01RMF:Kapitola4: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
Řádka 44: Řádka 44:
 
\paragraph{II. Vyřešení zobecněné úlohy}
 
\paragraph{II. Vyřešení zobecněné úlohy}
 
Nyní se pokusíme spočíst konvoluci $\epsilon \ast \F = \tilde{y}$. Nejprve si rozepíšeme z linearity konvoluce veškeré příspěvky a každý z nich poté vyšetříme zvlášť.
 
Nyní se pokusíme spočíst konvoluci $\epsilon \ast \F = \tilde{y}$. Nejprve si rozepíšeme z linearity konvoluce veškeré příspěvky a každý z nich poté vyšetříme zvlášť.
$$\tilde{y} = \epsilon \ast F  =\epsilon \ast (\tilde{f} + 7 \delta +2\dot{\delta}) = \epsilon \ast \tilde{f} + 7 \epsilon \ast \delta + 2 \epsilon \ast \dot{\delta}$$
+
$$\tilde{y} = \epsilon \ast F  =\epsilon \ast (\tilde{f} + 7 \delta +2\dot{\delta}) = \underbrace{\epsilon \ast \tilde{f}}_{(1)} + \underbrace{7 \epsilon \ast \delta}_{(2)} +
 +
\underbrace{2 \epsilon \ast \dot{\delta}}_{(3)}$$
 +
 
 +
Výpočty jednotlivých konvolucí provedeme postupně v následujících odstavcích:
 +
 
 +
\subparagraph{Výpočet (2)}
 +
$$ 7 \epsilon \ast \delta = 7 \epsilon = \Theta (t)\left(7 \left( e^{-t}-e^{-2t} \right) \right)$$
 +
Poznamenejme, že se vždy budeme snažit převést řešení na tvar $\Theta(t)$ krát nějaká funkce. Proč je toto pro nás důležité, vyplývá z konstrukce řešení, neboť jsme volili jako
 +
zobecněné řešení funkci tvaru $\tilde{y}(t) = \Theta(t) y(t)$, kde $y(t)$ bylo řešením klasické rovnice.
 +
 
 +
\subparagraph{Výpočet (3)}
 +
$$2 \epsilon \ast \dot{\delta} = 2 \dot{\epsilon} \ast \delta = 2 \dot{\epsilon} = \Theta(t)\left(2 \left( 2-e^{-2t} + -e^{-t}\right)\right)$$
 +
 
 +
\subparagraph{Výpočet (1)}

Verze z 27. 11. 2016, 18:41

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01RMF

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01RMFMazacja2 16. 12. 201619:29
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůMazacja2 28. 12. 201614:12
Header editovatHlavičkový souborMazacja2 18. 12. 201622:10 header.tex
Kapitola0 editovatPředmluvaMazacja2 9. 11. 201621:51 predmluva.tex
Kapitola1 editovatMotivaceJohndavi 8. 4. 201917:34 motivace.tex
Kapitola2 editovatZobecněné funkceLomicond 7. 12. 201917:51 zobecnene_funkce.tex
Kapitola3 editovatIntegrální transformaceLomicond 25. 12. 201916:58 integralni_transformace.tex
Kapitola4 editovatŘešení dif. rovnicJohndavi 9. 4. 201916:15 reseni.tex
Kapitola5 editovatIntegrální rovniceJohndavi 8. 4. 201917:25 Kapitola5.tex
Kapitola6 editovatSturm-Liouvilleova teorieJohndavi 8. 4. 201916:35 Kapitola6.tex

Zdrojový kód

%\wikiskriptum{01RMF}
\chapter{Řešení počátečních úloh ODR a PDR}
V této části se budeme věnovat již konečně řešení jednotlivých typů diferenciálních rovnic za použití nástrojů, které jsme dosud vybudovali. 
Schéma řešení již pro zobecněné lineární diferenciální rovnice známe. Máme-li
$$L u = f \mbox{ v } \D' ,$$
pak pokud naleznu řešení $L\epsilon = \delta$, tak jsme ukázali, že $u = \epsilon \ast \f$ řeší rovnici $L u = f $. 
Fundamentální řešení $\epsilon$ budeme hledat právě pomocí integrálních transformací. 
 
Dodejme, že v následujících kapitolách nejprve vždy uvedeme konkrétní příklad řešení dané úlohy a následně postup abstrahujeme do věty, která bude popisovat řešení. 
 
