Matematika2:Kapitola5: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
 
(Není zobrazeno 5 mezilehlých verzí od stejného uživatele.)
Řádka 1: Řádka 1:
 
%\wikiskriptum{Matematika2}
 
%\wikiskriptum{Matematika2}
 
\section[Křivky dané parametricky]{\fbox{Křivky dané parametricky}}
 
\section[Křivky dané parametricky]{\fbox{Křivky dané parametricky}}
\subsection{Definice}
+
\subsection{Definice a příklady křivek a jejich parametrizace}
 
   
 
   
 
\begin{define}[Křivka daná parametricky]
 
\begin{define}[Křivka daná parametricky]
Nechť $x(t)$ a $y(t)$ jsou funkce diferencovatelné na $(\alpha, \beta)$ a spojité na $[\alpha, \beta]$.  
+
Nechť $X=X(t)$ a $Y=Y(t)$ jsou funkce diferencovatelné na $(\alpha, \beta)$ a spojité na $[\alpha, \beta]$.  
 
Pak množinu bodů
 
Pak množinu bodů
$$\{ [x, y] \in \R^2 : x=x(t), y=y(t), t\in [\alpha, \beta] \},$$
+
$$\{ [X(t), Y(t)] \in \R^2: t\in [\alpha, \beta] \},$$
 
nazvýváme křivkou danou parametricky.
 
nazvýváme křivkou danou parametricky.
 
\end{define}
 
\end{define}
Řádka 19: Řádka 19:
 
}
 
}
 
Descartův list $\{ [x, y]_k : x^3+y^3=axy \}$.
 
Descartův list $\{ [x, y]_k : x^3+y^3=axy \}$.
 +
Parametrizace $x(t)=a\cos^{\frac23}t$ a $y(t)=a\sin^{\frac23}t$.
 +
Dosadíme: $a^3 = 3a(\cos{t}\sin{t})^{\frac23}$.
 
&
 
&
 
{
 
{
Řádka 24: Řádka 26:
 
\fbox{\includegraphics[width=0.45\textwidth]{K}}
 
\fbox{\includegraphics[width=0.45\textwidth]{K}}
 
Asteroida $\{ [x, y]_k : x^{\frac23} + y^{\frac23} = a^{\frac23} \}$
 
Asteroida $\{ [x, y]_k : x^{\frac23} + y^{\frac23} = a^{\frac23} \}$
 +
Parametrizace $x(t)=a\cos^3t$ a $y(t)=a\sin^3t$.
 
}
 
}
 
\end{tabular}
 
\end{tabular}
Řádka 33: Řádka 36:
 
\centering
 
\centering
 
\fbox{\includegraphics[width=0.45\textwidth]{L}}
 
\fbox{\includegraphics[width=0.45\textwidth]{L}}
}
+
}\\
 
Cykloida $\{ [x, y]_k : x(t)=a(t-\sin t), y(t)=a(1-\cos t), t \geq 0 \}$
 
Cykloida $\{ [x, y]_k : x(t)=a(t-\sin t), y(t)=a(1-\cos t), t \geq 0 \}$
 
 
Řádka 40: Řádka 43:
  
 
\subsection{Tečny ke křivce dané parametricky}
 
\subsection{Tečny ke křivce dané parametricky}
 +
\begin{remark}
 +
Pro derivaci funkcí podle parametru (typicky $t$ je ve fyzice čase apod.) se často používá značení derivací tečkou: $\frac{\ud}{\ud t}X(t) = \dot{X}(t)$, $\frac{\ud}{\ud t}Y(t) = \dot{Y}(t)$.
 +
\end{remark}
 +
  
 
\begin{theorem}[Rovnice tečny]
 
\begin{theorem}[Rovnice tečny]
Mějme křivku $\{ [x(t), y(t)] : t \in [\alpha,\beta] \}$. Nechť $\dot{x}(t)$ a $\dot{y}(t)$ existují
+
Mějme křivku $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ a nechť pro $t_0\in(\alpha,\beta)$ je alespoň jedna z derivací $\dot{X}(t_0)$ a $\dot{Y}(t_0)$ nenulová. Pak rovnice tečny ke křivce v bodě
na $(\alpha, \beta)$ a nechť je alespoň jedna z derivací $\dot{x}t_0$ a $\dot{y}(t_0)$ nenulová. Pak rovnice tečny ke křivce v bodě
+
$[X(t_0), Y(t_0)]$ je  
$[x(t_0), y(t_0)]$ je  
+
 
$$
 
$$
\dot{y}(t_0)(x-x(t_0)) = \dot{x}(t_0)(y-y(t_0)).
+
\dot{Y}(t_0)(x-X(t_0)) = \dot{X}(t_0)(y-Y(t_0)).
 
$$
 
$$
 
\begin{proof}
 
\begin{proof}
 
\begin{enumerate}
 
\begin{enumerate}
\item Nechť $\dot{x}(t_0) \neq 0$:\\
+
\item Nechť $\dot{X}(t_0) \neq 0$:\\
Sestrojíme sečnu $s$ procházející bodem $[x(t_0),y(t_0)]$ a nějakým blízkým bodem $[x(t_0+h),y(t_0+h)]$ ($h>0$ malé) a pomocí limitního přechodu $h\to0$ získáme rovnci tečny $t:y=kx+q$.  
+
Sestrojíme sečnu $s$ procházející bodem $[X(t_0),Y(t_0)]$ a nějakým blízkým bodem $[X(t_0+h),Y(t_0+h)]$ ($h>0$ malé) a pomocí limitního přechodu $h\to0$ získáme rovnci tečny $t:y=kx+q$.  
 
