01RMF:Kapitola5

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01RMF

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01RMFMazacja2 16. 12. 201619:29
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůMazacja2 28. 12. 201614:12
Header editovatHlavičkový souborMazacja2 18. 12. 201622:10 header.tex
Kapitola0 editovatPředmluvaMazacja2 9. 11. 201621:51 predmluva.tex
Kapitola1 editovatMotivaceJohndavi 8. 4. 201917:34 motivace.tex
Kapitola2 editovatZobecněné funkceLomicond 7. 12. 201917:51 zobecnene_funkce.tex
Kapitola3 editovatIntegrální transformaceLomicond 25. 12. 201916:58 integralni_transformace.tex
Kapitola4 editovatŘešení dif. rovnicJohndavi 9. 4. 201916:15 reseni.tex
Kapitola5 editovatIntegrální rovniceJohndavi 8. 4. 201917:25 Kapitola5.tex
Kapitola6 editovatSturm-Liouvilleova teorieJohndavi 8. 4. 201916:35 Kapitola6.tex

Zdrojový kód

%\wikiskriptum{01RMF}
\chapter{Integrální rovnice}
V celé kapitole budeme množinou $G$ rozumět omezenou oblast v $\R^n$. 
Budeme obecně zkoumat dva případy funkcí, a to 
\begin{enumerate}
\item funkce $L^2(G)$ s normou $\Vert f\Vert_2 = \displaystyle \int_G f \bar{f} \dd x$;
\item funkce $\C(\bar{G})$ s normou $\Vert f \Vert_{\C} = \mathrm{max}_{x\in \bar{G}} |f(x)|$. 
\end{enumerate}
 
\section{Fredholmovy integrální rovnice}
Definujme integrální operátor 
$$ \Kb \phi(x) = \displaystyle \int_{G} \K(x,y) \phi(y) \dd y, $$
přičemž $\K$ nazýváme integrální jádro a budeme předpokládat, že $\K\in C(\bar{G} \times \bar{G})$. 
Označme $M = \mathrm{max}_{\bar{G}\times \bar{G}} |\K(x,y)|$, tzv. mez jádra. Dále označme $V = \displaystyle \int_{G} 1 \dd x < +\infty$
 
\begin{define}
Fredholmovou integrální rovnicí pro funkci $f$ rozumíme rovnici tvaru 
$$ f= \lambda \Kb f + g ,$$
kde $\lambda \in \mathbb{C}$,  funkce $g$ se tradičně nazývá pravá strana a $\Kb$ je integrální operátor se spojitým jádrem. 
\end{define}
Tuto úlohu můžeme přepsat do ekvivalentní podoby $(\mathbf{I} - \lambda \Kb)f =g$ a hledáme řešení buď v $L^2(G)$ (pak $g \in L^2(G)$, nebo v $\C(\bar{G})$ (pak $g\in \C(\bar{G})$). 
Speciálně pro nulovou pravou stranu dostáváme úlohu na vlastní čísla operátoru $\Kb$.
 
\subsection{Degenerované jádro}
\begin{define}
Řekneme, že integrální jádro $\K(x,y)$ je degenerované, jestliže je separovatelné, tj.  je možné jej zapsat ve tvaru $\K(x,y) = \displaystyle \sum_{j=1}^{p}u_j(x)v_j(y)$, 
kde $u_j(x), v_j(y) \in \C(\bar{G})$.
\end{define}
 
