02TSFsbirka:Kapitola7: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
(Založena nová stránka: %\wikiskriptum{02TSFsbirka} \chapter{Fluktuace} \bc Dokažte, ze v kanonickém souboru platí vztah $$ \left(\Delta U\right)^2 = kT^2 C. $$ \ec \navod $$ \left(\Delta U\r...)
(Žádný rozdíl)

Verze z 1. 8. 2010, 12:00

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02TSFsbirka

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02TSFsbirkaSteffy 9. 2. 201116:06
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201514:48
Header editovatHlavičkový souborSteffy 12. 2. 201213:21 header.tex
Kapitola1 editovatZáklady teorie pravděpodobnosti a matematické statistikyHoskoant 22. 2. 201717:57 kapitola1.tex
Kapitola2 editovatNejpravděpodobnější rozděleníSteffy 12. 2. 201212:58 kapitola2.tex
Kapitola3 editovatTermodynamické potenciály a identitySteffy 12. 2. 201212:59 kapitola3.tex
Kapitola4 editovatIdeální a neideální plynyKubuondr 10. 4. 201722:25 kapitola4.tex
Kapitola5 editovatStatistické soubory - Hamiltonovské systémyHoskoant 4. 6. 201311:07 kapitola5.tex
Kapitola6 editovatFluktuaceSteffy 12. 2. 201213:01 kapitola6.tex
Kapitola7 editovatStatistické soubory - diskrétní hladinySteffy 11. 2. 201316:05 kapitola7.tex
Kapitola8 editovatPřesné statistikyKubuondr 28. 4. 201709:40 kapitola8.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:2part_U.pdf 2part_U.pdf
Image:binomial.pdf binomial.pdf
Image:blackbody2.pdf blackbody2.pdf
Image:gauss2.pdf gauss2.pdf
Image:maxwell.pdf maxwell.pdf
Image:poisson.pdf poisson.pdf
Image:spin_C.pdf spin_C.pdf
Image:spin_M.pdf spin_M.pdf
Image:spin_S.pdf spin_S.pdf

Zdrojový kód

%\wikiskriptum{02TSFsbirka}
\chapter{Fluktuace}
 
\bc
Dokažte, ze v kanonickém souboru platí vztah
$$
\left(\Delta U\right)^2 = kT^2 C.
$$
\ec
\navod
$$
\left(\Delta U\right)^2 = \frac{\partial^2\ln{Z_K}}{\partial\beta^2} = -\frac{\partial U}{\partial\beta} = -\left(\frac{\partial U}{\partial T}\right)_{V} \left(\frac{\partial T}{\partial \beta}\right) = kT^2 C.
$$
 
\bc
V rámci izotermicko-izobarického souboru dokažte platnost vztahu
$$
\left(\Delta U\Delta V\right) = kT\left[T\left(\frac{\partial V}{\partial T}\right)_P + P\left(\frac{\partial V}{\partial P}\right)_T\right].
$$
\ec
\navod
\begin{eqnarray}
\nonumber \left(\Delta U\Delta V\right) & = & \frac{\partial^2\ln\widetilde{Z}}{\partial\beta\partial \gamma} = -\left(\frac{\partial V}{\partial \beta}\right)_\gamma = -\left(\frac{\partial V}{\partial T}\right)_P\left(\frac{\partial T}{\partial \beta}\right)_\gamma - \left(\frac{\partial V}{\partial P}\right)_T\left(\frac{\partial P}{\partial \beta}\right)_\gamma \\
\nonumber & = & kT^2 \left(\frac{\partial V}{\partial T}\right)_P + PkT\left(\frac{\partial V}{\partial P}\right)_T.
\end{eqnarray}
 
\bc
Dokažte, že pro fluktuace počtu částic v grandkanonickém souboru platí vztah
$$
\left(\Delta N\right)^2 = \frac{NkT}{V}\left(\frac{\partial N}{\partial P}\right)_{T,V}.
$$
Použijte Gibbs-Duhemův vztah.
\ec
\navod
$$
\left(\Delta N\right)^2 = \left(\frac{\partial^2\ln{Z_G}}{\partial\alpha^2}\right)_\beta = \left(\frac{\partial N }{\partial\alpha}\right)_\beta = kT \left(\frac{\partial N }{\partial\mu}\right)_{T,V} = kT \left(\frac{\partial N }{\partial P}\right)_{T,V}\left(\frac{\partial P}{\partial\mu}\right)_{T,V}
$$
Gibbs-Duhem $\Longrightarrow$ $\frac{N}{V} = \left(\frac{\partial P}{\partial\mu}\right)_{T}.$
 
\bc
Dokažte, že pro relativní fluktuace vnitřní energie souboru $N$ klasických jednorozměrných harmonických oscilátorů, které jsou v tepelné rovnováze s rezervoárem o teplotě $T$, platí vztah
$$
\frac{\Delta U}{U} = \frac{1}{\sqrt{N}}.
$$
\ec
\navod
$$
Z_K = \frac{1}{N!}\left(\frac{2\pi}{\beta\omega}\right)^N,\quad U = \frac{\partial\ln{Z_K}}{\partial\beta} = \frac{N}{\beta},\quad \left(\Delta U\right)^2 = -\frac{\partial U}{\partial\beta} = \frac{N}{\beta^2}.
$$