01RMF:Kapitola2

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01RMF

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01RMFMazacja2 16. 12. 201619:29
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůMazacja2 28. 12. 201614:12
Header editovatHlavičkový souborMazacja2 18. 12. 201622:10 header.tex
Kapitola0 editovatPředmluvaMazacja2 9. 11. 201621:51 predmluva.tex
Kapitola1 editovatMotivaceJohndavi 8. 4. 201917:34 motivace.tex
Kapitola2 editovatZobecněné funkceLomicond 7. 12. 201917:51 zobecnene_funkce.tex
Kapitola3 editovatIntegrální transformaceLomicond 25. 12. 201916:58 integralni_transformace.tex
Kapitola4 editovatŘešení dif. rovnicJohndavi 9. 4. 201916:15 reseni.tex
Kapitola5 editovatIntegrální rovniceJohndavi 8. 4. 201917:25 Kapitola5.tex
Kapitola6 editovatSturm-Liouvilleova teorieJohndavi 8. 4. 201916:35 Kapitola6.tex

Zdrojový kód

%\wikiskriptum{01RMF}
 
 
\chapter{Zobecněné funkce}
V~této kapitole korektně zavedeme zobecněné funkce a~uvidíme, že naše předešlá definice je jen velmi speciálním případem zobecněné funkce. 
Zároveň budeme v~definici požadovat, aby náš nově definovaný objekt byl něco rozdílného od klasické funkce, ale zároveň se od ní příliš nelišil. 
Rádi bychom totiž využívali některá tvrzení a~některé věty, které již máme z~předchozího studia matematické analýzy dokázány. 
\section{Zavedení zobecněných funkcí}
\begin{define}
Nechť $f$ je lineární funkcionál nad $\D(G)$, tj, $f:\D \longrightarrow \mathbb{C}$ a~$f$ je lineární. Množinu všech lineárních a spojitých, 
tj. konvergenci zachovávajících, funkcionálů nad $\D(G)$ nazveme {\bf prostorem zobecněných funkcí}, označujme ji $\D'(G)$. 
Hodnotu funkcionálu $f$ na funkci $\phi$ označujme $\left( f, \ \phi \right)$ namísto $f(\phi)$. 
\end{define}
 
\begin{remark}
\begin{enumerate}
\item {\it Rovnost zobecněných funkcí} (tj. $f = g$ v $\D'$) nastává právě tehdy, když $\forall \phi \in \D $ platí, že $(f,\phi) = (g,\phi)$. 
\item $\D'$ je lineární vektorový prostor s~přirozeně definovanými operacemi sčítání a~násobení, tzn, $\forall f ,g \in \D'$ definujme sčítání
$$ (f+g,\phi) := (f,\phi) + (g,\phi) \: \forall  \phi \in \D $$
a pro $\alpha \in \mathbb{C}$ a pro $f\in \D'$ definujeme násobení
$$ (\alpha  \cdot f,\phi) := \alpha (f,\phi) \: \forall \phi \in \D. $$ 
\end{enumerate}
\end{remark}
 
Vidíme, že prostor zobecněných funkcí závisí na volbě konvergence v $\D$. Tímto pojmem bude $\D'$~značně ovlivněno 
(kvůli identifikaci lineárních a~především spojitých funkcionálů nad  $\D$). Z~toho důvodu nyní definujeme konvergenci 
v~$\D$. Ještě předtím ale zavedeme pojem multiindex a~zavedeme notaci derivací pomocí multiindexu. 
 
\begin{define}
{\bf Multiindexem} $\alpha$ v~n-dimenzionálním prostoru rozumíme  uspořádanou n-tici čísel $\left(\alpha_1, \ \alpha_2, \ \dots, \ \alpha_n \right)$ ze 
$\mathbb{Z}_+ ^n := \left(\mathbb{N}\cup\{0\}\right)^n$. 
 
Označme $\vert \alpha \vert = \displaystyle \sum_{k=1} ^n \alpha_k $. 
 