Přepišme nyní Fredholmovu integrální rovnici pro degenerované jádro:
$$f(x) = \lambda \Kb f(x) + g(x) = \lambda \displaystyle \int_{G} \displaystyle \sum_{j=1}^{p}u_j(x)v_j(y) f(y) \dd y  + g(x)= $$
$$ = \lambda \displaystyle \sum_{j=1}^{p}u_j(x) \underbrace{\displaystyle \int_{G} v_j(y) f(y) \dd y}_{c_j\in \mathbb{C}} + g(x)$$
Tímto jsme získali tvar řešení
$$ f(x) = \lambda \displaystyle \sum_{j=1}^{p}u_j(x)c_j + g(x).$$
Nyní je možné dosazením do původní rovnice určit koeficienty. My tyto koeficienty určíme jinou metodou.
Uvažujme tedy řešení 
$$ f(x) = \lambda \displaystyle \sum_{j=1}^{p}u_j(x)c_j + g(x).$$ 
Pronásobme celou rovnost výrazem $v_j(x)$ a zintegrujme ji přes $G$ podle $x$. 
Máme pak 
$$c_j = \displaystyle \int_G v_j(x)f(x) \dd x  = \lambda \displaystyle \sum_{k=1}^{p} c_k \displaystyle \int_{G} u_k(x)v_j(x) \dd x + \displaystyle \int_{G} v_j(x)g(x) \dd x.$$
Pokud tuto úpravu provedeme pro veškerá $j$, získáme soustavu lineárních algebraických rovnic pro koeficienty $c_j$.
 
Označme $z_i = \displaystyle \int_{G}v_i(x)f(x) \dd x$ a dosaďme za $f(x)$ z Fredholmovy rovnice:
$$z_i = \displaystyle \int_{G} (v_i(x)(\lambda \Kb f(x) + g(x) ) \dd x = 
\lambda \displaystyle \int_{G} v_i(x) \displaystyle \sum_{j=1}^{p}u_j(x) \left(  \displaystyle \int_{G}v_j(y)f(y) \dd y \right) \dd x + \displaystyle \int_{G} v_i(x)g(x) \dd x = $$
$$ = \lambda \displaystyle \sum_{j=1}^{p} \underbrace{\left( \displaystyle \int_{G}v_i(x)u_j(x)\dd x \right)}_{A_{ij}} \underbrace{\left( \displaystyle \int_{G}v_j(y)f(y)\dd y \right)}_{z_j} +
\underbrace{ \displaystyle \int_{G}v_i(x)g(x)\dd x }_{b_i}$$
Tedy jsme získali rovnici 
$$z = \lambda \A z + b.$$
 
Označme $z^{\ast}$ řešení této rovnice. Jelikož celou dobu chceme získat řešení Fredholmovy integrální rovnice, dosaďme tento výsledek do tvaru, do kterého jsme rovnici v první úpravě převedli. 
$$f^{\ast}(x) = \lambda \Kb f^{\ast}(x) +g = \lambda \displaystyle \sum_{j=1}^{p}u_j(x) \underbrace{\displaystyle \int_{G} v_j(y)f^{\ast}(y) \dd y}_{z_j^{\ast}} + g(x) = \lambda \displaystyle \sum_{j=1}^{p}u_j(x) z^{\ast}_j(x) + g(x)$$
Tímto jsme vyřešili Fredholmovu rovnici pro degenerované jádro. 
 
