 8. 6. 201813:31 kapitola1.tex
Kapitola2 editovatTenzorové operátory, Wigner-Eckartův teorémKubuondr 13. 6. 201812:22 kapitola2.tex
Kapitola3 editovatDalší ekvivalentní způsoby zápisu kvantové mechanikyKubuondr 13. 6. 201813:00 kapitola3.tex
Kapitola4 editovatMatice hustoty a smíšené kvantové stavyKubuondr 12. 6. 201809:59 kapitola4.tex
Kapitola5 editovatPřibližné metody v kvantové mechaniceKubuondr 9. 6. 201821:23 kapitola5.tex
Kapitola6 editovatPropagátorPotocvac 3. 5. 201816:34 kapitola6.tex
Kapitola7 editovatDráhový integrálKubuondr 5. 4. 202017:09 kapitola7.tex
Kapitola8 editovatTeorie rozptyluKubuondr 13. 6. 201807:54 kapitola8.tex
Kapitola9 editovatPartiční sumaKubuondr 13. 6. 201808:14 kapitola9.tex
Kapitola10 editovatReprezentace vícečásticových systémůKubuondr 11. 6. 201809:34 kapitola10.tex
Kapitola11 editovatKvantování klasických políKubuondr 13. 6. 201810:45 kapitola11.tex
Kapitola12 editovatLiteraturaHoskoant 6. 5. 201410:53 kapitolaA.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:wkb-1.pdf wkb-1.pdf
Image:wkb-2.pdf wkb-2.pdf
Image:wkb-3.pdf wkb-3.pdf
Image:wkb-4.pdf wkb-4.pdf
Image:wkb-5.pdf wkb-5.pdf
Image:wkb-ho.pdf wkb-ho.pdf
Image:itw-1.pdf itw-1.pdf
Image:drahy-1.pdf drahy-1.pdf
Image:drahy-2.pdf drahy-2.pdf
Image:feynman-1.pdf feynman-1.pdf
Image:feynman-2.pdf feynman-2.pdf
Image:feynman-3.pdf feynman-3.pdf
Image:feynman-4.pdf feynman-4.pdf
Image:rozptyl-1.pdf rozptyl-1.pdf
Image:rozptyl-2.pdf rozptyl-2.pdf

Zdrojový kód

%\wikiskriptum{02KVAN2}
\section{Matice hustoty a smíšené kvantové stavy}
Ve fyzice se setkáváme se situacemi, kdy nelze experimentálně získat úplnou informaci o stavu systému v daný okamžik (např. z důvodu příliš velkého počtu částic, nedostatečné kvality aparatury, či z nemožnosti dostatečně rychle zpracovat získaná data). V~takovém případě se uchylujeme ke statistickému popisu. Nejprve si připomeneme, jak ke statistickému popisu přistupuje klasická hamiltonovská fyzika.
 
Ve statistické fyzice je stav systému popsán funkcí $\rho: TM \mapsto \real_0^+$, nazývanou \textbf{hustota pravděpodobnosti}, určující pravděpodobnostní rozdělení na fázovém prostoru. Tato funkce musí splňovat normalizační podmínku
\[
	\int\limits_{TM} \rho(x,p)dx\:dp = 1.
\]
 
Střední hodnota pozorovatelné $A$ popsané funkcí $a(x,p)$ ve stavu určeném hustotou pravděpodobnosti $\rho$ je dána
\[
	\stredni{A}_{\rho} = \int\limits_{TM} a(x,p) \rho(x,p) \: dx \: dp.
\]
 
Vývoj hustoty pravděpodobnosti v čase řídí rovnice kontinuity (viz \cite{posp:TSF})
\[
	\parcder{\rho}{t} = - \sum_{k=1}^{3N} \left[ 
	\parcder{}{x_k} \left( \rho \frac{dx_k}{dt} \right) + \parcder{}{p_k} \left( \rho \frac{dp_k}{dt} \right) \right].
\]
Za předpokladu, že pohyb každého bodu fázového prostoru je určen Hamiltonovými pohybovými rovnicemi
\[
	\deriv{x_k}{t} = \parcder{H}{p_k}, \quad \deriv{p_k}{t} = - \parcder{H}{x_k},
\]
plyne odsud pro časový vývoj hustoty pravděpodobnosti Liouvillova věta
\[
	\parcder{\rho}{t} = \sum_{k=1}^{3N} \left[ \parcder{H}{x_k} \parcder{\rho}{p_k} - 
	\parcder{H}{p_k} \parcder{\rho}{x_k} \right] = \{ H, \rho \}.
\]
 
\begin{remark}
Za povšimnutí stojí, že časový vývoj pozorovatelné $a(x,p)$ je určen rovněž Poissonovou závorkou, ovšem s opačným znaménkem:
\begin{equation*}
	\parcder{a}{t} = \{ a,H \}.
\end{equation*}
\end{remark}
 
V analogii očekáváme, že kvantové hustoty pravděpodobnosti budou operátory na $\hilbert$, které každému stavu přiřadí pravděpodobnost, že se v něm systém nachází.
 
V dalším odvozování uvažujeme konečný počet normalizovaných stavů $(\ket{\psi_m})_{m=1}^n$, ve kterých se systém může nacházet. Zobecnění výsledků, jež obdržíme, na spočetný počet stavů se formulují jako postuláty.
 
Stav systému v kvantové mechanice je popsán vektorem $\ket{\psi} \in \hilbert$. Tomuto stavu je možno přiřadit projektor $\hat{P}_{\ket{\psi}} = \ket{\psi} \bra{\psi}$.
Projektor $\hat{P}_{\ket{\psi}}$ má tu vlastnost, že stav $\ket{\psi}$ (a libovolný jeho komplexní násobek)%
\footnote{Obzvlášť si všimněme, že takto přiřazený projektor nezávisí na výběru fáze, tedy $\hat{P}_{\ket{\psi}} = \hat{P}_{e^{i \varphi}\ket{\psi}}$, $\forall \varphi \in \real$.}
je jeho vlastním stavem příslušejícím vlastnímu číslu $1$ a že stavy ortogonální na $\ket{\psi}$ patří do nulového prostoru. To budeme interpretovat, že stavu $\ket{\psi}$ je přiřazena pravděpodobnost $1$ a pravděpodobnost přechodu do stavu kolmého na $\ket{\psi}$ je nulová.
 