Definujme rovněž operátor 
$D^{\alpha} : = \displaystyle\frac{\partial^{\vert \alpha \vert}}{\partial^{\alpha_1}x_1 \partial^{\alpha_2}x_2 \dots \partial^{\alpha_n}x_n}$.
\end{define}
 
\begin{define}
Nechť $\{ \phi_n \}_{n \in \mathbb{N} }$ je posloupnost v $\D(G)$ a $\phi \in \D(G)$. Řekneme, že {\bf $\phi_n$ konverguje 
k~$\phi$ v $\D$}, označme $\phi \stackrel{\D}{\longrightarrow} \phi$, 
právě když 
\begin{enumerate}
\item nosiče $\phi_n $ jsou stejně (stejnoměrně) omezené, tj. \left( $\exists R>0 \right) \left(\forall n \in \mathbb{N} \right) \left(\nf \phi_n \subset B_R(0)\right)$;
\item $\forall \aplha \in \mathbb{Z}_+ ^n$ platí, že $D^\alpha \phi_n$ konverguje stejnoměrně na množině $G$ k~$D^\alpha \phi$, tedy $D^\alpha \phi_n \sk{G} D^\alpha \phi$. 
\end{enumerate}
\end{define}
 
\begin{remark}
Tato definice vyžaduje znalost limitní funkce $\phi$. Je ale možné definovat i~\uv{vlastnost konvergence} 
a~to za pomoci Bolzano-Cauchyovy podmínky pro stejnoměrnou konvergenci, 
která nám umožňuje nepsat ve druhé podmínce $D^\alpha \phi$. Pak můžeme tvrdit, že posloupnost funkcí 
$\{ \phi_n \}_{n \in \mathbb{N}}$ konverguje v~$\D$ a~tuto vlastnost zapisovat 
jako $\phi_n \stackrel{\D}{\longrightarrow} $. 
\end{remark}
 
\begin{theorem}
Buď $\{ \phi_n \}_{n \in \mathbb{N}} \subset \D(G)$ a nechť $\phi_n \stackrel{\D}{\longrightarrow} $. 
Pak existuje limitní funkce $\phi \in \D(G)$ taková, že $\phi_n \stackrel{\D}{\longrightarrow} \phi$.
\begin{proof}
Důkaz nechť si čtenář provede sám jako cvičení. Při dokazování je vhodné najít kandidáta na funkci $\phi$ pomocí nulté derivace. 
Dále je vhodné si uvědomit, že kandidát musí být třídy $\Ci$ a~že $\nf \phi$ má být kompakt. 
\end{proof}
\end{theorem}
 
\subsection{Příklad zobecněné funkce}
{\bf Diracova $\delta$-funkce}
 
S~touto funkcí jsme se setkali hned na začátku tohoto textu. Nyní ji korektně zavedeme a~dokážeme, že se jedná o~zobecněnou funkci. 
$$ \left(\forall \phi \in \D(R) \right) \ \mbox{definujeme } \left(\delta, \ \phi\right) := \phi(0) $$
Pro $\delta$ musíme tedy ověřit, že je to funkcionál nad~$\D$, že je lineární a~že je spojitý.
\begin{enumerate}
\item[{\it Funcionál:}] $\delta: \D \longrightarrow \mathbb{C}$. Jelikož je $\phi(0) < + \infty$, víme, že se tedy jedná o~funkcionál, 
neboť jeho definice dává dobrý smysl $\forall \phi \in \D$.
\item[{\it Linearita:}] Uvažujme $\phi, \psi \in  \D$ a $\alpha \in \mathbb{C}$. Pak 
$$( \delta, \underbrace{\phi + \alpha \psi}_{\eta \in \D} ) = \eta(0) = \left( \phi + \alpha \psi \right) (0) 
= \phi (0) + \alpha \psi(0) = \left( \delta, \phi \right) + \alpha \left( \delta, \psi\right)$$
\item[{\it Spojitost:}] Abychom dokázali spojitost námi definovaného funkcionálu, uvažujme konvergentní posloupnost 
$\{ \phi_n \}_{n \in \mathbb{N}} \subset \D$, která konverguje $\phi_n \stackrel{\D}{\longrightarrow} \phi$. 
Chceme ukázat, že odtud plyne, že v~$\mathbb{C}$~konverguje číselná posloupnost$\left(\delta, \phi_n\right) \longrightarrow \left(\delta, \phi\right)$. 
Můžeme bez újmy na obecnosti uvažovat, že $\phi_n \stackrel{\D}{\longrightarrow} 0$ \footnote{Pokud by $\phi_n \stackrel{\D}{\longrightarrow} \phi$, 
pak víme, že funkce~$\phi$ je opět testovací funkcí a~můžeme přejít od~$\phi_n$ k~$\phi_n - \phi$, která již konverguje~k~0. Funkce $\phi_n - \phi$ 
je totiž testovací, neboť její nosič je pouze sjednocením nosičů funkcí $\phi_n$ a~$\phi$ a~rozdílem dvou hladkých funkcí je opět funkce hladká. }.
Pak v toho, že posloupnost konverguje plyne, že 
\begin{enumerate}
\item  $\left( $\exists R>0 \right) \left(\forall n \in \mathbb{N} \right) \left(\nf \phi_n \subset B_R(0)\right)$;
\item $\forall \aplha \in \mathbb{Z}_+ ^n$ platí, že $D^\alpha \phi_n \sk{\R^n} 0$. 
\end{enumerate}
 
