01RMF:Kapitola4: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
Řádka 65: Řádka 65:
 
$$ \bullet = \displaystyle \int_{\R} \dd t f(t) \displaystyle \int_{\R} \dd \tau g(\tau) \underbrace{\phi(t+\tau)}_{\psi(t,\tau)} = $$
 
$$ \bullet = \displaystyle \int_{\R} \dd t f(t) \displaystyle \int_{\R} \dd \tau g(\tau) \underbrace{\phi(t+\tau)}_{\psi(t,\tau)} = $$
 
Zkoumejme nyní nosič funkce $\psi(t,\tau)$. Vzhledem k její definici se jedná o \uv{pás} v rovině $(t,\tau)$ protínající osu $t$ v $\nf \phi$ a osu $\tau$ rovněž v těchto bodech.  
 
Zkoumejme nyní nosič funkce $\psi(t,\tau)$. Vzhledem k její definici se jedná o \uv{pás} v rovině $(t,\tau)$ protínající osu $t$ v $\nf \phi$ a osu $\tau$ rovněž v těchto bodech.  
Vzhledem k tomu, že funkce $f(t)$ je nulová dle definice alespoň na  $\R^-$ a funkce $g(\tau)$ rovněž, lze nosič funkce $\psi(t,\tau)$ omezit a tím umožnit výpočet integrálu.  
+
Vzhledem k tomu, že funkce $f(t)$ je nulová dle definice alespoň na  $\R^-$ a funkce $g(\tau)$ stejně tak, lze nosič funkce $\psi(t,\tau)$ omezit a tím umožnit výpočet integrálu.  
  
 
Zde bude taky jednoho krásného dne obrázek. Doufám...
 
Zde bude taky jednoho krásného dne obrázek. Doufám...
  
Budeme se jej snažit převést do tvaru definice působeí regulární zobecněné funkce. Proto použijeme substituci:
+
Budeme se jej snažit převést do tvaru definice působení regulární zobecněné funkce. Proto použijeme substituci:
  
 
$$ = \left\{ \begin{array} c \\ \mbox{\scriptsize Substituce} \\ z = t + \tau \\ t =t \end{array}\right\} = \displaystyle \int_{\R} \dd t f(t) \displaystyle \int_{\R} \dd z g(z-t) \phi(z)  =  
 
$$ = \left\{ \begin{array} c \\ \mbox{\scriptsize Substituce} \\ z = t + \tau \\ t =t \end{array}\right\} = \displaystyle \int_{\R} \dd t f(t) \displaystyle \int_{\R} \dd z g(z-t) \phi(z)  =  
 
\displaystyle \int_{\R} \dd z \phi(z) \left( \displaystyle \int_{\R} f(t) g(z-t) \dd t \right) $$
 
\displaystyle \int_{\R} \dd z \phi(z) \left( \displaystyle \int_{\R} f(t) g(z-t) \dd t \right) $$
 +
 +
Tímto jsme zjistili, že výsledek konvoluce regulárních zobecněných funkcí je regulární zobecněná funkce, jejíž klasický generátor je klasická konvoluce generátorů zobecněných funkcí.
 +
Tento výsledek by neměl být překvapivý.
 +
 +
Mají-li tedy funkce $f,g$ nosič na kladné polopřímce, lze je zapsat jako $f(t) = \Theta(t)f(t) $  a $g(z-t) = \Theta(z-t) g(z-t)$. Vidíme, že
 +
$\Theta(t) \Theta(z-t) \neq  \Leftrightarrow t \in (0,z), z>0$. Pak
 +
$$ \displaystyle \int _{\R} \dd t f(t) g(z-t) = \Theta(z) \displaystyle \int_{0}^{z} f(t)g(z-t) \dd t.$$
 +
Naše funkce $\tilde{f}(t)$ a $\epsilon(t)$ splňují z definice předpoklady výše zmíněné, a proto můžeme spočíst jejich konvoluci.
 +
 +
$$\epsilon(t) \ast \tilde{f}(t) = \Theta(t)Z(t) \ast \Theta(t)f(t) = \Theta(t)\displaystyle \int_{0}^{t} Z(\tau) f(t-\tau) \dd \tau =
 +
=  \Theta(t)\displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})3(t-\tau)e^{t-\tau} \dd \tau =$$
 +
$$ = \Theta(t) 3e^{t} \left[t \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})e^{-\tau}\dd \tau - \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})\tau e^{-\tau}\dd \tau \right] = (1)$$
 +
 +
Tímto jsme spočetli i poslední člen konvoluce a opět vidíme, že je napsatelný ve tvaru součinu Heavisideovy funkce a nějaké klasické funkce.
 +
Tedy nyní již víme, že $$\tilde{y}(t) = (1)+ (2) + (3) = \Theta(t) \underbrace{\left[ 7 \left( e^{-t}-e^{-2t} \right) + 2 \left( 2-e^{-2t} + -e^{-t}\right) +
 +
3e^{t} \left[t \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})e^{-\tau}\dd \tau - \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})\tau e^{-\tau}\dd \tau \right] \right]}_{= y(t)}$$

