Součásti dokumentu Matematika2Priklady
Zdrojový kód
%\wikiskriptum{Matematika2Priklady}
\section{Rozvoj funkce do řady}
\begin{enumerate}
\begin{priklad}
f(x) = e^{-x} = \sum_{n=0}^{+\infty}(-1)^n \frac{x^n}{n!}
\end{priklad}
\begin{priklad}
f(x) = \cosh x = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}
\end{priklad}
\begin{priklad}
f(x) = e^{ax} = \sum_{n=0}^{+\infty} \frac{a^n}{n!}x^n
\end{priklad}
\begin{priklad}
f(x) = \cos{ax} = \sum_{n=0}^{+\infty} \frac{(-1)^n a
^{2n}}{(2n)!}x^{2n}
\end{priklad}
\begin{priklad}
f(x) = \frac{1}{1-2x}; a = -2; f(x) = \frac{1}{5}
\sum_{n=0}^{+\infty} \left ( \frac{2}{5} \right )^n(x+2)^n; x
\in \left (-\frac{9}{2}, \frac{1}{2} \right)
\end{priklad}
\begin{priklad}
f(x) = \sin x; a = \pi; f(x) = \sum_{n=0}^{+\infty}
\frac{(-1)^{n+1}}{(2n+1)!}(x-\pi)^{2n+1}; x \in (-\infty, +\infty)
\end{priklad}
\begin{priklad}
f(x) = \sin{\frac{1}{2}\pi x}; a = 1; f(x) =
\sum_{n=0}^{+\infty}\frac{(-1)^n}{(2n)!} \left ( \frac{\pi}{2}\right
)^{2n}(x-1)^{2n}; x \in (-\infty, +\infty)
\end{priklad}
\begin{priklad}
f(x) = \ln(1+2x); a=1; f(x) = \ln 3 + \sum_{n=1}^{+\infty}
\frac{(-1)^{n+1}}{n} \left ( \frac{2}{3} \right )^n(x-1)^n; x
\in \left ( -\frac{1}{2}, \frac{5}{2}\right)
\end{priklad}
\begin{priklad}
f(x) = x \ln{x}; a =2; f(x) = 2 \ln 2 + (1+\ln 2)(x-2) +
\sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)2^{n-1}}(x-2)^n
\end{priklad}
\begin{priklad}
f(x) = x \sin x; a =0; f(x) = \sum_{n=0}^{+\infty}
\frac{(-1)^n}{(2n+1)!}x^{2n+2}
\end{priklad}
\begin{priklad}
f(x) = \frac{1}{(1-2x)^3}; a = -2; f(x) =
\sum_{n=0}^{+\infty}(n+2)(n+1)\frac{2^{n-1}}{5^{n+3}}(x+2)^n
\end{priklad}
\begin{priklad}
f(x) = \cos^2 x; a = \pi; f(x) = 1 + \sum_{n=1}^{+\infty}
\frac{(-1)^n 2 ^{2n-1}}{(2n)!}(x-\pi)^{2n}
\end{priklad}
\end{enumerate}
\separator