Druhá podmínka platí pro všechny multiindexy, tedy speciálně i~pro nulový. Pak tedy dostáváme $\phi_n \sk{\R^n} 0 \Rightarrow \phi_n(x) \stackrel{\R^n}{\rightarrow} 0$ pro všechna $x\in \R^n$. 
Pokud nyní za $x$ volím 0, dostávám tvrzení, které jsem chtěl dokázat, neboť $\underbrace{\lim_{n\to\infty} \left(\delta, \phi_n \right)}_{\displaystyle\lim_{n\to\infty} \phi_n(0) = 0} = \left(\delta, 0 \right) = 0$, přičemž poslední rovnost plyne z linearity funkcionálu. 
\end{enumerate}
 
\noindent Tímto jsme tedy dokázali, že {\it Diracova $\delta$-funkce} je zobecněnou funkcí. Obdobně se dá ukázat, že i~{\it centrovaná Diracova $\delta$-funkce}\footnote{\left(\delta_{x_0}, \ \phi\right) := \phi(x_0)} je zobecněná. Důkaz je zcela totožný, až na poslední krok, kdy se místo 0 volí $x_0$. 
 
\subsection{Souvislost mezi klasickými funkcemi a zobecněnými funkcemi}
V následujícím odstavci bychom chtěli ukázat, že každé klasické funkci $f$ můžeme přiřadit jistou zobecněnou funkci $\tilde{f}$. Jako množinu funkcí $f$, ke které 
budeme vytvářet množinu zobecněných funkcí, vezměme lokálně integrabilní funkce na $\R^n$. Pro tyhle funkce jsme již ukázali, že  integrál 
$\displaystyle \int_{\R^n}f(x)\phi(x)\dd x$ konverguje pro každou $\phi \in \D(\R^n)$. Pro tuhle hezkou vlastnost budeme definovat zobecněnou funkci (tj. funkcionál)
následovně: 
$$\left(\tilde{f},\phi \right) := \displaystyle \int_{\R^n}f(x)\phi(x)\dd x.$$ 
Z konvergence nám okamžitě plyne fakt, že $\tilde{f}:\D \longrightarrow \mathbb{C}$ je funkcionál.
Nyní, podobně jako výše, dokážeme, že se jedná o zobecněnou funkci. 
\begin{enumerate}
\item[{\it Linearita:}] Buďte $\phi, \psi \in \D$ a $\alpha \in \mathbb{C}$. Pak 
$$\left( \tilde{f}, \phi + \alpha \psi \right) = \displaystyle \int_{\R^n}f(x)(\phi + \alpha \psi) (x) \dd x = \displaystyle \int_{\R^n}f(x)\phi(x) \dd x + 
\alpha \displaystyle \int_{\R^n}f(x)\psi(x) = \left(\tilde{f},\phi \right) + \alpha \left(\tilde{f},\psi \right). $$
\item[{\it Spojitost:}] Chceme ukázat, že $\phi_n \stackrel{\D}{\longrightarrow} 0 \Rightarrow \left( \tilde{f},\phi_n \right) \longrightarrow 0 \mbox{ pro } n \to +\infty$.
Tedy platí, že $\displaystyle \lim_{n \to + \infty} \left(\tilde{f},\phi \right) = \displaystyle \lim_{n \to + \infty} \displaystyle \int_{\R^n} f(x)\phi_n(x) \dd x= 0$?
Pokud by bylo možné zaměnit limitu a integrál, pak bychom měli $\displaystyle \int_{\R^n} \displaystyle \lim_{n \to + \infty} f(x) \phi_n (x) \dd x
\stackrel{\phi_n(x) \to 0}{=} \displaystyle \int_{\R^n} f(x)\cdot 0 \dd x  = 0$. Abychom mohli záměnu provést, je třeba ověřit podmínky věty o záměně, ale prakticky nám stačí nalézt 
integrabilní majorantu, která nezávisí na $n$. Tohle bude ukázáno na cvičení. 
\end{enumerate}
 