Pokud je systém s pravděpodobností $P_m$ ve stavu popsaném vektorem $\ket{\psi_m}$, potom stejná myšlenková úvaha napovídá uvažovat operátor 
\begin{equation} \label{MatH:defmathust}
	\hat{\rho} = \sum_{m=1}^n P_m \ket{\psi_m} \bra{\psi_m},
\end{equation}
ukážeme, že tento operátor skutečně obsahuje veškeré informace pro popis kvantového systému a předpovědi výsledků měření.
 
\begin{define}
Buď $\hat{B}$ operátor na $\hilbert$, $(\ket{i})_{i\in\mathscr{I}}$ ortonormální báze $\hilbert$. Potom definujeme \textbf{stopu operátoru} $\hat{B}$ dle předpisu
\[
	\Tr \hat{B} = \sum_i \brapigket{i}{\hat{B}}{i}.
\]
\end{define}
 
S touto definicí je podmínku normalizace
\[
	\sum_{m=1}^n P_m = 1
\]
možno na úrovni $\hat{\rho}$ vyjádřit jako $\Tr \hat{\rho} = 1$.
 
Se stopou operátoru se v této kapitole budeme setkávat často, shrňme proto 
(bez důkazů) několik jejích základních vlastností. Ty platí pro třídu tzv. 
jaderných operátorů, o kterých se přednáší více ve funkcionální analýze; 
v případech, které budou pro nás relevantní, nejsou předpoklady limitujícím faktorem.
\begin{enumerate}
\item Stopa je lineární: $\Tr \left( \alpha \hat{A} + \beta \hat{B} \right) 
= \alpha \Tr \hat{A} + \beta \Tr \hat{B}$.
\item Hodnota $\Tr \hat{B}$ nezávisí na výběru báze $(\ket{i})$, jinými slovy je též invariantní vůči podobnostní transformaci $\hat{B} \mapsto \hat{S}\hat{B}\hat{S}^{-1}$. Volbou báze, v níž je operátor diagonalizovatelný, snadno odvodíme $\Tr \hat{B} = \sum \sigma(\hat{B})$, kde sčítání bere v úvahu algebraické násobnosti.%
\footnote{Připomeňme, že další známý invariant podobnostních transformací, determinant, je zase roven součinu všech hodnot spektra.}
\item Pravidlo \textbf{cyklické záměny}: $\Tr(\hat{A} \hat{B}) = \Tr(\hat{A} \hat{B})$. To platí, i pokud operátory $\hat{A}$, $\hat{B}$ zobrazují mezi různými Hilbertovy prostory (například pokud odpovídají obdélníkovým maticím). V případě součinu více operátorů platí v libovolném uzávorkování, např. $\Tr(\hat{A} \hat{B} \hat{C}) = \Tr\bigl( (\hat{A} \hat{B}) \hat{C}\bigr) = \Tr(\hat{C} \hat{A} \hat{B})$, ne však $\Tr(\hat{C} \hat{B} \hat{A})$.
\end{enumerate}
 
\begin{theorem}
Nechť $\hat{\rho}$ je operátor definovaný dle \eqref{MatH:defmathust} 
s pravděpodobnostmi $P_m > 0$. Pak pro každé $\ket{\psi} \in \hilbert$ platí
\[
	\brapigket{\psi}{\hat{\rho}}{\psi} \ge 0.
\]
(tedy $\hat{\rho}$ je pozitivní operátor).
\end{theorem}
\begin{proof}
Dle definice $\hat{\rho}$ platí
\[
	\hat{\rho} \ket{\psi} = \sum_{m=1}^n P_m \ket{\psi_m} \braket{\psi_m}{\psi}.
\]
Vynásobením této rovnosti zleva bra $\bra{\psi}$ dostáváme
\[
  \brapigket{\psi}{\hat{\rho}}{\psi} = \sum_{m=1}^n P_m |\braket{\psi_m}{\psi}|^2,
\]
což je součet samých nezáporných členů.
\end{proof}
 
Operátor \eqref{MatH:defmathust} je tedy pozitivní, má jednotkovou stopu a navíc (jak snadno nahlédneme z jeho definice) je samosdružený. Kvantová mechanika postuluje, že každý takový operátor popisuje možný fyzikální stav systému.
 
\begin{define}[Postulát 1]\label{MatH:defmathustdef}
Stavy v kvantové mechanice jsou popsány operátory $\hat{\rho}$ nazývanými \textbf{matice hustoty} (operátor hustoty, statistický operátor) s vlastnostmi
	\begin{enumerate}[$(i)$]
		\item $\Tr \hat{\rho} = 1$,
		\item $\hat{\rho}$ je samosdružený ($\hat{\rho} = \hat{\rho}^\dagger$),
		\item $\hat{\rho}$ je pozitivní ($\forall \ket{\psi} \in \hilbert: \brapigket{\psi}{\hat{\rho}}{\psi} \geq 0$).
	\end{enumerate}	
Matice hustoty mající hodnost rovnu jedné (což jsou právě všechny projektory na jednorozměrné podprostory $\hilbert$) nazýváme \textbf{čisté stavy}. Všechny ostatní stavy nazýváme \textbf{smíšené}.
\end{define}
 
\begin{remark}
Podmínky $(i)+(iii)$ implikují omezenost $\hat{\rho}$.
\end{remark}
 
Protože výpočet hodnosti není v obecném případě praktický, setkáváme se i s jinými ekvivalentními způsoby, jak poznat čisté stavy od smíšených, případně míru smíšenosti kvantifikovat. Základní takovou měrou je \textbf{čistota stavu} definovaná jako $\Tr \bigl(\hat{\rho}^2\bigr)$. Čisté stavy splňují $\Tr \hat{\rho}^2 = 1$ a pro všechny ostatní leží čistota v intervalu $(0,1)$.
 
Čisté stavy popisuje matice hustoty tvaru $\hat{\rho}_{\ket{\psi}} = \ket{\psi}\bra{\psi}$. Přechod zpět k vektorovému vyjádření $\ket{\psi}$ je nejednoznačný, matice hustoty smazává informaci o komplexní fázi vektoru. To však fyzikálně ničemu nevadí, protože víme, že i ve vektorové formulaci kvantové mechaniky fáze (stejně jako délka vektoru) nemá vůbec žádnou fyzikální podstatu. V jistém ohledu je tak formulace pomocí matice hustoty dokonce blíže měřitelné realitě díky tomu, že tuto nejednoznačnost v popisu stavu neobsahuje.
 
Poznamenejme ještě, že ani v rámci projektorů není rozklad \eqref{MatH:defmathust} jednoznačný: v~obecném případě může existovat více různých kombinací stavů a jejich přiřazených pravděpodobností, které dávají stejné $\hat{\rho}$. Pomocí vzorců, které jsou vyjádřené prostřednictvím $\hat{\rho}$, pak takové situace není možné vzájemně od sebe poznat, jejich chování je identické.
 
