01MAA3:Kapitola7: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
m (oprava značení)
(Dk. První implikace Heineho věty)
Řádka 180: Řádka 180:
 
$A\subset X$. Potom $\lim_{x\to x_0,x\in A}f(x)=a$, právě když pro
 
$A\subset X$. Potom $\lim_{x\to x_0,x\in A}f(x)=a$, právě když pro
 
každou posloupnost $\posl{x_n}$ takovou, že $\posl{x_n} \subset A,x_n\not=x_0,x_n\to x_0$, platí $f(x_n)\to a$.
 
každou posloupnost $\posl{x_n}$ takovou, že $\posl{x_n} \subset A,x_n\not=x_0,x_n\to x_0$, platí $f(x_n)\to a$.
 +
\begin{proof}
 +
\item $(\Rightarrow)$: Volíme pevné $\epsilon > 0$. K němu nalezneme $ \delta >0 $ tak, že
 +
\[ (\forall x \in A)(x \neq x_0)((\rho(x,x_0) < \delta) \Rightarrow (\rho(f(x),a) < \delta)\]
 +
Dále $ \exists n_0 \in \N$ tak, že pro $ (\forall n \in \N)(n>n_0) $ platí $x_n \in (B(x_0,\delta) \sm \{x_0 \} \cap A) $
 +
Pro $ (\forall n \in \N)(n>n_0) $ tudíž platí $(f(x) \in B(a,\epsilon)).
 +
\end{proof}
 
\end{theorem}
 
\end{theorem}

Verze z 19. 11. 2016, 13:49

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01MAA3

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01MAA3Nguyebin 24. 1. 201413:09
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201513:46
Header editovatHlavičkový souborNguyebin 24. 1. 201412:36 header.tex
Kapitola0 editovatZnačeníKlinkjak 9. 9. 201508:50 preamble.tex
Kapitola1 editovatFunkční posloupnostiKubuondr 21. 1. 201716:45 kapitola1.tex
Kapitola2 editovatFunkční řadyDedicma2 21. 2. 201623:42 kapitola2.tex
Kapitola4 editovatTrigonometrické řadyPeckaja1 11. 2. 201613:14 kapitola4.tex
Kapitola5 editovatMetrikaKubuondr 22. 1. 201717:32 kapitola5.tex
Kapitola6 editovatTopologieKubuondr 3. 2. 201721:08 kapitola6.tex
Kapitola7 editovatSpojitostKubuondr 22. 1. 201718:14 kapitola7.tex
Kapitola8 editovatKompaktní prostoryKubuondr 8. 2. 201721:51 kapitola8.tex
Kapitola9 editovatSouvislé prostoryKubuondr 23. 1. 201710:28 kapitola9.tex
Kapitola10 editovatÚplné prostoryKubuondr 23. 1. 201711:08 kapitola10.tex
Kapitola11 editovatAfinní prostoryKubuondr 23. 1. 201712:43 kapitola11.tex
Kapitola12 editovatTotální derivaceKubuondr 7. 10. 201717:50 kapitola12.tex
Kapitola13 editovatDerivace vyšších řádůKubuondr 20. 1. 201709:50 kapitola13.tex
Kapitola14 editovatLokální extrémyKlinkjak 9. 9. 201513:31 kapitola14.tex

Zdrojový kód

%\wikiskriptum{01MAA3}
\section{Spojitost}
 
\index{spojitost}
\begin{define}
\label{def_spojitost}
Buď $f: X \to Y$ zobrazení mezi dvěma topologickými prostory. Řekneme, že zobrazení $f$ je {\bf spojité v~bodě $x_0 \in X$}, právě když vzor každého okolí bodu $f(x_0)$
$f^{-1}(\H_{f(x_0)})$ je okolí bodu $x_0$. Řekneme, že $f$ je spojité, je-li spojité v~každém bodě $x_0 \in X$.
\end{define}
 
\begin{remark}
Vzor topologie $\tau_Y$ při spojitém zobrazení tvoří topologii na prostoru $X$. Spojitost je topologická vlastnost (závislá na topologiích prostorů $X$ a $Y$).
\end{remark}
 
