02LIAG:Kapitola2

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02LIAG

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02LIAGHazalmat 3. 8. 201620:54
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůHazalmat 7. 7. 201606:04
Header editovatHlavičkový souborHazalmat 10. 7. 201621:12 header.tex
Kapitola0 editovatÚvodHazalmat 3. 8. 201621:12 LIAG_Kapitola0.tex
Kapitola1 editovatDefinice Lieovy grupy a Lieovy algebryHazalmat 5. 8. 201617:02 LIAG_Kapitola1.tex
Kapitola2 editovatVztah mezi Lieovou grupou a její algebrouHazalmat 5. 8. 201617:27 LIAG_Kapitola2.tex
Kapitola3 editovatNástin teorie integrabilních distribucíHazalmat 30. 7. 201614:10 LIAG_Kapitola3.tex
Kapitola4 editovatAkce grupy na varietěHazalmat 17. 7. 201619:23 LIAG_Kapitola4.tex
Kapitola5 editovatReprezentace Lieových grup a algeberHazalmat 4. 8. 201617:21 LIAG_Kapitola5.tex
Kapitola6 editovatSouvislost Lieových grup a algeberHazalmat 4. 8. 201618:51 LIAG_Kapitola6.tex
Kapitola7 editovatLieovy algebryHazalmat 5. 8. 201601:06 LIAG_Kapitola7.tex
Kapitola8 editovatCartanova kritériaHazalmat 5. 8. 201617:29 LIAG_Kapitola8.tex
Kapitola9 editovatKlasifikace pomocí kořenůHazalmat 5. 8. 201617:34 LIAG_Kapitola9.tex
Kapitola10 editovatKořenové diagramy, Cartanova marticeHazalmat 31. 7. 201615:32 LIAG_Kapitola10.tex
Kapitola11 editovatDynkinovy diagramyHazalmat 5. 8. 201617:39 LIAG_Kapitola11.tex
Kapitola12 editovatReálné formy komplexních poloprostých algeberHazalmat 31. 7. 201623:39 LIAG_Kapitola12.tex
Kapitola13 editovatVýznam kompaktních Lieových grupHazalmat 31. 7. 201623:45 LIAG_Kapitola13.tex
Kapitola14 editovatReprezentace poloprostých Lieových algeberHazalmat 1. 8. 201612:45 LIAG_Kapitola14.tex
Kapitola15 editovatSpinorové reprezentaceHazalmat 27. 7. 201620:38 LIAG_Kapitola15.tex
Kapitola16 editovatSymetrie v QMHazalmat 27. 7. 201621:21 LIAG_Kapitola16.tex
Kapitola17 editovatCvičeníHazalmat 6. 8. 201603:42 LIAG_Kapitola17.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:liag-1.pdf liag-1.pdf
Image:su3_1.pdf su3_1.pdf
Image:su3_2.pdf su3_2.pdf
Image:su3_3.pdf su3_3.pdf
Image:su3_4.pdf su3_4.pdf
Image:su3_5.pdf su3_5.pdf
Image:su3_6.pdf su3_6.pdf

Zdrojový kód

%\wikiskriptum{02LIAG}
\section{Vztah mezi Lieovou grupou $G$ a její algebrou $\g$}
 