\subsection{Iterativní metody řešení}
\begin{theorem}
Integrální operátor $\Kb$ se spojitým jádrem $\K$ zobrazuje:
\begin{enumerate}
\item $L^2(G) \to \C(\bar{G})$, protože $\Vert \Kb f \Vert_{\C} \leq M\sqrt{V} \Vert f \Vert_2$ pro všechny $f\in L^2(G)$;
\item $\C(\bar{G}) \to \C(\bar{G})$, protože $\Vert \Kb f \Vert_{\C} \leq MV \Vert f \Vert_{\C}$ pro všechny $f \in \C(\bar{G})$;
\item $ L^2(G) \to L^2(G)$, protože $\Vert \Kb f \Vert_2 \leq MV \Vert f \Vert_2$ pro všechny $f\in L^2(G)$.
\end{enumerate}
\begin{proof}
\begin{enumerate}
V důkazu budeme často využívat Schwarzovu nerovnost a mez jádra. 
\item $$\Vert \Kb f \Vert_{\C} = \mathrm{max}_{\bar{G}} \left| \displaystyle \int_{G} \K(x,y) f(y)\dd y \right| \leq \mathrm{max}_{\bar{G}} \left| \left(\displaystyle \int_{G}\K^2(x,y) \dd y\right)^{\frac{1}{2}} 
\left( \displaystyle \int_{G} f^2(y) \dd y\right)^{\frac{1}{2}}\right| =$$
$$ = \sqrt{M^2}\mathrm{max}_{\bar{G}} \left(\displaystyle \int_{G}1 \dd y\right)^{\frac{1}{2}} \Vert f \Vert_2 = M \sqrt{V}\Vert f \Vert_2$$
\item $$\Vert \Kb f \Vert_{\C}  = \mathrm{max}_{\bar{G}} \left| \displaystyle \int_{G} \K(x,y) f(y)\dd y \right| \leq \mathrm{max}_{\bar{G}} \displaystyle \int_{G}|\K(x,y)| |f(y)| \dd y \leq M \Vert f \Vert_{\C}$$
\item $$\Vert \Kb f \Vert^2_{2} = \displaystyle \int_{G} \left| \Kb f(x) \right|^2 \dd x =  \displaystyle \int_{G} \left| \left( \displaystyle \int_{G} \K(x,y) f(y)\dd y \right) \right|^2 \dd x \leq $$
$$\leq \displaystyle \int_{G} \left[\left(\displaystyle \int_{G}|\K(x,y)|^2 \dd y \right)^{\frac{1}{2}} \left( \displaystyle \int_{G}|f(y)|^2 \dd y \right)^{\frac{1}{2}}\right]^{2} \dd x  \leq $$
$$ \leq  \displaystyle \int_{G} \left( MV^{\frac{1}{2}} \Vert f \Vert_2\right)^2 \dd x = M^2 V^2 \Vert f \Vert_2 ^2$$
Odtud již plyne požadovaná nerovnost. 
\end{enumerate}
\end{proof}
\end{theorem}
 
\begin{define}
Buďte $V, V_1$ normované vektorové prostory. Zobrazení (operátor) $B:V\to V_1$ nazveme {\bf omezené (omezený)}, jestliže existuje $c>0$ takové, že pro všechna $x\in V$ platí, že 
$$\Vert Bx\Vert_1 \leq c\Vert x\Vert.$$
Nejmenší takovéto $c$ nazveme normou operátoru $B$ a označujeme jej $\Vert B \Vert$.
\end{define}
Je zřejmé, že normu operátoru lze snadno určit pomocí vztahu
$$ \Vert B \Vert  = \mathrm{sup}_{x \neq 0} \frac{\Vert Bx\Vert_1}{\Vert x\Vert}. $$
 
\begin{theorem}
Buďte $(V,\Vert  \ \dot \ \Vert), (V_1,\Vert \ \dot \ \Vert_1)$ normované prostory \footnote{Nikoliv nutně Banachovy, nepožadujeme úplnost!} a buď $B:V \to V_1$ lineární operátor. Pak následující výroky jsou ekvivalentní :
\begin{enumerate}
\item $B$ je omezený;
\item $B$ je spojitý;
\item $B$ je spojitý v bodě. 
\begin{proof}
\begin{enuemrate}
\item[$1 \Rightrrow 2$] 
$$\Vert Bx -By\Vert_1 = \Vert B(x-y)\Vert_1 \leq \Vert B \Vert \Vert x-y \Vert$$
Odtud již z omezenost plyne spojitost. 
\item[$2 \Rightarrow 3$] Je zřejmé, že zobrazení, které je spojité (tedy je spojité v každém bodě svého definičního oboru), je spojité v bodě. 
\iteem[$3 \Rightarrow 1$] Buď $B$ spojité BÚNO v $x=0$. To znamená, že
$$\forall \epsilon >0 \ \exists \delta >0 \ \Vert x \Vert < \delta \Rightarrow \Vert Bx \Vert_1 < \epsilon.$$
Volme tedy $\epsilon = 1$. Pak $\Vert x \Vert < \delta \Rightarrow \Vert Bx \Vert_1 < 1$. Beru-li nyní libovolné $y\in V$,$y \neq 0$, pak zcela jistě
$$\left\Vert \frac{\delta}{2} \frac{y}{\Vert y \Vert}\right\Vert < \delta \Rightarrow \left\Vert B\left(\frac{\delta}{2} \frac{y}{\Vert y \Vert}\right) \right\Vert_1 $$
Toto ale lze přepsat na tvar 
$$ \frac{\delta}{2}\frac{1}{\Vert y \Vert} \Vert By \Vert_1 < 1 \Leftrightarrow \Vert By \Vert_1 < \frac{2}{\delta}\Vert y \Vert$$
Tímto jsme ukázali omezenost. 
 