Směrnice $k_s$ takové sečny má rovnici
 
Směrnice $k_s$ takové sečny má rovnici
 
$$
 
$$
k_s(h) = \frac{ y(t_0+h)-y(t_0) }{ x(t_0+h)-x(t_0) }.
+
k_s(h) = \frac{ Y(t_0+h)-Y(t_0) }{ X(t_0+h)-X(t_0) }.
 
$$
 
$$
Provedeme-li limitní přechod $h \to 0$, dostaneme směrnici tečny $k$ v bodě $[x(t_0),y(t_0)]$:
+
Provedeme-li limitní přechod $h \to 0$, dostaneme směrnici tečny $k$ v bodě $[X(t_0),Y(t_0)]$:
 
$$
 
$$
 
k = \lim\limits_{h\to0} k_s(h) =  
 
k = \lim\limits_{h\to0} k_s(h) =  
\lim\limits_{h\to0} \frac{ y(t_0+h)-y(t_0) }{ x(t_0+h)-x(t_0) } =  
+
\lim\limits_{h\to0} \frac{ Y(t_0+h)-Y(t_0) }{ X(t_0+h)-X(t_0) } =  
\lim\limits_{h\to0} \frac{ y(t_0+h)-y(t_0) }{ x(t_0+h)-x(t_0) } \frac{h}{h} =  
+
\lim\limits_{h\to0} \frac{ Y(t_0+h)-Y(t_0) }{ X(t_0+h)-X(t_0) } \frac{h}{h} =  
\frac{\dot{y}(t_0)}{\dot{x}(t_0)}
+
\frac{\dot{Y}(t_0)}{\dot{X}(t_0)}
 
$$
 
$$
 
Koeficient $q$ vypočítáme po dosazení bodu $[x(t_0),y(t_0)]$ do rovnice tečny
 
Koeficient $q$ vypočítáme po dosazení bodu $[x(t_0),y(t_0)]$ do rovnice tečny
 
$$
 
$$
q = y_(t_0) - kx(t_0) = y(t_0) - \frac{\dot{y}(t_0)}{\dot{x}(t_0)} x(t_0).
+
q = Y(t_0) - kX(t_0) = Y(t_0) - \frac{\dot{Y}(t_0)}{\dot{X}(t_0)} X(t_0).
 
$$
 
$$
 
Odtud dostáváme tvrzení věty.
 
Odtud dostáváme tvrzení věty.
\item Je-li $\dot{x}(t_0) = 0$, pak $x(t) = x(t_0)$ a podle předpokladů je nutně $\dot{y}(t_0) \neq 0$. Dostáváme tedy vertikální tečnu o rovnici $x = x(t_0)$.
+
 
 +
\item Je-li $\dot{X}(t_0) = 0$, pak $X(t) = X(t_0)$ a podle předpokladů je nutně $\dot{Y}(t_0) \neq 0$. Dostáváme tedy vertikální tečnu o rovnici $x = X(t_0)$.
 
\end{enumerate}
 
\end{enumerate}
 
\end{proof}
 
\end{proof}
Řádka 78: Řádka 85:
 
   
 
   
 
\begin{theorem}[Plocha v křivce]
 
\begin{theorem}[Plocha v křivce]
Nechť $\{ [x(t), y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
+
Nechť $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
a nechť $x(t)$ je prostá, $x'(t)$ spojitá a $y(t)\geq 0$ pro $\forall t\in [\alpha, \beta]$.
+
a nechť $X$ je prostá, $\dot{X}$ spojitá a $Y\geq 0$ na $[\alpha,\beta]$.
 
Potom plocha vymezená křivkou a osou x je  dána vzorcem
 
Potom plocha vymezená křivkou a osou x je  dána vzorcem
 
$$
 
$$
A = \int\limits_\alpha^\beta y(t)\dot{x}(t)\ud t.
+
A = \int\limits_\alpha^\beta Y(t)\dot{X}(t)\ud t.
 
$$
 
$$
 
\begin{proof}
 
\begin{proof}
Protože $x=x(t)$ je prostá funkce (přeznačme ji pro přehlednost jako $X(t)$), použijeme inverzní transformaci $t = X^{-1}(x)$ a křivku vyjádříme jako funkční předpis
+
Protože $X(t)$ je prostá funkce, existuje k ní inverzní funkce $X^{-1}$ a vztah $x=X(t)$ lze invertovat na $t = X^{-1}(x)$.
 +
Křivku v parametrickém popisu můžeme zároveň uvažovat jako křivku danou grafem funkce $f$ s předpisem
 
$$
 
$$
f(x) = y(t) = y(X^{-1}(x)).
+
f(x) := Y(t) = Y(X^{-1}(x)).
 