%%%%%
 
Věnujme se nyní časovému vývoji $\hat{\rho}$. Předpokládejme, že se vývoj každého ze stavů $\ket{\psi_m(t)}$ řídí Schrödingerovou rovnicí
\begin{equation} \label{MatH:SRmathust}
	i \hbar \deriv{}{t} \ket{\psi_m(t)} = \hat{H} \ket{\psi_m(t)}, \quad \text{resp.} \quad
	- i \hbar \deriv{}{t} \bra{\psi_m(t)} =  \bra{\psi_m(t)} \hat{H} 
\end{equation}
a že k jiné změně směsi (např. dalšímu směšování) stavů nedochází. Časový vývoj matice hustoty $\hat{\rho}$ je tedy možno zapsat
\[
	\hat{\rho}(t)= \sum_{m=1}^n P_m \ket{\psi_m(t)} \bra{\psi_m(t)}
\]
Zderivováním poslední rovnosti podle času a dosazením časových derivací stavů z \eqref{MatH:SRmathust} dostáváme
\begin{align*}
	i \hbar \deriv{}{t} \hat{\rho}(t) &= i \hbar \sum_{m=1}^n P_m 
		\left[ \frac{-i}{\hbar} \hat{H} \ket{\psi_m(t)} \bra{\psi_m(t)} +  
				\frac{i}{\hbar} \ket{\psi_m(t)} \bra{\psi_m(t)} \hat{H}  \right] = \\
		&= \hat{H}\hat{\rho}(t) - \hat{\rho}(t)\hat{H} = 
				\komut{\hat{H}}{\hat{\rho}(t)}.
\end{align*}
 
\begin{define}[Postulát 2]
Pro izolovaný fyzikální systém se časový vývoj matice hustoty $\hat{\rho}(t)$ řídí rovnicí%
\footnote{Známá je jako \textsl{von Neumannova rovnice}.}
\begin{equation} \label{MatH:defvonNeum}
	i \hbar \deriv{}{t} \hat{\rho}(t) = \komut{\hat{H}}{\hat{\rho}(t)}.
\end{equation}
\end{define}
 
\begin{remark}
V soustavách, které nejsou izolované, může docházet i ke změnám pravděpodobnostního rozdělení. Pro soustavy, které mohou jednosměrně interagovat s klasickým okolím, pak existuje úplnější verze výše uvedeného vztahu, rozšířená o další členy a známá jako Lindbladova rovnice či řídící rovnice (\textsl{master equation}). Je také plně vyjádřitelná pomocí operátoru $\hat{\rho}$, bez nutnosti znát detaily jeho rozkladu \eqref{MatH:defmathust}. V tomto předmětu se jí nebudeme hlouběji věnovat.
\end{remark}
 
%%%%%
 
Podívejme se nyní, jak bude potřeba upravit naše dosavadní znalosti o měření fyzikálních veličin v kvantové fyzice. Ve srovnání s minulým semestrem bude třeba přeformulovat
\begin{itemize}
\item pravděpodobnost naměření výsledku $a$ pozorovatelné $\hat{A}$,
\item střední hodnotu pozorovatelné $\hat{A}$ v daném fyzikálním stavu,
\item změnu stavu v důsledku měření.
\end{itemize}
Ve všech případech samozřejmě platí, že můžeme výsledky spočítat v jednotlivých členech $\ket{\psi_m}$ rozkladu \eqref{MatH:defmathust} a spočítat průměr vážený odpovídajícími pravděpodobnostmi. Tak budeme postupovat i při odvození očekávaných tvarů, které pak potvrdíme formou postulátů.
 
Mějme ortonormální bázi vektorů $(\ket{a,k})_{k=1}^l$ tvořící vlastní podprostor operátoru $\hat{A}$ (přiřazeného měřitelné veličině $A$) příslušející jeho vlastní hodnotě $a$, tedy
\[
	\hat{A} \ket{a,k} = a \ket{a,k} \quad k = 1, \ldots, l.
\] 
Ze zimy víme, že pravděpodobnost $W_{\hat{A}=a,\ket{\psi}}$, že při měření pozorovatelné $\hat{A}$ na systému ve stavu $\ket{\psi}$ naměříme hodnotu $a$, je rovna
\begin{equation*}
	W_{\hat{A}=a,\ket{\psi}} = \sum_{k=1}^l |\braket{\psi}{a,k}|^2 = \sum_{k=1}^l \braket{\psi}{a,k}\braket{a,k}{\psi} =
		\brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi},	
\end{equation*}
kde $\hat{P}_{\hat{A}=a}$ je projekční operátor splňující 
\begin{equation}
  \hat{P}_{\hat{A}=a} = \sum_{k=1}^l \ket{a,k}\bra{a,k} = \hat{P}_{\hat{A}=a}^\dagger, \quad
  \hat{P}_{\hat{A}=a} = \hat{P}_{\hat{A}=a}^2.
\label{MatH:projektory}
\end{equation}
Je přirozené očekávat, že pravděpodobnost $W_{\hat{A}=a,\hat{\rho}}$ naměření $\hat{A}=a$ na systému popsaného maticí hustoty $\hat{\rho}$ definované dle \eqref{MatH:defmathust} bude rovna
\begin{equation*}
	W_{\hat{A}=a,\hat{\rho}} = \sum_{m=1}^n P_m W_{\hat{A}=a,\ket{\psi_m}} =
    \sum_{m=1}^n P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m}.
\end{equation*}
K úpravě do pěknějšího tvaru si dopomůžeme následujícím trikem, který pak využijeme i do budoucna. Buď $(\ket{i})_{i\in\mathscr{I}}$ (libovolná) ortonormální báze $\hilbert$, potom
\begin{equation*}
	W_{\hat{A}=a,\hat{\rho}}
    = \sum_{m=1}^n P_m \sum_i \braket{\psi_m}{i} \brapigket{i}{\hat{P}_{\hat{A}=a}}{\psi_m}
    = \sum_{m=1}^n \sum_i \brapigket{i}{\hat{P}_{\hat{A}=a}}{\psi_m} P_m \braket{\psi_m}{i} 
    = \Tr\left(\hat{P}_{\hat{A}=a} \hat{\rho}\right).
\end{equation*}
 