Verze z 27. 11. 2016, 19:29

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01RMF

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01RMFMazacja2 16. 12. 201619:29
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůMazacja2 28. 12. 201614:12
Header editovatHlavičkový souborMazacja2 18. 12. 201622:10 header.tex
Kapitola0 editovatPředmluvaMazacja2 9. 11. 201621:51 predmluva.tex
Kapitola1 editovatMotivaceJohndavi 8. 4. 201917:34 motivace.tex
Kapitola2 editovatZobecněné funkceLomicond 7. 12. 201917:51 zobecnene_funkce.tex
Kapitola3 editovatIntegrální transformaceLomicond 25. 12. 201916:58 integralni_transformace.tex
Kapitola4 editovatŘešení dif. rovnicJohndavi 9. 4. 201916:15 reseni.tex
Kapitola5 editovatIntegrální rovniceJohndavi 8. 4. 201917:25 Kapitola5.tex
Kapitola6 editovatSturm-Liouvilleova teorieJohndavi 8. 4. 201916:35 Kapitola6.tex

Zdrojový kód

%\wikiskriptum{01RMF}
\chapter{Řešení počátečních úloh ODR a PDR}
V této části se budeme věnovat již konečně řešení jednotlivých typů diferenciálních rovnic za použití nástrojů, které jsme dosud vybudovali. 
Schéma řešení již pro zobecněné lineární diferenciální rovnice známe. Máme-li
$$L u = f \mbox{ v } \D' ,$$
pak pokud naleznu řešení $L\epsilon = \delta$, tak jsme ukázali, že $u = \epsilon \ast \f$ řeší rovnici $L u = f $. 
Fundamentální řešení $\epsilon$ budeme hledat právě pomocí integrálních transformací. 
 
Dodejme, že v následujících kapitolách nejprve vždy uvedeme konkrétní příklad řešení dané úlohy a následně postup abstrahujeme do věty, která bude popisovat řešení. 
 
\section{Lineární ODR s konstantními koeficienty}
Řešte počáteční úlohu:
\begin{eqnarray*}
\ddot{y} + 3\dot{y}+2y & = & 3te^t \\
y(0) & = & 2 \\
\dot{y}(0) & = &1 \\
\end{eqnarray*}
Označme $Ly = \ddot{y} + 3\dot{y}+2y $ a $f = 3te^t$. 
Předpokládejme, že $y(t)$ je řešením této rovnice, tj. $y(t) \in \Ci$.
Zkonstruujme nyní zobecněnou funkci 
$$\tidle{y}(t) := \Theta(t) y(t) \in \D'_{reg}$$
Pomocí této funkce se pokusíme náš problém převést do řeči zobecněných funkcí a řešit jej. Proto si připravme derivace výrazu $\tidle{y}(t)$:
$$ \dot{\tidle{y}}(t) = \Theta(t)\dot{y}(t) + \delta(t)y(t) = \Theta(t)\dot{y}(t) + \delta(t) y(0) = \Theta(t)\dot{y}(t) + 2\delta(t)$$
$$ \ddot{\tidle{y}}(t) = \dot{y}(t)\delta(t) + \Theta(t)\ddot{y}(t) + 2 \dot{\delta}(t) = \Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t)$$
Stojí za zmínku, že již v tomto kroku jsme využili počátečních podmínek a zahrnuli je tímto do řešení. 
Nyní již můžeme dosadit 
$$ L\tilde{y} = \Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t) + 3(\Theta(t)\dot{y}(t) + 2\delta(t)) + 2\Theta(t) y(t) = \Theta(t) Ly + 7 \delta(t) +2\dot{\delta}(t) = 
\underbrace{\Theta(t)f(t)}_{=\tilde{f}(t)} + 7 \delta(t) +2\dot{\delta}(t) $$
Klasickou úlohu jsme tedy převedli na problém v $\D'$, který už umíme vyřešit. Tato zobecněná úloha jde vždy zkonstruovat pomocí $\tidle{y}(t) := \Theta(t) y(t)$. 
Úloha tedy přešla na tvar: 
$$L\tilde{y} = \underbrace{\tilde{f}(t) + 7 \delta(t) +2\dot{\delta}(t)}_{F(t)}, \mbox{kde } \tilde{f}(t) = \Theta(t)f(t).$$
Řešení této úlohy je $\tilde{y} = \epsilon \ast F$. 
Řešení rozdělíme do dvou kroků, nejprve nalezneme fundamentální řešení a následně vyřešíme zobecněnou úlohu. 
 