\section{Lineární ODR s konstantními koeficienty}
Řešte počáteční úlohu:
\begin{eqnarray*}
\ddot{y} + 3\dot{y}+2y & = & 3te^t \\
y(0) & = & 2 \\
\dot{y}(0) & = &1 \\
\end{eqnarray*}
Označme $Ly = \ddot{y} + 3\dot{y}+2y $ a $f = 3te^t$. 
Předpokládejme, že $y(t)$ je řešením této rovnice, tj. $y(t) \in \Ci$.
Zkonstruujme nyní zobecněnou funkci 
$$\tidle{y}(t) := \Theta(t) y(t) \in \D'_{reg}$$
Pomocí této funkce se pokusíme náš problém převést do řeči zobecněných funkcí a řešit jej. Proto si připravme derivace výrazu $\tidle{y}(t)$:
$$ \dot{\tidle{y}}(t) = \Theta(t)\dot{y}(t) + \delta(t)y(t) = \Theta(t)\dot{y}(t) + \delta(t) y(0) = \Theta(t)\dot{y}(t) + 2\delta(t)$$
$$ \ddot{\tidle{y}}(t) = \dot{y}(t)\delta(t) + \Theta(t)\ddot{y}(t) + 2 \dot{\delta}(t) = \Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t)$$
Stojí za zmínku, že již v tomto kroku jsme využili počátečních podmínek a zahrnuli je tímto do řešení. 
Nyní již můžeme dosadit 
$$ L\tilde{y} = \Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t) + 3(\Theta(t)\dot{y}(t) + 2\delta(t)) + 2\Theta(t) y(t) = \Theta(t) Ly + 7 \delta(t) +2\dot{\delta}(t) = 
\underbrace{\Theta(t)f(t)}_{=\tilde{f}(t)} + 7 \delta(t) +2\dot{\delta}(t) $$
Klasickou úlohu jsme tedy převedli na problém v $\D'$, který už umíme vyřešit. Tato zobecněná úloha jde vždy zkonstruovat pomocí $\tidle{y}(t) := \Theta(t) y(t)$. 
Úloha tedy přešla na tvar: 
$$L\tilde{y} = \underbrace{\tilde{f}(t) + 7 \delta(t) +2\dot{\delta}(t)}_{F(t)}, \mbox{kde } \tilde{f}(t) = \Theta(t)f(t).$$
Řešení této úlohy je $\tilde{y} = \epsilon \ast F$. 
Řešení rozdělíme do dvou kroků, nejprve nalezneme fundamentální řešení a následně vyřešíme zobecněnou úlohu. 
 
 
\paragraph{I. Fundamentální řešení $\epsilon$}
Řešíme úlohu $L\epsilon = \delta$. Ze cvičení (eventuálně [Šťovíček]) víme, že fundamentální řešení je možné hledat ve tvaru $\epsilon(t) = \Theta(t)Z(t)$, kde funkce 
$Z(t)$ splňuje $L(Z)=0 $ a počáteční podmínky $Z(0) =0$ a $\dot{Z}(0) = 1$. 
V našem případě tedy řešíme rovnici 
$$LZ = \ddot{Z} + 3 \dot{Z} + 2Z = 0$$
Její řešení je $Z(t) = C_1 e^{-t}+C_2 e^{-2t}$, po započtení počátečních podmínek máme $Z(t) = e^{-t}-e^{-2t}$ a tedy fundamentální řešení našeho operátoru je tvaru 
$$ \epsilon(t) = \Theta(t) \left( e^{-t}-e^{-2t} \right)$$
 
\paragraph{II. Vyřešení zobecněné úlohy}
Nyní se pokusíme spočíst konvoluci $\epsilon \ast \F = \tilde{y}$. Nejprve si rozepíšeme z linearity konvoluce veškeré příspěvky a každý z nich poté vyšetříme zvlášť.
$$\tilde{y} = \epsilon \ast F  =\epsilon \ast (\tilde{f} + 7 \delta +2\dot{\delta}) = \underbrace{\epsilon \ast \tilde{f}}_{(1)} + \underbrace{7 \epsilon \ast \delta}_{(2)} +
\underbrace{2 \epsilon \ast \dot{\delta}}_{(3)}$$
 
Výpočty jednotlivých konvolucí provedeme postupně v následujících odstavcích:
 
\subparagraph{Výpočet (2)}
$$ 7 \epsilon \ast \delta = 7 \epsilon = \Theta (t)\left(7 \left( e^{-t}-e^{-2t} \right) \right)$$
Poznamenejme, že se vždy budeme snažit převést řešení na tvar $\Theta(t)$ krát nějaká funkce. Proč je toto pro nás důležité, vyplývá z konstrukce řešení, neboť jsme volili jako
zobecněné řešení funkci tvaru $\tilde{y}(t) = \Theta(t) y(t)$, kde $y(t)$ bylo řešením klasické rovnice. 
 
\subparagraph{Výpočet (3)}
$$2 \epsilon \ast \dot{\delta} = 2 \dot{\epsilon} \ast \delta = 2 \dot{\epsilon} = \Theta(t)\left(2 \left( 2-e^{-2t} + -e^{-t}\right)\right)$$
 
\subparagraph{Výpočet (1)}