\begin{define}
O~zobencněné funkci $\tilde{f}$ řekneme, že je {\bf regulární zobecněnou funkcí}, ozn. $\tilde{f} \in \D'_{reg}$, pokud existuje klasická funkce~$f$~taková, 
že $(\tilde{f},\phi) := \displaystyle \int_{\R^n} f(x) \phi (x) \dd x \: \forall \phi \in \D  $. Klasickou funkci~$f$~pak nazýváme {\bf generátorem zobecněné funkce~$~\tilde{f}$}.
\end{define}
 
V následující části se budeme věnovat diskusi ohledně jednoznačnosti přiřazení klasické funkci zobecněnou regulární funkci, tj. bude nás zajímat, jestli je možné ke každé regulární 
zobecněné funkci $\tilde{f}$ najít klasickou funkci $f$. Obráceně to jde, jak je vidno z definice regulární zobecněné funkce. Vyslovíme obecnou větu, kterou nedokážeme v plné obecnosti. Dokážeme její důsledek ( ten je ale v~podstatě totožný s~tvrzením věty) a se zesílenými předpoklady. Zájemci o~důkaz věty v~plném znění jej naleznou ve skriptech prof. Šťovíčka. Než ale větu vyslovíme a dokážeme, 
připravíme si dvě lemmata a~jeden výsledek z~funkcionální analýzy, které pak pro její důkaz využijeme: 
 
\begin{lemma}[spojitost skalárního součinu]
\label{L1}
Buď $\H $ Hilbertův prostor a~nechť $\{x_n \} _{n\in\mathbb{N}} \subset \H$ taková, že $x_n \to x \in \H$. Pak 
$\langle x_n,y \rangle \to \langle x,y\rangle$ pro $n \to + \intfy$ pro všechna $y\in \H$.
\begin{proof}
Nejprve přepíšeme výraz $\langle x_n, y\rangle = \langle x_n - x +x ,y \rangle = \langle x_n - x,y \rangle + \langle x,y \rangle$. Využijeme konvergence posloupnosti, tzn. 
$x_n \to x \in \H \Leftrightarrow \Vert x_n - x \Vert \to 0 $ v $\mathbb{C}$. Pak na výraz $\langle x_n - x,y \rangle $ aplikujeme Schwarzovu nerovnost, tedy 
$\vert \langle x_n - x,y \rangle \vert \leq \Vert x_n-x\Vert \cdot \Vert y \Vert$. Jelikož je $\Vert y \Vert < + \infty$, máme lemma dokázáno, neboť limitním 
přechodem pro $n \to + \infty$ získáme $\langle x_n, y\rangle  \stackrel{n \to + \infty}{\longrightarrow} \langle x,y\rangle$. 
\end{proof}
\end{lemma}
 
\begin{lemma}
Nechť $\langle a,b\rangle = 0$ pro všechna $b\in M$, kde $\overline{M} = \H$. Pak $a=0$ v $\H$.
\begin{proof}
Důkaz provedeme pro dva případy:
\begin{enumerate}
\item $M=\H$, pak $\langle a,h \rangle = 0$ pro libovolné $h\in \H$ a~tedy i~pro $h=a$. Pak ale $\langle a,a \rangle = 0 \Rightarrow a =0 $~v~$\H$~z~positivní definitnosti skalárního součinu.
\item $M\subset \H, \ \overline {M} = \H$. Pak ale tato vlastnost implikuje, že pro libovolné $h \in \H$ existuje $\{b_n \}_{n\in\mathbb{N}} \subset M $ taková, že $b_n \to h \in \H$.
Pak $\forall n \in\mathbb{N} $ máme $0=\langle a,b_n\rangle \stackrel{\mbox{\scriptsize \ref{L1}}{\longrightarrow} \langle a, \lim b_n \rangle = \langle a,h \rangle$ pro libovolné $h\in \H$. 
Zde již využijeme první část a máme tvrzení dokázáno.  
\end{enumerate}
\end{proof}
\end{lemma}
 