$$
 
$$
 
Plocha pod grafem funkce $f$ je
 
Plocha pod grafem funkce $f$ je
Řádka 93: Řádka 101:
 
A = \int\limits_a^b f(x) \ud x,
 
A = \int\limits_a^b f(x) \ud x,
 
$$
 
$$
kde $a=X^{-1}(\alpha)$ a $b=X^{-1}(\beta)$. Dále zpětně provedeme substituci $x=X(t)$ a dostaneme tvrzení věty.
+
kde meze $a$ a $b$ jsou dány obrazem bodů $\alpha$ a $\beta$:
 +
$$
 +
a := X(\alpha), \quad b := X(\beta).
 +
$$
 +
Dále zpětně provedeme substituci $x=X(t)$ a dostaneme tvrzení věty:
 +
$$
 +
A = \int\limits_a^b f(x) \ud x
 +
= \int\limits_\alpha^\beta f(X(t)) \dot{X}(t) \ud t
 +
= \int\limits_\alpha^\beta Y(X^{-1}(X(t))) \dot{X}(t) \ud t
 +
= \int\limits_\alpha^\beta Y(t) \dot{X}(t) \ud t.
 +
$$
 +
 
\end{proof}
 
\end{proof}
 
\end{theorem}
 
\end{theorem}
Řádka 102: Řádka 121:
 
   
 
   
 
\begin{theorem}[Délka parametrické křivky]\label{thm:delka_krivky}
 
\begin{theorem}[Délka parametrické křivky]\label{thm:delka_krivky}
Nechť $\dot{x}$ a $\dot{y}$ jsou spojité funkce na $(\alpha, \beta)$.  
+
Nechť $\dot{X}$ a $\dot{Y}$ jsou spojité funkce na $[\alpha, \beta]$.  
Délka křivky dané parametricky je dán vzorcem
+
Délka křivky dané parametricky je dána vzorcem
$$
+
L = \int\limits_\alpha^\beta \sqrt{ \dot{x}^2(t)+\dot{y}^2(t) }\ud t.
+
$$
+
\begin{proof}
+
Nechť $\varsigma = \{ \alpha=t_0<t_1<\dots t_{n-1}<t_n=\beta \}$ je rozdělení intervalu $[\alpha,\beta]q$.
+
Křivku rozdělíme na diskrétní body $A_k = [x(t_k),y(t_k)]$ a její délku $L$ aproximujeme délkou po částech lomené čáry $d = \sum\limits_{k=1}^n d_k$, kde $d_k = \ud(A_{k-1},A_k)$:
+
\begin{equation*}
+
\begin{split}
+
d_k = \sqrt{ \left( x(t_{k})-x(t_{k-1}) \right)^2 + \left( y(t_{k})-y(t_{k-1}) \right)^2}
+
\\
+
=(t_k-t_{k-1}) \sqrt{ \left( \frac{x(t_{k})-x(t_{k-1})}{t_k-t_{k-1}} \right)^2 + \left( \frac{y(t_{k})-y(t_{k-1})}{t_k-t_{k-1}} \right)^2}.
+
\end{split}
+
\end{equation*}
+
Podle Lagrangeovy věty o střední hodnotě můžeme zlomky v závorkách aproximovat derivacemi $\dot{x}(c_x)$, resp. $\dot{y}(c_y)$, kde $c_x \in (t_{k-1},t_k)$, resp. $c_y \in (t_{k-1},t_k)$:
+
$$
+
d_k = (t_k-t_{k-1}) \sqrt{ \left( \dot{x}(c_x) \right)^2 + \left( \dot{y}(c_y) \right)^2}.
+
$$
+
Označíme-li
+
\begin{align*}
+
m_k &= \min \left\{\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} : t \in [t_{k-1},t_k] \right\},\\
+
M_k &= \max \left\{\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} : t \in [t_{k-1},t_k] \right\},
+
\end{align*}
+
dostaneme odhad pro $d_k$
+
$$
+
m_k (t_k-t_{k-1}) \leq d_k \leq  (t_k-t_{k-1}) M_k,
+
$$
+
tj. po vysčítání přes $k$
+
 
$$
 
$$
s_{\sqrt{\dot{x}^2+\dot{y}^2}(\varsigma)} \leq d \leq S_{\sqrt{\dot{x}^2+\dot{y}^2}(\varsigma)}.
+
L = \int\limits_\alpha^\beta \sqrt{ (\dot{X}(t))^2+(\dot{Y}(t))^2 }\ud t.
 