 
\paragraph{I. Fundamentální řešení $\epsilon$}
Řešíme úlohu $L\epsilon = \delta$. Ze cvičení (eventuálně [Šťovíček]) víme, že fundamentální řešení je možné hledat ve tvaru $\epsilon(t) = \Theta(t)Z(t)$, kde funkce 
$Z(t)$ splňuje $LZ=0 $ a počáteční podmínky $Z(0) =0$ a $\dot{Z}(0) = 1$. 
V našem případě tedy řešíme rovnici 
$$LZ = \ddot{Z} + 3 \dot{Z} + 2Z = 0$$
Její řešení je $Z(t) = C_1 e^{-t}+C_2 e^{-2t}$, po započtení počátečních podmínek máme $Z(t) = e^{-t}-e^{-2t}$ a tedy fundamentální řešení našeho operátoru je tvaru 
$$ \epsilon(t) = \Theta(t) \left( e^{-t}-e^{-2t} \right)$$
 
\paragraph{II. Vyřešení zobecněné úlohy}
Nyní se pokusíme spočíst konvoluci $\epsilon \ast \F = \tilde{y}$. Nejprve si rozepíšeme z linearity konvoluce veškeré příspěvky a každý z nich poté vyšetříme zvlášť.
$$\tilde{y} = \epsilon \ast F  =\epsilon \ast (\tilde{f} + 7 \delta +2\dot{\delta}) = \underbrace{\epsilon \ast \tilde{f}}_{(1)} + \underbrace{7 \epsilon \ast \delta}_{(2)} +
\underbrace{2 \epsilon \ast \dot{\delta}}_{(3)}$$
 
Výpočty jednotlivých konvolucí provedeme postupně v následujících odstavcích:
 
\subparagraph{Výpočet (2)}
$$ 7 \epsilon \ast \delta = 7 \epsilon = \Theta (t)\left(7 \left( e^{-t}-e^{-2t} \right) \right)$$
Poznamenejme, že se vždy budeme snažit převést řešení na tvar $\Theta(t)$ krát nějaká funkce. Proč je toto pro nás důležité, vyplývá z konstrukce řešení, neboť jsme volili jako
zobecněné řešení funkci tvaru $\tilde{y}(t) = \Theta(t) y(t)$, kde $y(t)$ bylo řešením klasické rovnice. 
 
\subparagraph{Výpočet (3)}
$$2 \epsilon \ast \dot{\delta} = 2 \dot{\epsilon} \ast \delta = 2 \dot{\epsilon} = \Theta(t)\left(2 \left( 2-e^{-2t} + -e^{-t}\right)\right)$$
 