\end{enumerate}
\end{proof}
\end{theorem}
 
Důsledkem této věty je fakt, že Fredholmův integrální operátor je omezený a spojitý (a samozřejmě lineární) jako zobrazení  $L^2(G) \to \C(\bar{G})$, $\C(\bar{G}) \to \C(\bar{G})$, $ L^2(G) \to L^2(G)$. 
 
 
\subsection{Metoda postupných aproximací na $\C(\bar{G})$}
Předpokládejme, že $f \in \C (\bar{G})$ a hledejme funkci $\phi \in \C (\bar{G}) $, která bude řešit úlohu $$\phi(x) = \lambda \Kb \phi(x) + f(x).$$ Jak název metody napovídá, budeme se snažit najít řešení iterací. 
Proto položme 
$$ \phi_0(x) = f(x),$$
$$ \phi_{k+1}(x) = \lambda \Kb \phi_{k}(x) + f(x). $$
Získáváme posloupnost funkcí $\phi_k(x)$. Je zřejmé, že $$\displaystyle \lim_{k\to + \infty} \phi_k(x) = \phi(x),$$
což je funkce, která řeší zadanou úlohy. 
 
\begin{theorem}
Buď $|\lambda| < \frac{1}{MV}$. Pak posloupnost $\phi_k \sk{\bar{G}} \phi$, kde funkce $\phi$ je jediným řešením rovnice $\phi(x) = \lambda \Kb \phi(x) + f(x).$
\begin{proof}
Z rekurentního vztahu dostáváme $$\phi_k= \displaystyle \sum_{j=1}^{k} \lambda^j \Kb^j f + f.$$
Toto ověříme matematickou indukcí:
Pro $k=0,1$ je vztah dle definice výše zřejmě splněn. Proto se zaměřme na přechod od $k$ ke $k+1$:
$$\phi_{k+1}= \lambda \Kb \phi_k + f = \lambda \Kb \left(\displaystyle \sum_{j=1}^{k}\lambda^j \Kb^j f + f  \right) +f = \displaystyle \sum_{j=1}^{k}\lambda^{j+1} \Kb^{j+1} f + \lambda \Kb f + f = $$
$$= \displaystyle \sum_{j=2}^{k+1}\lambda^{j} \Kb^{j} f + \lambda \Kb f + f = \displaystyle \sum_{j=1}^{k+1}\lambda^{j} \Kb^{j} f + f $$
Abychom ukázali stejnoměrnou konvergenci funkční posloupnosti $\phi_k$, stačí ukázat, že řada $\displaystyle \sum_{j=1}^{+\infty}\lambda^{j} \Kb^{j} f$ konverguje stejnoměrně. K důkazu toho tvrzení využijeme 
Weierstrassovu větu, která říká, že stačí najít konvergentní číslenou majorantu. Stačí totiž pracovat v normě. 
Tedy řada $\displaystyle \sum_{j=1}^{+\infty}\lambda^{j} \Kb^{j} f$ konverguje stejnoměrně na $\bar{G}$, pokud $\displaystyle \sum_{j=1}^{+\infty}\Vert\lambda^{j} \Kb^{j} f \Vert_{\C}$ konverguje. 
Použijme nyní pro člen uvnitř této sumy odhad: $$\Vert\lambda^{j} \Kb^{j} f \Vert_{\C} \leq (\lambda MV)^j \Vert f \Vert_{\C}$$
Jelikož je $\Vert f \Vert_{\C}$ konstanta, je možné ji z řady vytknout a díky předpokladům \footnote{Tento předpoklad tam není jen z důvodu \uv{aby to vyšlo}, ale vyplývá ze spektra operátoru, o kterém bude pojednáno dále.}
je výraz v závorce ostře menší než jedna, tutíž řada (geometrická) konverguje. 
 