$$
 
$$
Podle Riemannovy definice určitého integrálu odtud plyne tvrzení věty.
+
% \begin{proof}
\end{proof}
+
% Větu dokážeme pomocí věty o délce grafu funkce pro případ, kdy je buď $x=x(t)$ nebo $y=y(t)$ prostá funkce na nějakém intervalu, ze které lze vyjádřit $t = g(x)$, resp. $t=g(y)$.
 +
% Předpokládejme tedy, že křivku lze rozdělit diskrétní body $A_k = [x(t_k),y(t_k)]$, $k=0,1,\dots n$ tak, že na intervalech $[t_{k-1},t_k]$ je a) $x=x(t)$ nebo b) $y=y(t)$ prostá funkce.
 +
%
 +
% (a) $x=x(t)$ je prostá funkce, proto existuje její inverzní funkce $t=g(x)$ tak, že $g(x(t))=t$ a $y(t) = y(g(x)) =: f(x)$. Pak délka grafu funkce $f$ je dána
 +
% \begin{equation*}
 +
% L_k = \int\limits_{x(t_{k-1})}^{x(t_k)} \sqrt{ 1 + \left( f^\prime(x) \right)^2 } \ud x,
 +
% \end{equation*}
 +
% kde provedeme př
 +
% \end{proof}
 +
% \begin{proof}
 +
% Nechť $\varsigma = \{ \alpha=t_0<t_1<\dots t_{n-1}<t_n=\beta \}$ je rozdělení intervalu $[\alpha,\beta]$.
 +
% Křivku rozdělíme na diskrétní body $A_k = [x(t_k),y(t_k)]$ a její délku $L$ aproximujeme délkou po částech lomené čáry $d = \sum\limits_{k=1}^n d_k$, kde $d_k = \ud(A_{k-1},A_k)$:
 +
% \begin{equation*}
 +
% \begin{split}
 +
% d_k = \sqrt{ \left( x(t_{k})-x(t_{k-1}) \right)^2 + \left( y(t_{k})-y(t_{k-1}) \right)^2}
 +
% \\
 +
% =(t_k-t_{k-1}) \sqrt{ \left( \frac{x(t_{k})-x(t_{k-1})}{t_k-t_{k-1}} \right)^2 + \left( \frac{y(t_{k})-y(t_{k-1})}{t_k-t_{k-1}} \right)^2}.
 +
% \end{split}
 +
% \end{equation*}
 +
% Podle Lagrangeovy věty o střední hodnotě můžeme zlomky v závorkách aproximovat derivacemi $\dot{x}(c_x)$, resp. $\dot{y}(c_y)$, kde $c_x \in (t_{k-1},t_k)$, resp. $c_y \in (t_{k-1},t_k)$:
 +
% $$
 +
% d_k = (t_k-t_{k-1}) \sqrt{ \left( \dot{x}(c_x) \right)^2 + \left( \dot{y}(c_y) \right)^2}.
 +
% $$
 +
%
 +
%
 +
% \todo{coz nedelat Lagrange, ale dokazat, ze ty podily v zavorce na druhou sou vetsi a mensi nez norma derivaci?}
 +
%
 +
% Označíme-li
 +
% \begin{align*}
 +
% m_k &= \min \left\{\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} : t \in [t_{k-1},t_k] \right\},\\
 +
% M_k &= \max \left\{\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} : t \in [t_{k-1},t_k] \right\},
 +
% \end{align*}
 +
% dostaneme odhad pro $d_k$
 +
% $$
 +
% m_k (t_k-t_{k-1}) \leq  d_k \leq  (t_k-t_{k-1}) M_k,
 +
% $$
 +
% tj. po vysčítání přes $k$
 +
% $$
 +
% s_{\sqrt{\dot{x}^2+\dot{y}^2}}(\varsigma) \leq d \leq S_{\sqrt{\dot{x}^2+\dot{y}^2}}(\varsigma).
 +
% $$
 +
% Podle Riemannovy definice určitého integrálu odtud plyne tvrzení věty.
 +
% \end{proof}
 
\end{theorem}
 
\end{theorem}
  
  
 
\begin{theorem}[Délka křivky v polárních souřadnicích]
 
\begin{theorem}[Délka křivky v polárních souřadnicích]
 +
Nechť $r$ a $\dot{r}$ jsou spojité funkce na $[\alpha,\beta]$.
 
Délka křivky v polárních souřadnicích
 
Délka křivky v polárních souřadnicích
 
$$
 
$$
Řádka 147: Řádka 181:
 
Ve Větě~\ref{thm:delka_krivky} přejdeme do polárních souřadnic vztahy
 
Ve Větě~\ref{thm:delka_krivky} přejdeme do polárních souřadnic vztahy
 
\begin{align*}
 
\begin{align*}
x(\varphi) &= r(\varphi)\cos\varphi, \\  
+
X(\varphi) &= r(\varphi)\cos\varphi, \\  
y(\varphi) &= r(\varphi)\sin\varphi,
+
Y(\varphi) &= r(\varphi)\sin\varphi,
 
\end{align*}
 
\end{align*}
 
pro které platí
 
pro které platí
 
$$
 
$$
\dot{x}^2 + \dot{y}^2 = r^2 + \dot{r}^2.
+
\dot{X}^2 + \dot{Y}^2 = r^2 + \dot{r}^2.
 
$$
 
$$
 
\end{proof}
 
\end{proof}
Řádka 158: Řádka 192:
  
 
   
 
   
\subsection{Objem rotující křivky dané parametricky}
+
\subsection{Objem a povrch rotující křivky dané parametricky}
 
   
 