\Def{ (Homomorfismus Lieových grup $G$ a $H$)
	\begin{itemize}
		\item \emph{Homomorfismus $G$ a $H$} je libovolné hladké $\phi :G \to H$, $\phi(g\cdot_G h)=\phi(g) \cdot_H \phi(h)$, $\forall g,h \in G$.
		\item \emph{Izomorfismus $G$ a $H$} je bijektivní homomorfismus s~hladkou inverzí.
	\end{itemize}
	}
\Def{
	\emph{Jednoparametrická podgrupa v~$G$} je homomorfismus $\varphi: (\R,+) \to G$.
	}
\Dsl{
	Takže platí $\varphi(s+t)=\varphi(s)\varphi(t)=\varphi(t)\varphi(s)$, tedy nutně $\varphi (0)=e$
	}
\Prl{
	$G$ Maticová grupa $\Rightarrow \dot{g}(t)=g(t)\cdot\underbrace{\dot{g}(0)}_{konst.}=\dot{g}(0)\cdot g(t)=L_{g(t)*}\left(\dot{g}(0)\right)=R_{g(t)*}\left(\dot{g}(0)\right) $
	}
\Pzn{
	Obecně: $g(s+t)=g(t)g(s)\equiv L_{g(t)}g(s) \Rightarrow \underbrace{\dot{g}(t)}_{T_{g(t)}G}=\zuz{\td{}{s}}{0}\left(L_{g(t)}g(s)\right)=L_{g(t)*}\underbrace{\dot{g}(0)}_{T_{\e} G}$
	Označíme-li pro $X\in \g$, $\zuz{X}{e}=\dot{g}(0)$, pak $\dot{g}(t)=L_{g(t)*}(\zuz{X}{e})=Xg(t)$
	}
\Dsl{
	Jednoparametrickě podgrupy jsou integrální křivky levoinvariantních vektorových polí, tj. elementů Lieovy algebry, vycházející z~$e$.
	}
\subsubsection*{Exponenciální zobrazení}
%	Jak jsem zmínili ve větě \ref{ztotozneni g a TeG}, odpovídá prostor levoinvariatních vektorových polí Lieově algebře $T_eG$. Pokud chceme z~daného levoinvariantního pole $X$ získat vektor z~$T_eG$ stačí toto pole vyhodnotit v~$e$, tj. získáme $X|_e \in T_eG$.
	Na základě integrálních křivek můžeme definovat zobrazení $\g \to G$, které danému vektoru $X|_e \in \g$ přiřadí nějaký bod na příslušné integrální křivce levoinvariantního vektorového pole $X$, ke kterému je $X|_e$ tečným vektorem.	
\Def{
	$\exp : \g \to G$ definujeme $\exp (X) =\varphi (1)$, kde $\varphi$ je integrální křivka $X \in \g$.
	}
\Pzn{
	$\exp =:\e$ tedy splňuje $\varphi(t)=\e^{tX}$, $\varphi(t+s)=\e^{(t+s)X}=\varphi (t) \varphi (s) =\e^{tX}\e^{sX}$.
	}
\Prl{
	Exponenciela $\mfrk{af}(1) \to Af(1)$.
	}
	Hledáme integrální křivky vektorového pole z~příkladu \ref{grupa Af(1)}. Pro libovolné levoinvariantní pole jsou rovnice integrálních křivek $\dot{x}(t)=\alpha x(t)$ a $\dot{y}(t)=\beta x(t)$ s~počátečními podmínkami $(x(0),y(0))=(1,0)$, řešením je $(x(t),y(t))=(\e^{\alpha t}, \frac{\beta}{\alpha}(\e^{\alpha t}-1))$. Exponencielu získáme dosazením $t=1$, tj. $\e^X=\e^{\alpha x \partial_x + \beta x\partial_y}=(\e^{\alpha}, \frac{\beta}{\alpha}(\e^{\alpha}-1))$ (pro $\alpha=0$ vyjde výsledek stejně jako provedením $\lim_{\alpha \to 0}$).
 