Jednoznačnost se ukáže sporem, jak tomu obvykle bývá. 
\end{proof}
\end{theorem}
 
\begin{remark}
Z důkazu vyplynulo, že 
$$\phi(x) = \displaystyle \lim_{k\to +\infty} \phi_{k}(x) = \displaystyle \sum_{j=1}^{+\infty}\lambda^{j} \Kb^{j} f(x) + f(x).$$
Později ukážeme, že $\Kb^j$ je integrální operátor s  jádrem $\K_j(x,y)$. Využijme nyní této znalosti a zkusme formálně rozepsat výraz, která jsme dostali. Můžeme rovněž zkusit provést záměnu sumy a integrálu a zkoumat výraz, 
který obdržíme. Korektnost postupu bude ověřena později.
$$\displaystyle \sum_{j=1}^{+\infty}\lambda^{j} \Kb^{j} f(x) + f(x)  = \displaystyle \sum_{j=1}^{+\infty}\lambda^{j} \displaystyle \int_{G}\K_j(x,y)f(y)\dd y + f(x) =$$
$$= \lambda \displaystyle \sum_{j=0}^{+\infty}\lambda^{j} \displaystyle \int_{G}\K_{j+1}(x,y)f(y)\dd y + f(x) = \lambda  \displaystyle \int_{G} \left(\displaystyle \sum_{j=0}^{+\infty}\lambda^{j} \K_{j+1}(x,y)\right) f(y) \dd y + f(x)$$
Výraz  $\displaystyle \sum_{j=0}^{+\infty}\lambda^{j} \K_{j+1}(x,y)$ nazývámme {\it resolventa} a označujeme jej $\Res(x,y,\lambda)$. Pomocí resolventy je pak možné napsat funkci $\phi(x)$ ve tvaru:
$$\phi(x) = \lambda \displaystyle \int_{G} \Res(x,y,\lambda) f(y) \dd y + f(x)$$
Je očividné, jakou výhodu resolventa poskytuje. Jestliže máme nějaký integrální operátor, tak pro něj spočítáme jen jednou resolventu a pak pomocí ní konstrujeme řešení pro libovolnou pravou stranu $f$. 
\end{remark}
 
\subsection{Metoda iterovaných jader}
\begin{remark}
Buďte $K,L: \C(\bar{G}) \to \C(\bar{G})$ integrální operátory se spojitými jádry $\K(x,y),\mathscr{L}(x,y)$. Pak operátor  $(KL):\C(\bar{G}) \to \C(\bar{G})$ a působí na funkci $f$ následovně:
$$(KLf)(x) =K(Lf(z))(x) = \displaystyle \int_{G} \K(x,z)Lf(z) \dd z = \displaystyle \int_{G} \K(x,z) \left(\displaystyle \int_{G} \mathscr{L}(z,y) f(y) \dd y \right)\dd z =$$
$$ = \displaystyle \int_{G} f(y) \left( \displaystyle \int_{G} \K(x,z)\mathscr{L}(z,y) \dd z \right) \dd y$$
Odtud plyne, že  $KL$ je integrální operátor se spojitým jádrem $ \int_{G} \K(x,z)\mathscr{L}(z,y) \dd z $. 
Speciálně, doasdíme -li ze $L = K^j$, získáme rekurentní vztah pro posloupnost iterovaných jader.
$$\K_{j+1} (x,y) = \displaystyle \int_{G}\K_j(x,z)\K(z,y) \dd z $$
\end{remark}
 