   
 
\begin{theorem}[Objem křivky rotující okolo osy $x$]
 
\begin{theorem}[Objem křivky rotující okolo osy $x$]
Nechť $\{ [x(t), y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
+
Nechť $\{ [X(t), Y(t)]: t \in [\alpha,\beta] \}$ je křivka daná parametricky
a nechť $x(t)$ je prostá, $\dot{x}(t)$ spojitá a $y(t)\geq 0$ pro $\forall t\in [\alpha, \beta]$.
+
a nechť $X$ je prostá, $\dot{X}$~spojitá a $Y\geq 0$ na $[\alpha, \beta]$.
Potom objem křivky dané parametricky rotující okolo osy $x$ je dán vzorcem
+
Potom objem tělesa, které vznikne rotací křivky dané parametricky okolo osy~$x$ je dán vzorcem
 
$$
 
$$
V = \pi\int\limits_\alpha^\beta y^2(t)\dot{x}(t) \ud t.
+
V = \pi\int\limits_\alpha^\beta Y^2(t)\dot{X}(t) \ud t.
 
$$
 
$$
 
\end{theorem}
 
\end{theorem}
  
 
\begin{theorem}[Objem křivky rotující okolo osy $y$]
 
\begin{theorem}[Objem křivky rotující okolo osy $y$]
Nechť $\{ [x(t), y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
+
Nechť $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
a nechť $y(t)$ je prostá, $\dot{y}(t)$ spojitá a $x(t)\geq 0$ pro $\forall t\in [\alpha, \beta]$.
+
a nechť $Y$ je prostá, $\dot{Y}$ spojitá a $X\geq 0$ na $[\alpha, \beta]$.
Potom objem křivky dané parametricky rotující okolo osy $y$ je dán vzorcem
+
Potom objem tělesa, které vznikne rotací křivky dané parametricky okolo osy~$y$ je dán vzorcem
 
$$
 
$$
V = \pi\int\limits_\alpha^\beta x^2(t)\dot{y}(t) \ud t.
+
V = \pi\int\limits_\alpha^\beta X^2(t)\dot{Y}(t) \ud t.
 
$$
 
$$
 
\end{theorem}
 
\end{theorem}
 
 
 
   
 
   
\subsection{Povrch rotující křivky dané parametricky}
+
%\subsection{Povrch rotující křivky dané parametricky}
 
   
 
   
 
\begin{theorem}[Povrch křivky rotující okolo osy $x$]
 
\begin{theorem}[Povrch křivky rotující okolo osy $x$]
Nechť $\{ [x(t), y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
+
Nechť $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
a nechť $x(t)$, $y(t)$ jsou prosté, $\dot{x}(t)$, $\dot{y}(t)$ spojité a $y(t)\geq 0$ pro $\forall t\in [\alpha, \beta]$.
+
a nechť $X$ je prostá, $\dot{X}$ a $\dot{Y}$ spojité a $Y\geq 0$ na $[\alpha, \beta]$.
Potom povrch křivky dané parametricky rotující okolo osy $x$ je dán vzorcem
+
Potom povrch tělesa, které vznikne rotací křivky dané parametricky okolo osy $x$ je dán vzorcem
 
$$
 
$$
P = 2\pi\int\limits_\alpha^\beta y(t)\sqrt{ \dot{x}^2(t)+\dot{y}^2(t) } \ud t.
+
P = 2\pi\int\limits_\alpha^\beta Y(t)\sqrt{ (\dot{X}(t))^2+(\dot{Y}(t))^2 }~ \ud t.
 
$$
 
$$
 
\end{theorem}
 
\end{theorem}
  
 
\begin{theorem}[Povrch křivky rotující okolo osy $y$]
 
\begin{theorem}[Povrch křivky rotující okolo osy $y$]
Nechť $\{ [x(t), y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
+
Nechť $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
a nechť $x(t)$, $y(t)$ jsou prosté, $\dot{x}(t)$, $\dot{y}(t)$ spojité a $x(t)\geq 0$ pro $\forall t\in [\alpha, \beta]$.
+
a nechť $Y$ je prostá, $\dot{X}$ a $\dot{Y}$ spojité a $X\geq 0$ na $[\alpha, \beta]$.
Potom povrch křivky dané parametricky rotující okolo osy $y$ je dán vzorcem
+
Potom povrch tělesa, které vznikne rotací křivky dané parametricky okolo osy $y$ je dán vzorcem
 
$$
 
$$
P = 2\pi\int\limits_\alpha^\beta x(t)\sqrt{ \dot{x}^2(t)+\dot{y}^2(t) } \ud t.
+
P = 2\pi\int\limits_\alpha^\beta X(t)\sqrt{ (\dot{X}(t))^2+(\dot{Y}(t))^2 }~ \ud t.
 