	V~maticovém vyjádření je pole
	$\left( \begin{smallmatrix}
	\alpha & \beta \\ 0 &0
	\end{smallmatrix} \right)$,
	platí
	$\left( \begin{smallmatrix}
	\alpha & \beta \\ 0 &0
	\end{smallmatrix} \right)^2 =
	\left( \begin{smallmatrix}
	\alpha^2 & \alpha \beta \\ 0 &0
	\end{smallmatrix} \right)$, \dots ,
	$\left( \begin{smallmatrix}
	\alpha & \beta \\ 0 &0
	\end{smallmatrix} \right)^k =
	\left( \begin{smallmatrix}
	\alpha^k & \alpha^{k-1} \beta \\ 0 &0
	\end{smallmatrix} \right)$,
	 takže získáme
	 $\exp \left( \begin{smallmatrix}
	 \alpha & \beta \\ 0 &0
	 \end{smallmatrix} \right)=
	 \sum_{n=0}^{+\infty} \frac{1}{n!}\left( \begin{smallmatrix}
	\alpha & \beta \\ 0 &0
	\end{smallmatrix} \right)^n=
	 \left( \begin{smallmatrix}
	 \sum_{n=0}^{+\infty}\frac{\alpha^n}{n!}, & \frac{\beta}{\alpha}\sum_{n=1}^{+\infty}\frac{\alpha^n}{n!} \\ 0, &1
	\end{smallmatrix} \right)=
	\left( \begin{smallmatrix}
	 \e^\alpha, & \frac{\beta}{\alpha}(\e^\alpha -1) \\ 0, &1
	 \end{smallmatrix} \right)$.
\Prl{
	Exponenciela maticových grup $G$.
	}
	Hledáme integrální křivku $\gamma (t)$ levoinvariantního vektorového pole, určenou $X \in \g$. Jak toto pole vypadá víme z~příkladu \ref{Maticove grupy} (značení převezmeme z~tohoto příkladu, tj. $X^i_j(e)=\alpha^i_j$). Máme tak pro složky pole $X^i_j(\gamma (t))=\gamma^i_k(t)X^k_j(e)$. Rovnice pro integrální křivky tohoto pole je
		\begin{align}
		\dot{\gamma}^i_j(t)=\gamma^i_k(t)X^k_j(e), \quad \gamma^i_j(0)=\delta^i_j \,,
		&& \Leftrightarrow &&
		\dot{\gamma}(t)= \gamma (t) X(e), \quad \gamma (0)=1 \,.
		\end{align}
Z~maticového zápisu vidíme, že řešením je maticová exponenciela $\gamma(t)=\e^{t X(e)}$, výsledkem je $\e^{X}=\gamma (1)=\e^{X(e)}$. 
\Vet{
	$A \in \mathfrak{gl}(n,\C)$, potom $\det \e^A=\e^{\Tr A}$.
	}
\begin{proof}
	Předpokládame, že $\exists B$, tak, že $D=BAB^{-1}$ diagonální (diagonalizovatelné matice jsou husté v množine všech matic a obě strany rovnice jsou spojité $\Rightarrow$ platí obecně).
	\begin{align*}
		\Tr D = \Tr BAB^{-1} = \Tr AB^{-1}B = \Tr A
		\end{align*}
	Platí $\e^{BAB^{-1}} = B\e^AB^{-1}$ z definice pomocí řady, proto $\det\,\e^{D} = \det\,B\det\,B^{-1}\det\,\e^A = \det\,\e^{A}$, a protože $D = \mrm{diag}(\lambda_1,\dots,\lambda_n) \Rightarrow \e^D = \mrm{diag}(\e^{\lambda_1},\dots,\e^{\lambda_n})$, tedy 
	\begin{align*}
		\det\,\e^D =\prod_{k=1}^{n}\e^{\lambda_k} = \e^{\sum_k \lambda_k} = \exp(\Tr D).
		\end{align*}
	\end{proof}	
\Vet{
	Buď $G$ Lieova grupa, pak $\exp: \g \to G:X\to \e^{X}$ je lokální difeomorfismus okolí $\vec{0}\in\g$ \emph{na} okolí $\e\in G$. (Toto zobrazení \emph{není} obecně \emph{surjektivní} a \emph{ani injektivní} na celé $G$).
	}
\begin{proof}
	$\g$ jako vektorový prostor lze chápat jako varietu, $T_0\g\cong\g \Rightarrow \exp$ je hladké zobrazení variet. $\left.\exp_*\right|_0:\g \to \g, \exp (tX)$ je integrálí křivka procházející $\e$, s tečným vektorem $X\Rightarrow \exp_* = \text{identita}\Rightarrow$ podle věty o inverzní funkci je $\exp$ lokální difeomorfismus.
	Detailně: $\exp:X \to \e^X$
	\begin{align*}
		\exp_*(\left.X\right|_0)f = \lim_{t \to 0}\frac{f(\e^{tX+0})-f(\e^0)}{t} = \lim_{t \to 0}\frac{f(\e^{tX})-f(\e)}{t} \overset{\mrm{def.}}{=} \left.Xf\right|_\e \Rightarrow \exp_*(\left.X\right|_0) = \left.\exp_*(X)\right|_\e = \left.X\right|_\e
		\end{align*} 
	\end{proof}	
\Pzn{
	Pro matice platí: $\exp_*(X)=\left.\td{}{t}(\e^{tX})\right|_{t=0} = \left.\td{}{t}\left(1+tX+O(t^2)\right)\right|_{t=0}$
	}
%SURJEKTIVITA V~RÁMCI OKOLÍ???
Je zřejmé, že $\exp$ nemůže být \emph{surjektivní} pro grupy s~více komponentami souvislosti (nelze spojit křivkou body z~různých komponent). $\exp$ není obecně \emph{surjektivní} ani pro souvislé $G$, pouze v~případě, že je $G$ kompaktní.
 