Tyto pravděpodobnosti můžeme využít k výpočtu střední hodnoty při měření operátoru $\hat{A}$ na stavu $\hat{\rho}$ (označme $\stredni{\hat{A}}_{\hat{\rho}}$) -- využitím linearity stopy:
\[
\stredni{\hat{A}}_{\hat{\rho}} = \sum_{a\in\sigma(\hat{A})} a W_{\hat{A}=a,\hat{\rho}} = \Tr\Bigl(\underbrace{\sum\nolimits_{a\in\sigma(\hat{A})} a \hat{P}_{\hat{A}=a}}_{\text{spektrální rozklad $\hat{A}$}} \hat{\rho}\Bigr) = \Tr\left(\hat{A}\hat{\rho}\right).
\]
Ke stejnému výsledku můžeme alternativně dospět i použitím vzorce pro $\stredni{\hat{A}}_{\ket{\psi_m}}$:
\begin{align*}
	\stredni{\hat{A}}_{\hat{\rho}} &= \sum_{m=1}^n P_m \stredni{\hat{A}}_{\ket{\psi_m}}
	= \sum_{m=1}^n P_m \brapigket{\psi_m}{\hat{A}}{\psi_m}
	= \sum_{m=1}^n P_m \sum_i \brapigket{\psi_m}{\hat{A}}{i} \braket{i}{\psi_m} =\\
	&= \sum_{m=1}^n \sum_i \braket{i}{\psi_m} P_m \brapigket{\psi_m}{\hat{A}}{i}
  = \sum_{m=1}^n \Tr\left(P_m \ket{\psi_m}\bra{\psi_m} \hat{A}\right) = \Tr\left(\hat{\rho}\hat{A}\right).
\end{align*}
 
Zbývá nám vyřešit, jak se změní matice hustoty $\hat{\rho}$, provedeme-li na systému měření pozorovatelné $\hat{A}$. Mějme čistý stav $\ket{\psi}$, na němž naměříme hodnotu $a$ pozorovatelné $\hat{A}$. V důsledku měření přejde systém do stavu $\hat{P}_{\hat{A}=a}\ket{\psi}$, kde $\hat{P}_{\hat{A}=a}$ je projektor na vlastní podprostor příslušející vlastní hodnotě $a$ (projekční postulát). Tento stav není normalizovaný, ale lze normalizovat právě tehdy, když existuje nenulová pravděpodobnost události. Fázi přiřazenou v nové normalizaci kvantová mechanika ponechává neurčenou.
 
Pokud výsledek $a$ získáme při měření smíšeného stavu $\hat{\rho}$, uvažujme opět konvexní kombinaci výsledných stavů po projekci, ale s pravděpodobnostmi $P_m$ ještě vynásobenými pravděpodobnostmi, že konkrétní stav $\ket{\psi_m}$ výsledek $a$ vůbec dá:
\begin{equation}
\hat{\rho}_{\hat{A}=a}^{?} = \sum_{a\in\sigma(\hat{A})} P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m} \frac{%
\bigl(\hat{P}_{\hat{A}=a}\ket{\psi_m}\bigr) \bigl(\hat{P}_{\hat{A}=a}\ket{\psi_m}\bigr)^\dagger%
}{%
\bigl(\hat{P}_{\hat{A}=a}\ket{\psi_m}\bigr)^\dagger \bigl(\hat{P}_{\hat{A}=a}\ket{\psi_m}\bigr)
}
\label{MatH:rhopomereni1}
\end{equation}
Druhý člen v čitateli se pokrátí s jmenovatelem třetího díky idempotenci projektorů \eqref{MatH:projektory} a zůstane
\begin{equation*}
\hat{\rho}_{\hat{A}=a}^{?} = \sum_{a\in\sigma(\hat{A})} P_m 
\hat{P}_{\hat{A}=a}\ket{\psi_m}\bra{\psi_m}\hat{P}_{\hat{A}=a}^\dagger
= \hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}.
\end{equation*}
Takový stav by ale nebyl správně normalizovaný. Ukazuje se, že jeho stopa je
\begin{equation*}
\Tr\hat{\rho}_{\hat{A}=a}^{?} = \Tr \bigl( \hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a} \bigr) = \Tr \bigl( \hat{\rho} \hat{P}_{\hat{A}=a}^2 \bigr) = W_{\hat{A}=a,\hat{\rho}}.
\end{equation*}
Důvod je jednoduchý, upravené pravděpodobnosti $P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m}$ vystupující v \eqref{MatH:rhopomereni} netvoří pravděpodobností rozdělení. Jejich součtem místo jednotky je pravděpodobnost, že k měření $a$ vůbec dojde. Celý výraz bychom tedy jí měli vydělit, protože při zkoumání stavu po měření nás už zajímají jen situace, kdy měření proběhlo úspěšně.%
\footnote{To jinými slovy říká, že ve výrazu \eqref{MatH:rhopomereni} jsme správně měli použít \textsl{podmíněné} pravděpodobnosti.}
To vlastně znamená operátor $\Tr\hat{\rho}_{\hat{A}=a}^{?}$ opravit vydělením jeho vlastní stopou:
\[
\hat{\rho}_{\hat{A}=a} = \frac{\hat{\rho}_{\hat{A}=a}^{?}}{\Tr\hat{\rho}_{\hat{A}=a}^{?}} = \frac{\hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}}{\Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}\bigr)}.
\]
 
Vidíme, že všechny výsledky výše je možné vyjádřit pomocí operátoru $\hat{\rho}$ bez potřeby znalosti jeho kompozice tvaru \eqref{MatH:defmathust}. To shrnuje náš třetí postulát.
 
\begin{define}[Postulát 3]
Při měření pozorovatelné $\hat{A}$ na kvantovém stavu popsaném maticí hustoty $\hat{\rho}$ může výsledek $a \in \sigma(\hat{\rho})$ nastat s pravděpodobností 
\begin{equation}
  W_{\hat{A}=a,\hat{\rho}} = \Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho}\bigr).
\label{MatH:defpravdnam}
\end{equation}
Kvantový stav v tom případě přejde na
\begin{equation}
  \hat{\rho}_{\hat{A}=a} = \frac{\hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}}{\Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}\bigr)}.
\label{MatH:rhopomereni}
\end{equation}
Střední hodnota pozorovatelné $\hat{A}$ odpovídající těmto výsledkům je rovna
\begin{equation}
	\stredni{\hat{A}}_{\hat{\rho}} = \Tr\left(\hat{\rho}\hat{A}\right) = \Tr\left(\hat{A}\hat{\rho}\right).
\label{MatH:defstrhen}
\end{equation}
\end{define}
 
Formalizmus smíšených stavů nám umožňuje klást si i nový druh otázky, na který „vektorová“ kvantová mechanika nemohla nabídnout smysluplnou odpověď -- jmenovitě, jak popisovat měření, u kterých výsledek nedokážeme rozlišit (např. z důvodu velkého množství měření, měření provedené jiným pozorovatelem, omezené rozlišovací schopnosti apod.) -- a tím ilustrovat kvantovou operaci, u které dochází ke změnám vlastních čísel $\hat{\rho}$.
 