$$
 
$$
 
\end{theorem}
 
\end{theorem}

Aktuální verze z 25. 4. 2022, 16:28

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu Matematika2

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu Matematika2Fucikrad 14. 9. 201117:01
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201520:27
Header editovatHlavičkový souborFucikrad 6. 2. 202216:05 header.tex
Kapitola1 editovatTechniky integraceFucikrad 6. 2. 202216:06 kapitola1.tex
Kapitola2 editovatZobecněný Riemannův integrálFucikrad 6. 2. 202216:06 kapitola2.tex
Kapitola3 editovatKuželosečkyFucikrad 6. 2. 202216:07 kapitola3.tex
Kapitola4 editovatPolární souřadniceFucikrad 6. 2. 202216:08 kapitola4.tex
Kapitola5 editovatKřivky dané parametrickyFucikrad 25. 4. 202216:28 kapitola5.tex
Kapitola6 editovatSupremum a infimumFucikrad 13. 3. 201215:41 kapitola6.tex
Kapitola7 editovatPosloupnosti reálných číselFucikrad 6. 4. 202309:47 kapitola7.tex
Kapitola8 editovatŘadyFucikrad 24. 5. 202212:01 kapitola8.tex
Kapitola9 editovatTaylorův polynom a Taylorova řadaFucikrad 20. 4. 202211:15 kapitola9.tex
Kapitola10 editovatMocninné řadyFucikrad 6. 2. 202216:10 kapitola10.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:kuzelky.pdf kuzelky.pdf
Image:A.png A.png
Image:B.png B.png
Image:C.png C.png
Image:D.png D.png
Image:E1.png E1.png
Image:E2.png E2.png
Image:E3.png E3.png
Image:E4.png E4.png
Image:F1.png F1.png
Image:F2.png F2.png
Image:F3.png F3.png
Image:F4.png F4.png
Image:J.png J.png
Image:K.png K.png
Image:L.png L.png

Zdrojový kód

%\wikiskriptum{Matematika2}
\section[Křivky dané parametricky]{\fbox{Křivky dané parametricky}}
\subsection{Definice a příklady křivek a jejich parametrizace}
 
	\begin{define}[Křivka daná parametricky]
	Nechť $X=X(t)$ a $Y=Y(t)$ jsou funkce diferencovatelné na $(\alpha, \beta)$ a spojité na $[\alpha, \beta]$. 
	Pak množinu bodů
	$$\{ [X(t), Y(t)] \in \R^2:  t\in [\alpha, \beta] \},$$
	nazvýváme křivkou danou parametricky.
	\end{define}
 
 
 
	\begin{center}
	\begin{tabular}{p{0.48\textwidth}p{0.48\textwidth}}
		{
		\centering
		\fbox{\includegraphics[width=0.45\textwidth]{J}}
		}
		Descartův list $\{ [x, y]_k : x^3+y^3=axy \}$.
		Parametrizace $x(t)=a\cos^{\frac23}t$ a $y(t)=a\sin^{\frac23}t$.
		Dosadíme: $a^3 = 3a(\cos{t}\sin{t})^{\frac23}$.
		&
		{
		\centering
		\fbox{\includegraphics[width=0.45\textwidth]{K}}
		Asteroida $\{ [x, y]_k : x^{\frac23} + y^{\frac23} = a^{\frac23} \}$
		Parametrizace $x(t)=a\cos^3t$ a $y(t)=a\sin^3t$.
		}
	\end{tabular}
	\end{center}
 
	\begin{center}
	\begin{tabular}{p{0.98\textwidth}}
		{
		\centering
		\fbox{\includegraphics[width=0.45\textwidth]{L}}
		}\\
		Cykloida $\{ [x, y]_k : x(t)=a(t-\sin t), y(t)=a(1-\cos t), t \geq 0 \}$
 
	\end{tabular}
	\end{center}
 
\subsection{Tečny ke křivce dané parametricky}
	\begin{remark}
	Pro derivaci funkcí podle parametru (typicky $t$ je ve fyzice čase apod.) se často používá značení derivací tečkou: $\frac{\ud}{\ud t}X(t) = \dot{X}(t)$, $\frac{\ud}{\ud t}Y(t) = \dot{Y}(t)$. 
	\end{remark}
 
 
	\begin{theorem}[Rovnice tečny]
	Mějme křivku $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ a nechť pro $t_0\in(\alpha,\beta)$ je alespoň jedna z derivací $\dot{X}(t_0)$ a $\dot{Y}(t_0)$ nenulová. Pak rovnice tečny ke křivce v bodě
	$[X(t_0), Y(t_0)]$ je 
	$$
	\dot{Y}(t_0)(x-X(t_0)) = \dot{X}(t_0)(y-Y(t_0)).
	$$
	\begin{proof}
	\begin{enumerate}
	 \item Nechť $\dot{X}(t_0) \neq 0$:\\
	Sestrojíme sečnu $s$ procházející bodem $[X(t_0),Y(t_0)]$ a nějakým blízkým bodem $[X(t_0+h),Y(t_0+h)]$ ($h>0$ malé) a pomocí limitního přechodu $h\to0$ získáme rovnci tečny $t:y=kx+q$. 
	Směrnice $k_s$ takové sečny má rovnici
	$$
		k_s(h) = \frac{ Y(t_0+h)-Y(t_0) }{ X(t_0+h)-X(t_0) }.
	$$
	Provedeme-li limitní přechod $h \to 0$, dostaneme směrnici tečny $k$ v bodě $[X(t_0),Y(t_0)]$:
	$$
		k = \lim\limits_{h\to0} k_s(h) = 
		\lim\limits_{h\to0} \frac{ Y(t_0+h)-Y(t_0) }{ X(t_0+h)-X(t_0) } = 
		\lim\limits_{h\to0} \frac{ Y(t_0+h)-Y(t_0) }{ X(t_0+h)-X(t_0) } \frac{h}{h} = 
		\frac{\dot{Y}(t_0)}{\dot{X}(t_0)}
	$$
	Koeficient $q$ vypočítáme po dosazení bodu $[x(t_0),y(t_0)]$ do rovnice tečny
	$$
		q = Y(t_0) - kX(t_0) = Y(t_0) - \frac{\dot{Y}(t_0)}{\dot{X}(t_0)} X(t_0).
	$$
	Odtud dostáváme tvrzení věty.
 