\subparagraph{Výpočet (1)}
Pro tuto část výpočtu bychom potřebovali spočítat konvoluci $f\ats g$, kde  $f,g \in \D'_{reg}$ a  $\nf f \subset  \R^+$, $\nf g \subset \R^+$. 
Pro takový případ ale konvoluci nemáme zavedenou. \footnote{Konvoluci, která by toto umožňovala lze zavést. Tuto její vlastnost bychom ale využili jen zde, proto byla použita jiná definice. Zájemci definici naleznou ve [Šťovíček] } Přesto se můžeme pokusit tento případ vyřešit:
$$ ((f\ast g)(t),\phi(t)) = (f(t), (g(\tau),\phi(t+\tau))) =\bullet$$
O funkci $(g(\tau),\phi(t+\tau))$ víme, že je třídy $\Ci$. Pokud bychom ještě dokázali říci, že je její nosič omezený, měli bychom vyhráno. 
(Toto je v podstatě jediný rozdíl mezi naší definicí konvoluce a tou, ve skriptech prof. Šťovíčka). 
$$ \bullet = \displaystyle \int_{\R} \dd t f(t) \displaystyle \int_{\R} \dd \tau g(\tau) \underbrace{\phi(t+\tau)}_{\psi(t,\tau)} = $$
Zkoumejme nyní nosič funkce $\psi(t,\tau)$. Vzhledem k její definici se jedná o \uv{pás} v rovině $(t,\tau)$ protínající osu $t$ v $\nf \phi$ a osu $\tau$ rovněž v těchto bodech. 
Vzhledem k tomu, že funkce $f(t)$ je nulová dle definice alespoň na  $\R^-$ a funkce $g(\tau)$ stejně tak, lze nosič funkce $\psi(t,\tau)$ omezit a tím umožnit výpočet integrálu. 
 
Zde bude taky jednoho krásného dne obrázek. Doufám...
 
Budeme se jej snažit převést do tvaru definice působení regulární zobecněné funkce. Proto použijeme substituci:
 
$$ = \left\{ \begin{array} c \\ \mbox{\scriptsize Substituce} \\ z = t + \tau \\ t =t \end{array}\right\} = \displaystyle \int_{\R} \dd t f(t) \displaystyle \int_{\R} \dd z g(z-t) \phi(z)  = 
\displaystyle \int_{\R} \dd z \phi(z) \left( \displaystyle \int_{\R} f(t) g(z-t) \dd t \right) $$
 
Tímto jsme zjistili, že výsledek konvoluce regulárních zobecněných funkcí je regulární zobecněná funkce, jejíž klasický generátor je klasická konvoluce generátorů zobecněných funkcí.
Tento výsledek by neměl být překvapivý. 
 
Mají-li tedy funkce $f,g$ nosič na kladné polopřímce, lze je zapsat jako $f(t) = \Theta(t)f(t) $  a $g(z-t) = \Theta(z-t) g(z-t)$. Vidíme, že 
$\Theta(t) \Theta(z-t) \neq  \Leftrightarrow t \in (0,z), z>0$. Pak 
$$ \displaystyle \int _{\R} \dd t f(t) g(z-t) = \Theta(z) \displaystyle \int_{0}^{z} f(t)g(z-t) \dd t.$$
Naše funkce $\tilde{f}(t)$ a $\epsilon(t)$ splňují z definice předpoklady výše zmíněné, a proto můžeme spočíst jejich konvoluci. 
 
$$\epsilon(t) \ast \tilde{f}(t) = \Theta(t)Z(t) \ast \Theta(t)f(t) = \Theta(t)\displaystyle \int_{0}^{t} Z(\tau) f(t-\tau) \dd \tau = 
=  \Theta(t)\displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})3(t-\tau)e^{t-\tau} \dd \tau =$$
$$ = \Theta(t) 3e^{t} \left[t \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})e^{-\tau}\dd \tau - \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})\tau e^{-\tau}\dd \tau \right] = (1)$$
 
Tímto jsme spočetli i poslední člen konvoluce a opět vidíme, že je napsatelný ve tvaru součinu Heavisideovy funkce a nějaké klasické funkce. 
Tedy nyní již víme, že $$\tilde{y}(t) = (1)+ (2) + (3) = \Theta(t) \underbrace{\left[ 7 \left( e^{-t}-e^{-2t} \right) + 2 \left( 2-e^{-2t} + -e^{-t}\right) +
3e^{t} \left[t \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})e^{-\tau}\dd \tau - \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})\tau e^{-\tau}\dd \tau \right] \right]}_{= y(t)}$$