Následující výsledek pochází z funkcionální analýzy a dokazovat jej nebudeme:
\begin{theorem}
\label{Dscarkou}
Buď $\D$ prostor testovacích funkcí s~normou z~$L^p$. Pak $\D$ je v $L^p$ hustý, tedy $\overline{\D} = L^p.$
\end{theorem}
 
Nyní už věta, jejíž důsledek chceme dokázat:
\begin{theorem}[o jednoznačnosti]
Buďte $f,g \in L^1_{loc}(\R^n)$ a~$\tilde{f},\tilde{g} \in \D'_{reg}(\R^n)$. Pak $\tilde{f} = \tilde{g} \Leftrightarrow f(x) = g(x)$ skoro všude na $\R^n$. 
\end{theorem}
 
\begin{theorem}[důsledek]
Buďte $f\in L^2(\R^n)$ a~$\tilde{f} \in \D'_{reg}(\R^n)$. Pak $\tilde{f} = 0 \Leftrightarrow f(x) = 0$ skoro všude na $\R^n $. 
\begin{proof}
\begin{enumerate}
\item[$\Leftarrow$] Triviální
\item[$\Rightarrow$] Předpokládejme tedy $\tilde{f}=0$~v~$\D' \Leftrightarrow (\tilde{f}, \phi ) = (0, \phi) =0$ pro všechna $\phi \in \D$. 
To ale znamená (dle definice akce) $\forall \phi \in \D: \: 0= \displaystyle \int_{\R^n} f(x)\phi(x) \dd x = \langle f, \phi \rangle_{L^2(\R^n)} $ \footnote{Správně bychom měli psát $\langle f,\overline{\phi} \rangle$, ale je to jedno. } Nyní už máme skalární součin ( z~tohoto důvodu jsme požadovali kvadratickou integrabilitu~$f$), takže využijeme druhého lemmatu a věty \ref{Dscarkou}. Pak totiž tyhle podmínky zaručují $f = 0$ v $L^2(\R^n)$, tedy $f(x) = 0$ skoro všude na $\R^n$. 
\end{enumerate}
\end{proof}
\end{theorem}
 
\begin{remark}
\begin{enumerate}
\item Tato věta nám dává odpověď na otázku, jaká je souvislost mezi zobecněnými funkcemi a~klasickými funkcemi a~umožňuje 
zahrnout klasické funkce do funkcí zobecněných, resp. je takto elegantně propojit. Toto nás tudíž opravňuje vynechávat vlnku ve značení 
a~má smysl si například klást otázku, zda $x^n \in \D'$. Odpověď je ano, protože $x^n$ je spojitá funkce, tedy $x^n \in L^1_{loc}$ a~tedy $x^n \in \D'$.
\item Máme $\tilde{f} = \tilde{g}$ v $\D'$ definovanou jako $(f,\phi) = (g,\phi) \: \forall \phi \in \D$. Nyní jsme k tomuto navíc ukázali, že 
$\forall \tilde{f}, \tilde{g} \in \D'_{reg}$ platí, že $(\tilde{f},\phi) = (\tilde{g},\phi) \Rightarrow \tilde{f} = \tilde{g} \mbox{ v } \D'$, ale i $f=g \mbox{ v } L^2.$¨
Tímto jsme zobecnili pojem \uv{rekonstrukce funkce z testovací funkce}
\item Velikost / mohutnost množiny $\D$ je zásadní. Zkuste si vzít za prostor $\D$ např. množinu všech konstantních funkcí a provést naši konstrukci znova. 
\end{enumerate}
\end{remark}
 