	\item Je-li $\dot{X}(t_0) = 0$, pak $X(t) = X(t_0)$ a podle předpokladů je nutně $\dot{Y}(t_0) \neq 0$. Dostáváme tedy vertikální tečnu o rovnici $x = X(t_0)$.
	\end{enumerate}
	\end{proof}
	\end{theorem}
 
 
 
\subsection{Plocha v křivce dané parametricky}
 
	\begin{theorem}[Plocha v křivce]
	Nechť $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
	a nechť $X$ je prostá, $\dot{X}$ spojitá a $Y\geq 0$ na $[\alpha,\beta]$.
	Potom plocha vymezená křivkou a osou x je  dána vzorcem
	$$
	A = \int\limits_\alpha^\beta Y(t)\dot{X}(t)\ud t.
	$$
	\begin{proof}
	Protože $X(t)$ je prostá funkce, existuje k ní inverzní funkce $X^{-1}$ a vztah $x=X(t)$ lze invertovat na $t = X^{-1}(x)$.
	Křivku v parametrickém popisu můžeme zároveň uvažovat jako křivku danou grafem funkce $f$ s předpisem 
	$$
		f(x) := Y(t) = Y(X^{-1}(x)).
	$$
	Plocha pod grafem funkce $f$ je
	$$
		A = \int\limits_a^b f(x) \ud x,
	$$
	kde meze $a$ a $b$ jsou dány obrazem bodů $\alpha$ a $\beta$:
	$$
		a := X(\alpha), \quad b := X(\beta).
	$$
	Dále zpětně provedeme substituci $x=X(t)$ a dostaneme tvrzení věty:
	$$
		A = \int\limits_a^b f(x) \ud x 
		= \int\limits_\alpha^\beta f(X(t)) \dot{X}(t) \ud t
		= \int\limits_\alpha^\beta Y(X^{-1}(X(t))) \dot{X}(t) \ud t
		= \int\limits_\alpha^\beta Y(t) \dot{X}(t) \ud t.
	$$
 
	\end{proof}
	\end{theorem}
 
 
 
\subsection{Délka křivky dané parametricky}
 
	\begin{theorem}[Délka parametrické křivky]\label{thm:delka_krivky}
	Nechť $\dot{X}$ a $\dot{Y}$ jsou spojité funkce na $[\alpha, \beta]$. 
	Délka křivky dané parametricky je dána vzorcem
	$$
	L = \int\limits_\alpha^\beta \sqrt{ (\dot{X}(t))^2+(\dot{Y}(t))^2 }\ud t.
	$$
%	\begin{proof}
%		Větu dokážeme pomocí věty o délce grafu funkce pro případ, kdy je buď $x=x(t)$ nebo $y=y(t)$ prostá funkce na nějakém intervalu, ze které lze vyjádřit $t = g(x)$, resp. $t=g(y)$. 
%		Předpokládejme tedy, že křivku lze rozdělit diskrétní body $A_k = [x(t_k),y(t_k)]$, $k=0,1,\dots n$ tak, že na intervalech $[t_{k-1},t_k]$ je a) $x=x(t)$ nebo b) $y=y(t)$ prostá funkce.
%		
%		(a) $x=x(t)$ je prostá funkce, proto existuje její inverzní funkce $t=g(x)$ tak, že $g(x(t))=t$ a $y(t) = y(g(x)) =: f(x)$. Pak délka grafu funkce $f$ je dána 
%		\begin{equation*}
%			L_k = \int\limits_{x(t_{k-1})}^{x(t_k)} \sqrt{ 1 + \left( f^\prime(x) \right)^2 } \ud x,
%		\end{equation*}
%		kde provedeme př
%	\end{proof}
%	\begin{proof}
%	Nechť $\varsigma = \{ \alpha=t_0<t_1<\dots t_{n-1}<t_n=\beta \}$ je rozdělení intervalu $[\alpha,\beta]$. 
%	Křivku rozdělíme na diskrétní body $A_k = [x(t_k),y(t_k)]$ a její délku $L$ aproximujeme délkou po částech lomené čáry $d = \sum\limits_{k=1}^n d_k$, kde $d_k = \ud(A_{k-1},A_k)$:
%	\begin{equation*}
%	\begin{split}
%		d_k = \sqrt{ \left( x(t_{k})-x(t_{k-1}) \right)^2 + \left( y(t_{k})-y(t_{k-1}) \right)^2}
%		\\
%		=(t_k-t_{k-1}) \sqrt{ \left( \frac{x(t_{k})-x(t_{k-1})}{t_k-t_{k-1}} \right)^2 + \left( \frac{y(t_{k})-y(t_{k-1})}{t_k-t_{k-1}} \right)^2}.
%	\end{split}
%	\end{equation*}
%	Podle Lagrangeovy věty o střední hodnotě můžeme zlomky v závorkách aproximovat derivacemi $\dot{x}(c_x)$, resp. $\dot{y}(c_y)$, kde $c_x \in (t_{k-1},t_k)$, resp. $c_y \in (t_{k-1},t_k)$:
%	$$
%		d_k = (t_k-t_{k-1}) \sqrt{ \left( \dot{x}(c_x) \right)^2 + \left( \dot{y}(c_y) \right)^2}.
%	$$
%	
%	
%	\todo{coz nedelat Lagrange, ale dokazat, ze ty podily v zavorce na druhou sou vetsi a mensi nez norma derivaci?}
%	
%	Označíme-li 
%	\begin{align*}
%	m_k &= \min \left\{\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} : t \in [t_{k-1},t_k] \right\},\\
%	M_k &= \max \left\{\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} : t \in [t_{k-1},t_k] \right\},
%	\end{align*}
%	dostaneme odhad pro $d_k$
%	$$
%		 m_k (t_k-t_{k-1}) \leq  d_k \leq  (t_k-t_{k-1}) M_k,
%	$$
%	tj. po vysčítání přes $k$
%	$$
%		s_{\sqrt{\dot{x}^2+\dot{y}^2}}(\varsigma) \leq d \leq S_{\sqrt{\dot{x}^2+\dot{y}^2}}(\varsigma).
%	$$
%	Podle Riemannovy definice určitého integrálu odtud plyne tvrzení věty.
% 	\end{proof}
	\end{theorem}
 
