02KVAN2:Kapitola4: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
(zapomenuté děleno dvěma u partiční sumy)
(Opravy drobných překlepů, drobné dodatky, sjednocení formátu \Tr)
Řádka 8: Řádka 8:
 
\]
 
\]
  
Stření hodnota pozorovatelné $A$ popsané funkcí $a(x,p)$ ve stavu určeném hustotou pravděpodobnosti $\rho$ je dána
+
Střední hodnota pozorovatelné $A$ popsané funkcí $a(x,p)$ ve stavu určeném hustotou pravděpodobnosti $\rho$ je dána
 
\[
 
\[
 
\stredni{A}_{\rho} = \int\limits_{TM} a(x,p) \rho(x,p) \: dx \: dp.
 
\stredni{A}_{\rho} = \int\limits_{TM} a(x,p) \rho(x,p) \: dx \: dp.
Řádka 22: Řádka 22:
 
\deriv{x_k}{t} = \parcder{H}{p_k}, \quad \deriv{p_k}{t} = - \parcder{H}{x_k},
 
\deriv{x_k}{t} = \parcder{H}{p_k}, \quad \deriv{p_k}{t} = - \parcder{H}{x_k},
 
\]
 
\]
je možno pro časový vývoj hustoty pravděpodobnosti odvodit  
+
je možno pro časový vývoj hustoty pravděpodobnosti odvodit Liouvillovu větu
 
\[
 
\[
 
\parcder{\rho}{t} = \sum_{k=1}^{3N} \left[ \parcder{H}{x_k} \parcder{\rho}{p_k} -  
 
\parcder{\rho}{t} = \sum_{k=1}^{3N} \left[ \parcder{H}{x_k} \parcder{\rho}{p_k} -  
Řádka 29: Řádka 29:
  
 
\begin{remark}
 
\begin{remark}
Za povšimnutí stojí, že časový vývoj pozorovatelné $a(x,p)$ je určen rovněž Poissonovou závorkou
+
Za povšimnutí stojí, že časový vývoj pozorovatelné $a(x,p)$ je určen rovněž Poissonovou závorkou, ovšem s opačným znaménkem:
 
\begin{equation} \label{MatH:klasvyvpoz2}
 
\begin{equation} \label{MatH:klasvyvpoz2}
 
\parcder{a}{t} = \{ a,H \}.
 
\parcder{a}{t} = \{ a,H \}.
Řádka 35: Řádka 35:
 
\end{remark}
 
\end{remark}
  
V analogii očekáváme, že kvantové hustoty pravděpodobnosti budou operátory na $\hilbert$, které každému stavu přiřadí pravděpodobnost, že se v něm systém nachází. V dalším odvozování uvažujeme konečný počet normalizovaných stavů $(\ket{\psi_m})_{m=1}^n$, ve kterých se systém může nacházet. Zobecnění výsledků, jež obdržíme, na spočetný, nebo dokonce nespočetný počet stavů se nedá obecně provést a sama kvantová mechanika jej bere jako postulát.  
+
V analogii očekáváme, že kvantové hustoty pravděpodobnosti budou operátory na $\hilbert$, které každému stavu přiřadí pravděpodobnost, že se v něm systém nachází.
 +
 
 +
V dalším odvozování uvažujeme konečný počet normalizovaných stavů $(\ket{\psi_m})_{m=1}^n$, ve kterých se systém může nacházet. Zobecnění výsledků, jež obdržíme, na spočetný, nebo dokonce nespočetný počet stavů se nedá obecně provést a sama kvantová mechanika jej bere jako postulát.  
  
 
Stav systému v kvantové mechanice je popsán vektorem $\ket{\psi} \in \hilbert$. Tomuto stavu je možno přiřadit projektor $\hat{P}_{\ket{\psi}} = \ket{\psi} \bra{\psi}$. Snadno nahlédneme, že tento projektor nezávisí na výběru fáze, tedy $\hat{P}_{\ket{\psi}} = \hat{P}_{e^{i \varphi}\ket{\psi}}$, $\forall \varphi \in \real$.
 
Stav systému v kvantové mechanice je popsán vektorem $\ket{\psi} \in \hilbert$. Tomuto stavu je možno přiřadit projektor $\hat{P}_{\ket{\psi}} = \ket{\psi} \bra{\psi}$. Snadno nahlédneme, že tento projektor nezávisí na výběru fáze, tedy $\hat{P}_{\ket{\psi}} = \hat{P}_{e^{i \varphi}\ket{\psi}}$, $\forall \varphi \in \real$.
Řádka 47: Řádka 49:
 
\sum_{m=1}^n P_m = 1
 
\sum_{m=1}^n P_m = 1
 
\]
 
\]
je možno na úrovni $\hat{\rho}$ vyjádřit pomocí stopy operátoru $Tr\: \hat{\rho} = 1$.
+
je možno na úrovni $\hat{\rho}$ vyjádřit pomocí stopy operátoru $\Tr \hat{\rho} = 1$.
  
 
\begin{define}
 
\begin{define}
Buď $\hat{B}$ operátor na $\hilbert$, $(\ket{i})$ ortonormální báze $\hilbert$. Potom $Tr \: \hat{B}$ definujeme jako \textbf{stopu operátoru} $\hat{B}$ dle předpisu
+
Buď $\hat{B}$ operátor na $\hilbert$, $(\ket{i})$ ortonormální báze $\hilbert$. Potom definujeme \textbf{stopu operátoru} $\hat{B}$ dle předpisu
 
\[
 
\[
Tr \: \hat{B} = \sum_i \brapigket{i}{\hat{B}}{i}.
+
\Tr \hat{B} = \sum_i \brapigket{i}{\hat{B}}{i}.
 