V takovém případě můžeme jednoduše matice hustoty \eqref{MatH:rhopomereni} smísit s pravděpodobnostmi, kdy který případ nastane, danými \eqref{MatH:defpravdnam}. Výsledkem je
\begin{equation}
  \hat{\rho}_{\hat{A}} = \sum_{a \in \sigma(\hat{A})} \Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho}\bigr) \frac{\hat{P}_{\hat{A}=a} \hat{\rho}\hat{P}_{\hat{A}=a}}{\Tr\bigl(\hat{P}_{\hat{A}=a} \hat{\rho}\bigr)} = \sum_{a \in \sigma(\hat{A})} \hat{P}_{\hat{A}=a} \hat{\rho}\hat{P}_{\hat{A}=a}.
  \label{MatH:defpuchfilt}
\end{equation}
 
Transformace \eqref{MatH:defpuchfilt} typicky vyrábí i z čistých stavů smíšené a smíšeným stavům dále snižuje čistotu. S podobnými operacemi se můžeme setkat i v jiných situacích, než při provádění kvantových měření bez zaznamenávání výsledků. Podobné transformace popisují další jevy doprovázené ztrátou kvantové koherence -- vliv tepelného šumu, interakce s okolím v případě nedostatečně odizolovaného systému, \ldots
 
\begin{example}
Matice hustoty na $\hilbert = \komplex^2$.
 
Matice hustoty $\hat{\rho} \in \komplex^{2,2}$ musí dle definice \ref{MatH:defmathustdef} splňovat tři podmínky. Při jejím hledáním přejdeme do báze $(\hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3, \opone)$, kde $\hat{\sigma}_i$ jsou Pauliho matice \eqref{ZQM:PaulihoMatice} a $\opone$ představuje jednotkový operátor.
 
Jelikož $\hat{\sigma}_i = \hat{\sigma}_i^\dagger$ a $\opone = \opone^\dagger$, je operátor $\hat{\rho}$ definovaný obecná lineární kombinace
\[
	\hat{\rho} = \sum_{i=1}^3 \alpha_i \hat{\sigma}_i + \alpha_4 \opone, \quad \alpha_i \in \komplex
\]
samosdružený, a tak splněna podmínka $(ii)$, právě tehdy, kdy koeficienty $\alpha_i$ jsou reálné.
Dále snadno nahlédneme, že $\Tr \sigma_i = 0$ a $\Tr \opone = 2$. Abychom zaručili jednotkovou stopu matice hustoty $\hat{\rho}$, musí být $\alpha_4 = \frac12$. Budeme tedy níže hledat její vyjádření $\hat{\rho}$ již jen ve tvaru
\begin{equation} \label{MatH:C2MatHust}
	\hat{\rho} = \frac{1}{2} \left( \opone + \sum_{i=1}^3 \alpha_i \hat{\sigma}_i \right) =
	\frac{1}{2}
	\begin{pmatrix}
    1+\alpha_3 				& \alpha_1 - i\alpha_2 \\
    \alpha_1 + i\alpha_2 & 1-\alpha_3 \\
  \end{pmatrix},
\end{equation}
kde bylo užito explicitních tvarů Pauliho matic \eqref{ZQM:PaulihoMatice} a navíc jsme pro pohodlnost přeznačili $\alpha_i \mapsto \alpha_i/2$. Zbývá nám zaručit pozitivnost $\hat{\rho}$. Snadno nahlédneme, že vlastní čísla matice \eqref{MatH:C2MatHust} jsou rovna
\[
	\lambda^{(\pm)} = \frac{1 \pm \sqrt{\alpha_1^2 +\alpha_2^2 +\alpha_3^2}}{2},
\]
a tudíž je podmínkou pozitivity $\hat{\rho}$ nerovnost
\begin{equation}
  \alpha_1^2 +\alpha_2^2 +\alpha_3^2 \leq 1.
  \label{MatH:Bloch}
\end{equation}
Poslední nerovnost tvoří množinu, jež bývá nazývána Blochovou koulí. Množina všech kvantových stavů je (i v obecnějších případech) vždy konvexní, přičemž na jejím povrchu leží čisté stavy, uvnitř potom stavy smíšené.
 
Předpokládejme nyní pro ilustraci čistý stav, tedy rovnost v \eqref{MatH:Bloch}. Ta zaručí vlastní čísla $\lambda^{(+)} = 1$ a $\lambda^{(-)} = 0$. Vektor popisující čistý stav $\ket{\psi}$ je vlastním vektorem $\hat{\rho}$ příslušející vlastnímu číslu $\lambda^{(+)}=1$. Jeden z jeho možných tvarů je
\[
	\ket{\psi} = \frac{1}{\sqrt{2(1-\alpha_3)}} \begin{pmatrix}
    \alpha_1 - i\alpha_2 	 \\
    1-\alpha_3 \\
  \end{pmatrix}, \quad \braket{\psi}{\psi} = 1. 
\] 
Snadno nahlédneme, že 
\[
	\ket{\psi} \bra{\psi} = \frac{1}{2(1-\alpha_3)}
    \begin{pmatrix}
      \alpha_1 - i\alpha_2 	 \\
      1-\alpha_3 \\
    \end{pmatrix}
    \begin{pmatrix}
      \alpha_1 + i\alpha_2, & 1-\alpha_3	 \\
    \end{pmatrix} = \hat{\rho}.
\]
 