\newpage
\subsubsection*{Vyšetřování souvislosti variet}
\Def{
	Buďte $V^k \subset M^n$ dif. variety ($V^k$ podvarieta $M^n$). $V^k$ je \emph{deformační retrakt} $M^n$ právě tehdy, když $\exists$ $r: \langle 0,1 \rangle \times M^n \to M^n$ spojité, takové že
	\begin{itemize}
		\item $\forall m \in M$, $r(0,m)=p$,
		\item $\forall v \in V$, $\forall t \in \langle 0, 1\rangle$: $r(t,v)=v$,
		\item $\forall m \in M$, $r(1,m) \in V$.
	\end{itemize}
	}	
\Vet{
	$V^k$ je deformační retrakt $M^n$, pak
	\begin{itemize}
		\item $M$ souvislá $\Leftrightarrow$ $V$ souvislá,
		\item $M$ jednoduše souvislá $\Leftrightarrow$ $V$ jednoduše souvislá.
	\end{itemize}
	}
\Pzn{
	Souhrnné pojednání o souvislosti námi používaných grup je v~\emph{The American Mathematical Monthly}
Vol. 74, No. 8 (Oct., 1967), pp. 964-966.\footnote{
		\texttt{http://www.jstor.org/stable/2315278}
	}
	}		
\Vet{
	$G$ souvislá Lieova grupa, $\varphi: 0\in U=U^\circ \subset \g \to \varphi(U)=(\varphi (U))^\circ \subset G$ ($e \in \varphi (U)$) difeomorfismus. Pak libovolný $g \in G$ lze zapsat vepsat ve tvaru konečného součinu $g=g_1g_2 \cdots g_k$, kde $g_j\in \varphi (U)$. (V~případě $\varphi =\exp$ umí Vysouš ukázat, že $k=2$.)
	}
\subsubsection*{Tok levoinvariantního vektorového pole}
Pro $X \in \g$ je $X|_e \in T_eG$ a $\e^{tX|_e}$ je integrální křivka procházející $e$. Integrální křivka tohoto pole procházející $g$ je $g \e^{t X|_e}$ ($\left.\frac{\dd}{\dd t}\right|_{t=0}g \e^{t X|_e}=L_{g*}\left.\frac{\dd}{\dd t}\right|_{t=0} \e^{t X|_e}=L_{g*}X|_e=X_g$).
\Vet{
	Tok generovaný levoinvariatním $X$ (tj. $X \in \g =T_eM$) je jednoparametrická grupa pravých translací, tj.
	\begin{align*}
	\Phi^t_X(g)=g\e^{tX}  && \Leftrightarrow &&  \Phi^t_X=R_{\e^{tX}} \,.
	\end{align*}
	}
\Dsl{
	$X \in G$, $Y \in \Xs (G)$, $Y \circ R^*_g=R^*_g \circ Y$, potom $[X,Y]=0$. (To znamená, že levoinvariantní a pravoinvariantní pole komutují.)
	}
 
\Vet{
	$M$ dif. varieta, $X,Y \in \Xs (M)$, $\Phi_t$, $\Psi_t$ jejich toky, $p\in M$. Potom
	\begin{align*}
	\left.([X,Y]f)\right|_p=\lim_{t \to 0}\frac{f(\sigma (t))-f(p)}{t^2}\,,
	\end{align*}
	$\sigma(t)=(\Psi_{-t}\circ \Phi_{-t} \circ \Psi_t \circ \Phi_t \ )(p)$.
	}
 
\Dsl{
	Pro maticové grupy tak platí $[X,Y]|_e=XY-YX$, $\forall X,Y \in \g$ (rozvoj $\exp$).
	}
 
\Vet{ \label{Veta}
	$G$ Lieova grupa, $\g$ Lieova algebra, $\h$ podalgebra $\g$. Potom existuje vnořená podvarieta $H \subset G$, taková, že $H$ je podgrupa $G$ a její Lieova algebra je přirozeně izomorfní $\h$.
	}
\Pzn{
	Obecně se nejedná o vložení. Uvažujme například $T^2=S^1[\varphi] \times S^1[\vartheta]$. Vektorové pole $X=a\partial_\varphi + b \partial_\vartheta \in \mathfrak{t}^2$, $\h =\mathrm{span} \{ X \}$ a $\frac{a}{b}\not \in \mathbb{Q}$.
	}
	Protože $[X,X]=0$ je $\h$ jednorozměrná podalgebra. Pro $\frac{a}{b} \in \mathbb{Q}$ je křivka na toru uzavřená a jedná se o vložení, pro $\frac{a}{b}\not \in \mathbb{Q}$ ale v~topologii $T^2$ je $\overline{H}=T^2$, tj. nejedná se o vložení.