Následující věta korektně zdůvodní, proč je možné provést záměny, kterou jsme dělali v postupu výše. 
\begin{theorem}[o možnosti záměny]
Je-li $|\lambda|< \frac{1}{MV}$, pak řada $\Res(x,y,\lambda) = \displaystyle \sum_{k=0}^{+\infty}\lambda^k \K_{k+1}(x,y)$ konverguje v $\C (\bar{G} \times \bar{G})$. Řadu $\Res$ nazýváme resolventní jádro. Toto járdo je spojité na $\C(\bar{G}\times \bar{G}\times B_{\frac{1}{MV}})$. Navíc řešení $\phi$ rovnice $\phi = \lambda \Kb \phi + f$ je 
$$\phi(x) = f(x) \lambda  \displaystyle \int_{G} \Res(x,y,\lambda) f(y) \dd y.$$
\begin{remark}
Celou dobu řešíme problém $\phi = \lambda \Kb \phi + f$, který je možno převést na tvar $(\mathbf{I} - \lambda \Kb) \phi = f$. Zároveň ale tato věta říká, že 
$\phi = f+ \lambda \mathbf{R} f = (\mathbf{I} + \lambda \mathbf{R})f$. Odtud ale plyne, že $$(\mathbf{I}-\lambda \Kb)^{-1} = (\mathbf{I} + \lambda \mathbf{R}).$$
Tedy problém nalezení řešení integrální rovnice vyřešíme nalezením inverzního operátoru se spojitým jádrem pomocí původního operátoru. Tímto získáme mnohem více informací, 
než kdybychom použili kteroukoliv jinou metodu.  
\end{remark}
\begin{proof}
Ukážeme, že $\Res$ je stejnoměrně konvergentní. Pak je možné v postupu provést záměnu a tím je tvrzení dokázáno. K vyšetření stejnoměrné konvergence opět použijeme Weierstrassovu větu.
Buď proto $x,y \in \bar{G}$ libovolná. Pak 
$$\left| \K_{p+1}(y)\right| = \left| \displaystyle \int_{G} \K(x,z) \K_{p}(z,y) \dd z \right| \leq MV \mathrm{max}_{\bar{G} \times \bar{G}} \left|\K_{p}(x,y) \right|.$$
Toto ale říká, že 
$$ \left\Vert \K_{p+1}\right \Vert_{\C} \leq MV \left\Vert  \K_p \right \Vert_{\C}$$
Tímto dokážeme odhadnout každý člen. Zbývá veštřit odhad prvního členu. 
$$ \left| \K_1(x,y) \right| \leq \left| \K(x,y) \right| \Rightarrow \left \Vert \K_1 \right \Vert_{\C} = M $$
Odtud již získáváme žádaný odhad 
$$ \left\Vert  \K_p \right \Vert_{\C} \leq M^pV^{p-1} $$
Je očividné, že $\displaystyle \sum_{k=0}^{+\infty} \left \Vert  \lambda^k \K_{k+1}\right\Vert_{\C} $ je číselnou majorantou $\Res$. Navíc pro ni platí
$$\displaystyle \sum_{k=0}^{+\infty} \left \Vert  \lambda^k \K_{k+1}\right\Vert_{\C}  \leq \displaystyle \sum_{k=0}^{+\infty} |\lambda|^k M^{k+1}V^k = \frac{M}{1-|\lambda|MV} < + \infty$$
Tedy jsme nalezli číselnou majorantu, která majorizuje $\Res(x,y)$ pro libovolné $x,y$ z uvažovaného definičního oboru. Z tohoto důvodu můžeme při hledání řešení (v rozepisování, které jsme provedli
před touto větou, jdeme zpětně) zaměňovat řadu a integrál. 
\end{proof}
\end{theorem}
 