Zkoumejme časový vývoj matice hustoty. Předpokládejme hamiltonián $\hat{H}$ ve tvaru $\hat{H} = \begin{pmatrix}
  E_1 & 0 \\
  0 & E_2 \\
\end{pmatrix}$, $E_1 \leq E_2$. Položme $\alpha_i = \alpha_i(t)$. Víme, že časový vývoj $\hat{\rho}$ se řídí von Neumannovou rovnicí \eqref{MatH:defvonNeum}, která po dosazení $\hat{H}$, $\hat{\rho}$ a po úpravě získává tvar
\[
	i \hbar \begin{pmatrix}
            \dot{\alpha}_3 				& \dot{\alpha}_1 - i\dot{\alpha}_2 \\
            \dot{\alpha}_1 + i\dot{\alpha}_2 & \dot{\alpha}_3 \\
          \end{pmatrix} = (E_1 - E_2)
    			\begin{pmatrix}
            0 				& \alpha_1 - i\alpha_2 \\
            -\alpha_1 - i\alpha_2 & 0 \\
          \end{pmatrix}.	
\]
Řešení pro $\alpha_3(t)$ je triviální. Řešení $\alpha_1(t)$, $\alpha_1(t)$ se naleze elegantně přechodem k nové funkci $z(t)=\alpha_1(t)-i\alpha_2(t)$. Časový vývoj matice hustoty $\hat{\rho}=\hat{\rho}(t)$ je pak možno zapsat
\[
	\hat{\rho}(t) = \frac{1}{2} \begin{pmatrix}
    1 + \alpha_3(0) & \bigl[\alpha_1(0) - i\alpha_2(0)\bigr] \exp \left\{ - \frac{i}{\hbar} (E_1 - E_2) t  \right\} \\
    \bigl[\alpha_1(0) + i\alpha_2(0)\bigr] \exp \left\{ \frac{i}{\hbar} (E_1 - E_2) t  \right\} & 1 - \alpha_3(0) \\ 
  \end{pmatrix}.
\]
 
Dále zkusíme určit střední hodnotu energie v čase $t=0$ ve stavu $\hat{\rho}$ v případě výše zavedených $\hat{\rho}$ a $\hat{H}$. K tomuto účelu si pojmenujeme standardní bázi v prostoru $\hilbert = \komplex^2$:
\[
\ket{1} = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}, \ket{2} = \begin{pmatrix} 0 \\ 1 \\ \end{pmatrix}.
\]
Ze \eqref{MatH:defstrhen} víme, že střední hodnota energie systému ve stavu $\hat{\rho}$ je určena
\[
	\stredni{\hat{H}}_{\hat{\rho}} = \Tr \left(\hat{\rho}\hat{H}\right) = \sum_{i=1}^2 \brapigket{i}{\hat{\rho}\hat{H}}{i} =
		\frac{1}{2} \left[ E_1(1+\alpha_3) + E_2 (1-\alpha_3)  \right].
\] 
Snadno nahlédneme $\stredni{\hat{H}}_{\hat{\rho}} \in \left\langle E_1, E_2 \right\rangle$, neboť $\alpha_3 \in \left\langle -1, 1 \right\rangle$. Pravděpodobnost $W_{\hat{H}=E_1}$ naměření $\hat{H}=E_1$ je dle \eqref{MatH:defpravdnam} rovna 
\[
	W_{\hat{H}=E_1} = \Tr\left(\hat{P}_{\hat{H}=E_1} \hat{\rho}\right)
  = \brapigket{1}{\hat{\rho}}{1}
  = \frac{1}{2} (1 + \alpha_3),
\]
protože $\hat{P}_{\hat{H}=E_1}$ představuje projekční operátor tvaru $\hat{P}_{\hat{H}=E_1} = \ket{1}\bra{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ \end{pmatrix}$.
 
Po průchodu filtrem přechází matice hustoty $\hat{\rho}$ na novou matici $\hat{\rho}_{\hat{H}}$ podle vztahu \eqref{MatH:defpuchfilt}. Přímo můžeme psát
\[
	\hat{\rho}_{\hat{H}} = \sum_{E=E_1,E_2} \hat{P}_{\hat{H}=E} \hat{\rho} \hat{P}_{\hat{H}=E} = \frac{1}{2}
	\begin{pmatrix}
    1+\alpha_3 & 0 \\
    0 & 1-\alpha_3 \\
  \end{pmatrix}.
\]
Měřením energie tedy byla vytvořena stacionární matice hustoty. 
\end{example}
 
\begin{example}
Mějme kanonický soubor kvantových jednorozměrných harmonických oscilátorů s určeným multiplikátorem $\beta = \frac{1}{k_BT}$. Určete střední hodnotu energie a její rozptyl. Výsledky ověřte limitními přechody $\beta \rightarrow 0$, $\beta \rightarrow + \infty$.
 
Nejpravděpodobnější rozdělení $\rho(x,p)$ klasického kanonického souboru popsaného hamiltoniánem $H(x,p)$ má tvar (viz \cite{posp:TSF})
\[
	\rho(x,p) = A \: \exp\left\{-\beta H(x,p) \right\},
\]
kde $A$ je normalizační konstanta. Očekáváme, že kvantověmechanický soubor určený hamiltoniánem $\hat{H}$ bude popsán maticí hustoty $\hat{\rho}$ definovanou
\[
	\hat{\rho} = \frac{1}{\Tr e^{-\beta\hat{H}}} e^{-\beta\hat{H}},
\]
Dělením stopou $\Tr e^{-\beta\hat{H}}$ je zajištěna jednotková stopa $\hat{\rho}$, samosdruženost $\hat{\rho}$ plyne ze samosdruženosti $\hat{H}$ a pozitivnost $\hat{\rho}$ je evidentní z pozitivity funkce $\exp$ ve vyjádření v~diagonální bázi. $\hat{\rho}$ je tedy maticí hustoty v korektním smyslu. Ze zimy víme, že soubor vlastních funkcí jednorozměrného harmonického oscilátoru $(\ket{n})_{n=0}^{+\infty}$ tvoří úplnou ortonormální bázi $\hilbert$. Navíc
\[
	\hat{H}\ket{n} = \hbar \omega \left(n+\frac{1}{2}\right)\ket{n}.
\]
Střední hodnotu energie určíme ze \eqref{MatH:defstrhen}
\[
	\stredni{\hat{H}}_{\hat{\rho}} = \Tr \left(\hat{\rho} \hat{H}\right) = \frac{1}{\Tr e^{-\beta\hat{H}}}
		\sum_{n=0}^{+\infty} \brapigket{n}{e^{-\beta\hat{H}} \hat{H}}{n}.
\]
S operátorem v exponentu se vypořádáme provedením rozkladu dle jeho spektra, hamiltonián v sumě mimo exponent necháme působit na ket $\ket{n}$
\begin{equation} \label{MatH:HOstrhe}
	\stredni{\hat{H}}_{\hat{\rho}} = \frac{1}{\sum_{n=0}^{+\infty} e^{-\beta\hbar\omega(n+\frac{1}{2})}} 
		\sum_{n=0}^{+\infty} \hbar\omega(n+\frac{1}{2}) e^{-\beta\hbar\omega(n+\frac{1}{2})}.
\end{equation}
Označne
\[
	Z(\beta) = \sum_{n=0}^{+\infty} e^{-\beta\hbar\omega(n+\frac{1}{2})}.
\]
Jedná se o geometrickou řadu, jež můžeme sečíst s výsledkem
\[
	Z(\beta) = \frac{e^{-\frac{\beta\hbar\omega}{2}}}{1-e^{-\beta\hbar\omega}} =
		 \frac{1}{2 \sinh\left( \frac{ \beta \hbar \omega}{2} \right)}.
\]
Výraz \eqref{MatH:HOstrhe} je možno zapsat pomocí $Z(\beta)$
\[
	\stredni{\hat{H}}_{\hat{\rho}} = \frac{1}{Z(\beta)} \frac{- d Z(\beta)}{d \beta}
\]
a tím snadno najít hledanou střední hodnotu
\[
	\stredni{\hat{H}}_{\hat{\rho}} = \frac{\hbar \omega}{2} \coth \left( \frac{\beta\hbar\omega}{2} \right) \rightarrow
		\begin{cases}
			\xrightarrow[]{\beta \rightarrow 0 \: (T \rightarrow +\infty)} + \infty,  \\ 
			\xrightarrow[]{\beta \rightarrow +\infty \: (T \rightarrow 0)}  \frac{\hbar \omega}{2}.
		\end{cases}
\]
 