\begin{theorem}
Buď $f$ zobrazení topologického prostoru $X$ do $Y$. Potom následující
tři tvrzení jsou ekvivalentní:
\begin{enumerate}[(i)]
\item $f$ je spojité.
\item pro každou množinu $B=\vn{B}^Y$ je $f^{-1}(B)$ otevřená v~$X$, tj,
$f^{-1}(B)=\vn{f^{-1}(B)}^X$.
\item pro každou množinu $B=\uz{B}^Y$ je $f^{-1}(B)$ uzavřená v~$X$, tj,
$f^{-1}(B)=\uz{f^{-1}(B)}^X$.
\end{enumerate}
\begin{proof}
\begin{enumerate}[a)]
\item (ii) $\iff$ (iii): Pro libovolnou množinu $B \subset Y$ platí $f^{-1}(Y \sm B)= X \sm f^{-1}(B).$ 
Ukažme nyní implikaci (ii) $\implies$ (iii), obrácená implikace se dokazuje analogicky.
Nechť $B=\uz{B}^Y$. Potom
$Y \sm B = \vn{(Y \sm B)}^Y.$ Podle předpokladu je vzor této množiny otevřený v X, tj.
$$\vn{(f^{-1}(Y \sm B))}^X = f^{-1}(Y \sm B)= X \sm f^{-1}(B) = \vn{( X \sm f^{-1}(B))}^X$$
Odtud dostáváme $f^{-1}(B)=\uz{f^{-1}(B)}^X$.
\item (i) $\implies$ (ii):
Buď $B=\vn{B}^Y$, $x\in f^{-1}(B)$. Pak $f(x)\in B$ a ze spojitosti
$f$ vyplývá $f^{-1}(B)=\H_x$, tedy $f^{-1}(B)$ je okolím všech svých
bodů, tedy je otevřená.
\item (ii) $\implies$ (i):
Buď $\H_{f(x_0)}$ okolí bodu $f(x_0)$. Pak existuje $B=\vn{B}$ tak, že
platí $f(x_0)\subset B\subset\H_{f(x_0)}$, tedy $x_0\in
f^{-1}(B)\subset f^{-1}(\H_{f(x_0)})$, tedy $f^{-1}(\H_{f(x_0)})$ je
okolím $x_0$.
\end{enumerate}
\end{proof}
\end{theorem}
 
\index{homeomorfismus}
\begin{define}
Buď $f$ zobrazení topologického prostoru $X$ do $Y$ tak, že platí:
\begin{enumerate}[(I)]
\item $f$ je bijekcí,
\item $f$ a $f^{-1}$ jsou spojité.
\end{enumerate}
Potom $f$ nazýváme {\bf homeomorfismem} $X$ na $Y$.
\end{define}
 
\begin{remark}
Předpoklad spojitosti $f^{-1}$ není nadbytečný --- identita $(\R,\d) \to (\R,\abs{\cdot})$ je spojité zobrazení, zatímco inverzní ne.
\end{remark}
 
\begin{theorem}
Buď $f$ bijekce $X$ na $Y$. Potom následující výroky jsou
ekvivalentní:
\begin{enumerate}[(i)]
\setlength{\itemsep}{4pt} 
\item $f$ je homeomorfismus.
\item Pro každé $A\subset X$ platí: $A=\vn{A}^X\iff f(A)=\vn{(f(A))}^Y$.
\item Pro každé $A\subset X$ platí: $A=\uz{A}^X\iff f(A)=\uz{f(A)}^Y$.
\item Pro každé $A\subset X$ platí: $f(\vn{A}^X)=\vn{(f(A))}^Y$.
\item Pro každé $A\subset X$ platí: $f(\uz{A}^X)=\uz{f(A)}^Y$.
\end{enumerate}
\begin{proof}
Zřejmé :-)
\index{zřejmý důkaz}
\end{proof}
\end{theorem}
 
\index{ekvivalence metrik}
\begin{define}
Řekneme, že dvě metriky $\rho$ a $\sigma$ na množině $X$ jsou
{\bf ekvivalentní}, právě když indukují tutéž topologii. Jinými slovy:
identita $(X,\rho) \to (X,\sigma)$ je homeomorfismus.
\end{define}
 
\begin{remark}
$\tau = \tau'$ pokud $\forall A \in \tau$ existuje $A'\in \tau'$, že $A'\subset A$ a 
zároveň pokud $\forall B' \in \tau'$ existuje $B\in \tau$, že $B\subset B'$
\end{remark}
 
\index{ekvivalence norem}
\begin{define}
Řekneme, že dvě normy jsou {\bf ekvivalentní}, právě když indukují ekvivalentní metriky.
\end{define}
 
 
 
\begin{theorem}[ekvivalence norem]
\label{hom_lin}
Buď $\VEC X$ lineární prostor. Potom dvě normy $\norm{\cdot}_1$, $\norm{\cdot}_2$
jsou ekvivalentní, právě když existují konstanty $k,K>0$ tak, že platí:
\[k\norm{\vec x}_1\le\norm{\vec x}_2\le K\norm{\vec x}_1\]
\begin{proof}
\begin{enumerate}[a)]
\item $(\Rightarrow)$: V {\it lineárním} prostoru platí, že uzávěr
$\uz{B(x,r)}$ otevřené koule $B(x,r)$ je uzavřená koule $S(x,r)$.
 
Otevřená koule $B_2(0,1)$ v~prostoru s~normou $\norm{\ }_2$ je
otevřená množina. V~prostoru s~normou $\norm{\ }_1$ proto existuje
koule $B_1(0,r)$ tak že platí: $B_1(0,r)\subset
B_2(0,1)$. Z~vlastnosti uzávěru a výše uvedené poznámky pak platí, že
$S_1(0,r) \subset S_2(0,1)$, tedy $\norm{\vec x}_1\le r\implies \norm{\vec x}_2\le 1$.
 