\section{Volterrovy integrální rovnice}
\begin{define}
Buď $G = (0,a)$, kde $a>0$. Pak {\bf Volterrovou integrální rovnicí} nazýváme rovnici tvaru 
$$ \phi(x) = \lambda \displaystyle \int_{0}^{x} \K(x,y)\phi(y) \dd y + f(x) = \lambda \Kb \phi + f.$$
\end{define}
Hned vidíme, že metoda degenerovaného jádra zde nemá žádnou praktickou výhodu, neboť máme proměnnou $x$ v mezi integrálu. chtěli bychom ale problém řešení Volterrovy rovnice převést na Fredholmovu rovnici, tj. do tvaru
$$ \lambda \Kb \phi + f = \displaystyle \int_{G} \widetilde{\K}(x,y) \phi (y) + f(x) = \lambda \widetilde{\Kb} \phi + f,$$
kde $\widetilde{\Kb}$ je Fredholmův  integrální operátor. 
Proto se zavádí tzv. Volterrovo integrální jádro:
\begin{define}
{\bf Volterrovo integrální jádro} je definováno jako 
$$\widetilde{\K}(x,y)=\left\{\begin{array}{ll} \K(x,y), &\mbox{pro } 0\leq y<x<a, \\0 &\mbox{jinak}. \end{array}\right.$$
\end{define}
Je snadno vidět, že Volterrovo integrální jádro působí nenulově na množině, kterou je v $\R^2$  pravoúhlý rovnoramenný trojúhelník, který má jednu z odvěsen na x-ové ose. 
\begin{remark}
Volterrovo jádro není nutně spojité! Ukážeme později, že předpoklad spojitosti je zbytečně silný. Spokojíme se totiž pouze se spojitostí jádra $ \K$ na výše zmiňovaném trojúhelníku. 
\end{remark}
\subsection{Iterovaná jádra}
Nejprve si uvědomme, že operátor $\widetilde{\K}(x,z)$ je nenulový pro $0<z<x<a$ a operátor $\widetilde{\K}_k(z,y)$ je nenulový pro $0<y<z <a$. Na množině, na které je operátor nenulový pak působí jako $\K(x,z)$, resp. $\K_k(z,y)$ Proto potom platí
$$\widetilde{\K}_{k+1}(x,y) = \displaystyle \int_{0}^{a} \widetilde{\K}(x,z)\widetilde{\K}_k(z,y)\dd z =\displaystyle \int_{y}^{x} \K(x,z)\K_k(z,y) \dd z .$$
Zvolíme-li $y>x$, integrujeme přes prázdnou množinu a proto je integrál nulový, tedy je vidět, že $\widetilde{\K}_{k+1}(x,y)$ má strukturu Volterrova integrálního jádra, 
přičemž jeho nenulové hodnoty jsou dány hodnotami $\K_{k+1}(x) = \displaystyle \int_{y}^{x} \K(x,z)\K_k(z,y) \dd z $.
Je zřejmě jasné, kam směřujeme. Najdeme jen odhad pro velikost obrazu Volterrova integrálního operátoru a převedeme tento případ na Fredholmovu úlohu. 
\begin{lemma}
Buď  $\Kb$ Volterrův integrální operátor. Pak pro všechna $p\in \mathbb{N}_0$  a pro všechna $x\in \left[ 0, a\right]$ platí
$$ \left| \Kb^p \phi(x)\right| \leq \frac{(Mx)^p}{p!}\Vert \phi \Vert_{\C}.$$
\begin{proof}
 
\end{proof}
\end{lemma}