Podobnými úpravami získáme vyjádření pro rozptyl energie
\[
	(\Delta \hat{H})_{\hat{\rho}}^2 = \stredni{\hat{H}^2}_{\hat{\rho}} - \stredni{\hat{H}}^2_{\hat{\rho}} =
		\left( \frac{\hbar \omega}{2} \right)^2 \frac{1}{\sinh^2\left( \frac{\beta \hbar \omega}{2} \right)} \rightarrow
		\begin{cases}
			\xrightarrow[]{\beta \rightarrow 0 \: (T \rightarrow +\infty)} + \infty,  \\ 
			\xrightarrow[]{\beta \rightarrow +\infty \: (T \rightarrow 0)} 0.
		\end{cases}
\]
Zamyšlení nad získanými limitními výsledky ponecháme na čtenáři.
\end{example}
 
 
\subsection{Složené systémy a provázané stavy}
Mohlo by se zdát, že smíšené stavy vůbec nemusíme uvažovat v situacích, kdy máme přesné informace o systému, není tomu ale tak.
 
Připomeňme si nejprve poslední zbývající postulát kvantové mechaniky. Ten je ve formulaci pomocí matice hustoty jen málo odlišný od zimy:
 
\begin{define}[Postulát 4]
Pro fyzikální systémy $A$, $B$ s Hilbertovými prostory $\hilbert_A$, $\hilbert_B$ přiřazujeme složenému systému $AB$ Hilbertův prostor $\hilbert_{AB}$. Jestliže pak systémy $A$ a $B$ jsou nezávisle připraveny ve stavech $\rho^A$, $\rho^B$, přiřazujeme složenému systému stav
\begin{equation}
\rho^{AB} = \rho^A \otimes \rho^B.
\label{MatH:slozene}
\end{equation}
\end{define}
 
Složené stavy můžeme dále superponovat a nyní i míchat. Žádná verze postulátu ale nemluví o opačné úloze -- jak zredukovat stav složeného systému na stav, který bychom mohli přiřadit jedné jeho součásti a využívat k počítání výsledků měřených pouze na ní.
 
Uvažujme pro příklad Hilbertův prostor $\mathbb{C}^4$ daný složením dvou identických systémů, každý s~Hilbertovým prostorem $\mathbb{C}^2$ ($\mathbb{C}^2 \otimes \mathbb{C}^2$ je izomorfní $\mathbb{C}^4$), 4 vektory báze takového prostoru označíme
\begin{equation}
	\left\{ \ket{00}, \ket{01}, \ket{10}, \ket{11} \right\},
\end{equation}
což je zkrácený zápis tenzorového součinu, zavedený už v zimě.
 
Zkoumejme lineární superpozici
\begin{equation}
	\ket{\psi_1} = \frac{\ket{00} + \ket{11}}{\sqrt{2}}.
  \label{MatH:bell1}
\end{equation}
Na tomto stavu je zajímavé, že pokud změříme jeden z podsystémů, způsobíme kolaps celé vlnové funkce, po němž víme s jistotu také to, v jakém stavu je druhý podsystém (to vede na EPR paradox,%
\footnote{A. Einstein, B. Podolsky, N. Rosen 1935}
diskuzi mezi EPR trojicí a N. Bohrem doporučujeme jako zajímavou četbu). To je důsledkem skutečnosti, že neexistují stavy $\ket{a}$ a $\ket{b}$ takové, aby $\ket{\psi_1} = \ket{a}\ket{b}$, jak si snadno ověříme. Stavy, které by takto šly rozložit, se nazývají \textbf{faktorizovatelné} nebo \textbf{separovatelné}. Všechny ostatní stavy, mezi které patří $\ket{\psi_1}$, se nazývají \textbf{provázané}.
 
(Můžeme dokonce sestavit celou novou ortonormální bázi sestávající pouze z provázaných stavů, když doplníme $\ket{\psi_1}$ o
\begin{eqnarray}
	\ket{\psi_2} &=& \frac{\ket{00} - \ket{11}}{\sqrt{2}}, \\
	\ket{\psi_3} &=& \frac{\ket{10} + \ket{01}}{\sqrt{2}}, \\
	\ket{\psi_4} &=& \frac{\ket{01} - \ket{10}}{\sqrt{2}}.
\end{eqnarray}
Této čtveřici se dohromady říká Bellovy nebo bellovské stavy.)
 
Pro faktorizované stavy na systému složeném z~podsystémů $A$ a $B$ je možné mluvit o~stavu, ve kterém se nachází každý z~podsystémů zvlášť (až na fázi, která může v~tenzorovém součinu být mezi oba činitele libovolně přerozdělena). Pro provázané stavy ale podsystémům přidělit jejich vlastní stav, ze kterého by stav celého systému bylo možno zrekonstruovat, nelze. Matice hustoty však nabízí alespoň částečnou pomoc.
 
Označme matici hustoty složeného systému $\rho^{AB}$. Například pro bellovský stav $\ket{\psi_1}$ je
\begin{equation}
	\hat{\rho}^{AB}_1 = \left( \frac{\ket{00} + \ket{11}}{\sqrt{2}} \right)\left( \frac{\bra{00} + \bra{11}}{\sqrt{2}} \right).
\end{equation}
 
Připomeňme kritérium čistoty stavu pro kvadrát matice hustoty
\begin{equation}
	\Tr \hat{\rho}^2 \leq 1,
\end{equation}
které pro $\hat{\rho}^{AB}_1$ dá jedničku, jak má.
 