Pro libovolný vektor $\vec y$ pak platí:
\[\norm{r\frac{\vec y}{\norm{\vec y}_1}}_1\le r,\]
z~čehož vyplývá:
\[
\norm{r\frac{\vec y}{\norm{\vec y}_1}}_2\le 1\implies
\frac{r}{\norm{\vec y}_1}\norm{\vec y}_2\le 1\implies
\norm{\vec y}_2\le\frac1r\norm{\vec y}_1,
\]
kde $\frac1r$ je konstanta $K$ z~tvrzení věty. Druhá nerovnost se
dokáže analogicky.
\item $(\Leftarrow)$: Buď $A=\vn{A}$ otevřená množina z~$(\VEC X, \norm{\
}_1$), $x\in A$. Pak existuje koule $B_1(x,r_1)\subset
A$. Z~předpokladu věty a z~definice koule pak ale vyplývá, že koule
$B_2(x,kr_1)$ z~$(\VEC X, \norm{\ }_2$) je podmnožinou koule $B_1$, tudíž
$B_2\subset A$. Tedy v~$(\VEC X, \norm{\ }_2$) pro každý bod $x\in A$
existuje koule $B_2(x,r_2)\subset A$, tedy $A$ je v~$(\VEC X, \norm{\ }_2$)
otevřená.
 
Opačná inkluze ($B_1(x,r_1)\subset B_2(x,K r_2)$) se dokáže analogicky.
\end{enumerate}
\end{proof}
\end{theorem}
 
\index{konvergence posloupnosti}
\index{limita}
\begin{define}[limita]
Buď $\posl{x_n}$ posloupnost bodů z~topologického prostoru $X$. Říkáme, že
posloupnost {\bf konverguje} k~bodu $x$ (značíme $x_n \to x$), právě když leží
v~každém jeho okolí až na konečně mnoho bodů. Bod $x$ se nazývá {\bf limita}.
\end{define}
 
\begin{remark}
\begin{enumerate}
\item Je-li $f$ bijekce $\N\biject\N$, pak $x_n\to x\iff x_{f(n)}\to x$ (přerovnání členů posloupnosti).
\item Každá posloupnost má nejvýše jednu limitu (důsledek Hausdorffova axiomu).
\end{enumerate}
\end{remark}
 
\begin{define}
Řekneme, že topologický prostor $(X,\tau)$ je {\bf metrizovatelný},
právě když na $X$ existuje metrika $\rho$ taková, že indukuje $\tau$.
\end{define}
 
\begin{theorem}
Buď $X$ metrizovatelný topologický prostor, $A\subset X$. Potom platí:
\begin{enumerate}[(i)]
\setlength{\itemsep}{4pt} 
\item $x\in\uz{A} \Longleftrightarrow (\exists \posl{x_n}\subset A)(x_n\to x)$.
\item $x\in\hr{A} \Longleftrightarrow (\exists \posl{x_n}\subset A)(x_n\to x)
  \wedge(\exists \posl{y_n}\subset X\sm A)(y_n\to x)$.
\item $x\in A' \Longleftrightarrow (\exists \posl{x_n}\subset A\sm\{x\})(x_n\to x)$.
\item $x\in\vn{A} \Longleftrightarrow (\forall \posl{x_n})
(x_n\to x\implies \posl{x_n}\subset A\text{ až na konečný počet výjimek})$.
\item $x\in\iz{A} \Longleftrightarrow (\forall \posl{x_n}\subset A)(x_n\to x\implies
x_n=x\text{ až na konečný počet výjimek})$.
\end{enumerate}
\begin{proof}
Zřejmé :-)
\end{proof}
\end{theorem}
 
\begin{remark}
V topologickém prostoru platí pouze implikace, pro první tři $\Leftarrow$ a pro ostatní $\Rightarrow$, 
protože tam nemůžeme zajistit konvergenci těch posloupností. 
\end{remark}
 
\begin{theorem}[Heine]
Buď $X$ metrizovatelný topologický prostor, $f: X \to Y$ zobrazení,
$A\subset X$. Potom $\lim_{x\to x_0,x\in A}f(x)=a$, právě když pro
každou posloupnost $\posl{x_n}$ takovou, že $\posl{x_n} \subset A,x_n\not=x_0,x_n\to x_0$, platí $f(x_n)\to a$.
\begin{proof}
\item $(\Rightarrow)$: Volíme pevné $\epsilon > 0$. K němu nalezneme $ \delta >0 $ tak, že 
\[ (\forall x \in A)(x \neq x_0)((\rho(x,x_0) < \delta) \Rightarrow (\rho(f(x),a) < \delta)\]
Dále $ \exists n_0 \in \N$ tak, že pro $ (\forall n \in \N)(n>n_0) $ platí $x_n \in (B(x_0,\delta) \sm \{x_0 \} \cap A) $
Pro $ (\forall n \in \N)(n>n_0) $ tudíž platí $(f(x) \in B(a,\epsilon)).
\end{proof}
\end{theorem}