 
	\begin{theorem}[Délka křivky v polárních souřadnicích]
	Nechť $r$ a $\dot{r}$ jsou spojité funkce na $[\alpha,\beta]$. 
	Délka křivky v polárních souřadnicích
	$$
		L = \int\limits_\alpha^\beta \sqrt{r^2(\varphi) + \dot{r}^2(\varphi)}\ud\varphi. 
	$$
	\begin{proof}
	Ve Větě~\ref{thm:delka_krivky} přejdeme do polárních souřadnic vztahy
	\begin{align*}
	X(\varphi) &= r(\varphi)\cos\varphi, \\ 
	Y(\varphi) &= r(\varphi)\sin\varphi,
	\end{align*}
	pro které platí
	$$
		\dot{X}^2 + \dot{Y}^2 = r^2 + \dot{r}^2.
	$$
	\end{proof}
	\end{theorem}
 
 
\subsection{Objem a povrch rotující křivky dané parametricky}
 
	\begin{theorem}[Objem křivky rotující okolo osy $x$]
	Nechť $\{ [X(t), Y(t)]: t \in [\alpha,\beta] \}$ je křivka daná parametricky
	a nechť $X$ je prostá, $\dot{X}$~spojitá a $Y\geq 0$ na $[\alpha, \beta]$.
	Potom objem tělesa, které vznikne rotací křivky dané parametricky okolo osy~$x$ je dán vzorcem
	$$
	V = \pi\int\limits_\alpha^\beta Y^2(t)\dot{X}(t) \ud t.
	$$
	\end{theorem}
 
	\begin{theorem}[Objem křivky rotující okolo osy $y$]
	Nechť $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
	a nechť $Y$ je prostá, $\dot{Y}$ spojitá a $X\geq 0$ na $[\alpha, \beta]$.
	Potom objem tělesa, které vznikne rotací křivky dané parametricky okolo osy~$y$ je dán vzorcem
	$$
	V = \pi\int\limits_\alpha^\beta X^2(t)\dot{Y}(t) \ud t.
	$$
	\end{theorem}
 
 
%\subsection{Povrch rotující křivky dané parametricky}
 
	\begin{theorem}[Povrch křivky rotující okolo osy $x$]
	Nechť $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
	a nechť $X$ je prostá, $\dot{X}$ a $\dot{Y}$ spojité a $Y\geq 0$ na $[\alpha, \beta]$.
	Potom povrch tělesa, které vznikne rotací křivky dané parametricky okolo osy $x$ je dán vzorcem
	$$
	P = 2\pi\int\limits_\alpha^\beta Y(t)\sqrt{ (\dot{X}(t))^2+(\dot{Y}(t))^2 }~ \ud t.
	$$
	\end{theorem}
 
	\begin{theorem}[Povrch křivky rotující okolo osy $y$]
	Nechť $\{ [X(t), Y(t)] : t \in [\alpha,\beta] \}$ je křivka daná parametricky
	a nechť $Y$ je prostá, $\dot{X}$ a $\dot{Y}$ spojité a $X\geq 0$ na $[\alpha, \beta]$.
	Potom povrch tělesa, které vznikne rotací křivky dané parametricky okolo osy $y$ je dán vzorcem
	$$
	P = 2\pi\int\limits_\alpha^\beta X(t)\sqrt{ (\dot{X}(t))^2+(\dot{Y}(t))^2 }~ \ud t.
	$$
	\end{theorem}