\subsection{Příklady}
Na cvičeních jsme ukázali, že funkce $\phi_{\left[-a,a\right]}(x) :=$ %dopsat dle cvičení
je testovací funkcí. Podívejme se, jak se chová integrál 
$\displaystyle \int^x_{+\infty}\phi_{\left[-a,a\right]}(y) \dd y$. Tato nová funkce od x je až do $-a$ nulová a od $a$ konstantní. 
Zaveďme jistou speciální funkci:
\begin{define}
{\bf Haevisideova funkce $\Theta(x)$} je funkce $\Theta: \R \to \{0,1\}$ definovaná následovně:
$$\Theta(x)=\left\{\begin{array}{ll} 1, &\mbox{pro } x\req0, \\[.2em] 0, &\mbox{pre } x<0. \end{array}\right.$$
\end{define}
Definujeme-li ještě opraci konvoluce funkcí, můžeme použít pro náš integrál elegantní zápis. 
\begin{define}
Buďte $f,g$ klasické funkce integrabilní s kvadrátem. Pak {\bf konvolucí funkcí $f$ a $g$}, kterou označujeme $f\ast g$, rozumíme
$f \ast g := \displaystyle \int_{\R} f(y) g(x-y) \dd y = \displaystyle \int_{\R}g(y)f(x-y) \dd y. $$
\end{define}
\begin{remark}
Konvoluce funkce a Heavisideovy funkce je vlastně \uv{vyhlazením} Heavisideovy funkce.
\end{remark}
Ve smyslu této definice je pak možno náš integrál psát jako $\Theta(x) \ast \phi_{\left[-a,a\right]}$. Pokud bychom nyní udělali konvoluci funkce $\phi_{\left[-a,a\right]}$ 
a~\uv{obrácené} Heavisideovy funkce, tj. funkce, která přiřazuje jedničku všem $x<0$ a provedli součin těchto dvou integrálů, získáme opět testovací funkci. 
Toto tvrzení, zformulované níže, bude dokázáno na cvičeních, ale je zřejmé. 
 
\begin{theorem}
Nechť $f \in L^1_{loc}$ a buď $\epsilon >0$. Pak $f(x) \ast \phi_{\left[-\epsilon, \epsilon\right]} (x) \in \Ci$. 
\end{theorem}
\vspace{1cm}
{\bf Příklady zobecněných funkcí}
\begin{enumerate}
\item Již jsme dokázali, že $\delta_{x_0} \in \D'$.
\item Ukázali jsme, že $\D'_{reg} \subset \D'$.
\item Zobecnění Diracovy $\delta$-funkce do $\R^n$ 
\begin{define}
Nechť je $S$ je po částech hladká nadplocha v $\R^n$ a $\nu(x)$ je funkce spojitá na $S$. Definujme 
$$\left( \nu \delta_S , \phi \right):= \displaystyle \int_S \nu(x)\phi(x) \dd S \: \forall \phi \in \D.$$
Pak funkcionál $\nu\delta_S$ nazýváme {\bf jednoduchou vrstvou}. 
\end{define}
I tento funkcionál je zobecněnou funkcí, tj. $\nu\delta_S \in \D'$ (cvičení)
\item Vyvstává otázka, zda je libovolné funkci možné přiřadit zobecněnou funkci, tj. funkcionál, který by měl podobné chování? 
Například bychom chtěli vyřešit problém, který vyvstane, když chceme funkci $f(x) = \frac{1}{x}$ přiřadit zobecněnou funkci. Narážíme na problém, neboť 
$\frac{1}{x} \notin L^1_{loc}(R), a proto $\frac{1}{x}$ nelze chápat jako zobecněnou funkci. 
Cítíme ale, že by bylo vhodné, abychom nějakou takovou zobecněnou funkci měli. 
Proto provedeme tzv. {\it regularizaci} této funkce, která by náš problém mohla odstanit. 
Vidíme, že problematickým bodem v definičním oboru (a tedy i při integraci) je 0. 
Zkusíme tedy definovat funkcionál, který by \uv{suploval} funkci $\frac{1}{x}$ následovně: 
$$ \left( P\frac{1}{x}, \phi(x) ) := \displaystyle \lim_{\epsilon \to 0^+} \displaystyle \int_{\R \backslash (-\epsilon,\epsilon)} \frac{\phi(x)}{x}\dd x $$
Tato limita se běžně označuje  jako $V_p\displaystyle \int_{\R} \frac{\phi(x)}{x}\dd x$ a nazývá se {\it integrál ve smyslu hlavní hodnoty}. 
Na cvičeních bude ukázáno, že tímto krokem dojde k odstranění našeho problému, tj. $P\frac{1}{x}\in \D'$ a že se zachovávají vlastnosti, které 
platily pro klasické funkce (např. $x^n P\frac{1}{x} = x^{n-1}$ v $\D'$ pro $n \req 1$).
\end{enumerate}