Pokud potřebujeme mluvit odděleně o stavu podsystému $A$, přiřadíme mu \textbf{redukovanou matici hustoty} $\hat{\rho}^A$, který se z $\hat{\rho}^{AB}$ získá operací zvanou \textbf{částečná stopa} přes systém $B$, označenou a definovanou jako
\begin{align*}
	\hat{\rho}^A =& \Tr_B \left( \hat{\rho}^{AB} \right), \\
	\Tr_B \left( \ket{a_1} \bra{a_2} \otimes \ket{b_1} \bra{b_2} \right) :=& \ket{a_1} \bra{a_2} \Tr\left(\ket{b_1} \bra{b_2}\right),
\end{align*}
pro všechna $\ket{a_1}, \ket{a_2} \in \mathscr{H}_A$, $\ket{b_1}, \ket{b_2} \in \mathscr{H}_B$. Hodnota částečné stopy pro všechny ostatní matice hustoty se získá rozkladem do báze operátorů tvaru $\ket{a_1} \bra{a_2} \otimes \ket{b_1} \bra{b_2}$ a předpokladem linearity operace $\Tr_B$.
 
Takto získaný stav dává správné statistické předpovědi pro veškerá \textsl{lokální} měření na podsystému $A$. Navíc je kompatibilní s opačnou procedurou, kdy známe stavy podsystémů a složenému stavu přiřazujeme tenzorový součin jejich matic hustoty ($\hat{\rho}^A \otimes \hat{\rho}^B$):
\[
\Tr_B (\rho^A \otimes \rho^B) = \rho^A.
\]
Nejedná se však o reverzibilní operaci. Provázaným stavům složeného systému $AB$ přiřadí částečné stopy přes $B$, resp. $A$ smíšené stavy $\hat{\rho}^A$, resp. $\hat{\rho}^B$, pro které obecně
\[
\rho^A \otimes \rho^B \ne \rho^{AB}.
\]
Konkrétně výsledek levé strany předchozí rovnice bude v těchto případech smíšený stav, přestože jsme začínali s čistým.
 
Vraťme se nyní k našemu bellovskému stavu \eqref{MatH:bell1} a určeme pro ilustraci redukovanou matici hustoty podsystému $A$ (pro $B$ vychází stejně). Po krátkém výpočtu získáme
\begin{equation*}
  \begin{aligned}
    \hat{\rho}^A_1 &= \Tr_B \left( \hat{\rho}_1^{AB} \right) = \Tr_B \left( \frac{\ket{00}\bra{00} + \ket{11}\bra{00} + \ket{00}\bra{11} + \ket{11}\bra{11}}{2}\right) \notag \\
    &= \frac{\ket{0}\bra{0} \braket{0}{0} + \ket{1}\bra{0} \braket{0}{1} + \ket{0}\bra{1} \braket{1}{0} + \ket{1}\bra{1} \braket{1}{1}}{2} \notag \\
    &= \frac{1}{2} \opone.
  \end{aligned}
\end{equation*}
A jelikož stopa jednotkové matice ve dvourozměrném systému je $2$, pro získaný stav najdeme čistotu
\begin{equation*}
	\Tr \left((\hat{\rho}^A_1)^2\right) = \frac{1}{2} \leq 1,
\end{equation*}
takže jsme dostali smíšený stav z čistého. Jedná se dokonce o nejvíce smíšený stav, jaký je na dvourozměrném stavovém prostoru možný: pro libovolné binární měření dává pravděpodobnost $1/2$ pro oba výsledky. Odsud vidíme, že smíšené stavy mají v kvantové mechanice využití i bez statistické neurčitosti.
 
Čistotu redukovaného stavu (za předpokladu čistého stavu složeného systému) můžeme brát jako možnou míru provázanosti dvou podsystémů. V rámci daného tenzorového rozkladu systému na podsystémy je provázanost stavu nezávislá na volbě jejich jednotlivých bází. To je evidentní z nezávislosti částečné stopy na volbě báze systému, přes nějž ji sčítáme, a nezávislosti čistoty na volbě báze druhého.
 
%Další možnost určení míry provázanosti stavu dává teorém zvaný \textbf{Schmidtův rozklad}:
%
%Nechť $\ket{\psi}$ je čistý stav složeného systému ze systémů $A$ a $B$, potom existují ortonormální báze $\left\{ \ket{i_A} \right\}$, $\left\{ \ket{i_B} \right\}$ prostorů $\mathscr{H}_A$ a $\mathscr{H}_B$ takové, že
%\begin{equation}
%	\ket{\psi} = \sum_i \lambda_i \ket{i_A} \ket{i_B},
%\end{equation}
%kde navíc $\lambda_i \geq 0$ pro $\forall i$, $\sum_i \lambda_i^2 = 1$. $\lambda_i$ se nazývají Schmidtovy koeficienty.\\
%Někdy se mu říká částečná faktorizace.
%
%Také se můžeme ptát jak moc je daný stav smíšený a ukazuje se, že jednou z dobrých měr je \textbf{von Neumannova entropie}, která je přímým analogem Shannonovy entropie z teorie informace. Pokud smíšený stav popíšeme jako
%\begin{equation}
%	\hat{\rho} = \sum_i p_i \ket{i}\bra{i},
%\end{equation}
%von Neumannova entropie je definována
%\begin{equation}
%	S(\hat{\rho}) = - \sum_i p_i \ln p_i. \label{eq:rozkladP}
%\end{equation}
%Zobecnění takového vztahu tak, aby nebyl závislý na zvolené bázi je
%\begin{equation}
%	S(\hat{\rho}) = - \Tr \left(\hat{\rho} \ln \hat{\rho}\right).
%\end{equation}
%
%Podíváme se, proč je zrovna tato entropie vhodnou mírou smíšenosti. Pro čistý stav platí
%\begin{equation}
%	\hat{\rho}^2 = \hat{\rho},
%\end{equation}
%takže jedno $p_i$ v \eqref{eq:rozkladP} je jednička a zbytek nuly, tudíž $S=0$ pro takový stav.
%
%A pokud zkusíme spočíst takovou entropii pro redukovanou matici zmiňovaného bellovského stavu, dostaneme
%\begin{equation}
%	S(\hat{\rho}_1^1) = S(\frac{I}{2}) = \ln 2,
%\end{equation}
%což se dá snadno ukázat, že je maximální entropie takového systému. Stav, který jsme dostali z bellovského stavu, byl maximálně smíšený! Obecně se dá ukázat, že Von Neumannova entropie je svázána se vzdáleností stavu od povrchu Blochovy sféry, o které doporučujeme studentům vyhledat víc informací, pokud ji ještě neviděli.