\]
 
\]
 
\end{define}
 
\end{define}
  
 
\begin{remark}
 
\begin{remark}
Pokud $|Tr \: \hat{B}| < + \infty$, lze ukázat, že hodnota $Tr \: \hat{B}$ nezávisí na výběru báze $(\ket{i})$.
+
Pokud $|\Tr \hat{B}| < + \infty$, lze ukázat, že hodnota $\Tr \hat{B}$ nezávisí na výběru báze $(\ket{i})$.
 
\end{remark}
 
\end{remark}
  
Řádka 84: Řádka 86:
 
Stavy v kvantové mechanice jsou popsány operátory $\hat{\rho}$ nazývanými \textbf{matice hustoty} (operátor hustoty, statistický operátor) s vlastnostmi
 
Stavy v kvantové mechanice jsou popsány operátory $\hat{\rho}$ nazývanými \textbf{matice hustoty} (operátor hustoty, statistický operátor) s vlastnostmi
 
\begin{enumerate}[$(i)$]
 
\begin{enumerate}[$(i)$]
\item $Tr \: \hat{\rho} = 1$,
+
\item $Tr \hat{\rho} = 1$,
\item $\hat{\rho}$ pozitivní $\Bigl(\forall \ket{\psi} \in \hilbert: \brapigket{\psi}{\hat{\rho}}{\psi} \geq 0\Bigr)$,
+
\item $\hat{\rho}$ je pozitivní $\Bigl(\forall \ket{\psi} \in \hilbert: \brapigket{\psi}{\hat{\rho}}{\psi} \geq 0\Bigr)$,
\item $\hat{\rho}$ samosdružený $\Bigl(\hat{\rho} = \hat{\rho}^+\Bigr)$.
+
\item $\hat{\rho}$ je samosdružený $\Bigl(\hat{\rho} = \hat{\rho}^+\Bigr)$.
 
\end{enumerate}
 
\end{enumerate}
 
Matice hustoty mající hodnost rovnu jedné nazýváme \textbf{čisté stavy}. Všechny ostatní nazýváme \textbf{smíšené stavy}.
 
Matice hustoty mající hodnost rovnu jedné nazýváme \textbf{čisté stavy}. Všechny ostatní nazýváme \textbf{smíšené stavy}.
Řádka 103: Řádka 105:
 
\stredni{\hat{A}}_{\hat{\rho}} &= \sum_{m=1}^n P_m \sum_i \brapigket{\psi_m}{\hat{A}}{i} \braket{i}{\psi_m} =
 
\stredni{\hat{A}}_{\hat{\rho}} &= \sum_{m=1}^n P_m \sum_i \brapigket{\psi_m}{\hat{A}}{i} \braket{i}{\psi_m} =
 
\sum_{m=1}^n \sum_i \braket{i}{\psi_m} P_m \brapigket{\psi_m}{\hat{A}}{i} = \\
 
\sum_{m=1}^n \sum_i \braket{i}{\psi_m} P_m \brapigket{\psi_m}{\hat{A}}{i} = \\
&= \sum_{m=1}^n Tr(P_m \ket{\psi_m}\bra{\psi_m} \hat{A}) = Tr(\hat{\rho}\hat{A}).
+
&= \sum_{m=1}^n \Tr\left(P_m \ket{\psi_m}\bra{\psi_m} \hat{A}\right) = \Tr\left(\hat{\rho}\hat{A}\right).
 
\end{align*}
 
\end{align*}
  
 
\begin{remark}
 
\begin{remark}
Pokud $|Tr \: \hat{A}| < + \infty$, platí $Tr(\hat{\rho}\hat{A}) = Tr(\hat{A}\hat{\rho})$.
+
Pokud $|\Tr \hat{A}| < + \infty$, platí $\Tr\left(\hat{\rho}\hat{A}\right) = \Tr\left(\hat{A}\hat{\rho}\right)$.
 
\end{remark}
 
\end{remark}
  
 
\begin{define}[Postulát 2]
 
\begin{define}[Postulát 2]
Stření hodnota $\stredni{\hat{A}}_{\hat{\rho}}$ pozorovatelné $\hat{A}$ ve stavu popsaném maticí hustoty $\hat{\rho}$ je rovna
+
Střední hodnota $\stredni{\hat{A}}_{\hat{\rho}}$ pozorovatelné $\hat{A}$ ve stavu popsaném maticí hustoty $\hat{\rho}$ je rovna
 
\begin{equation} \label{MatH:defstrhen}
 
\begin{equation} \label{MatH:defstrhen}
\stredni{\hat{A}}_{\hat{\rho}} = Tr(\hat{\rho}\hat{A}) = Tr(\hat{A}\hat{\rho}).
+
\stredni{\hat{A}}_{\hat{\rho}} = \Tr\left(\hat{\rho}\hat{A}\right) = \Tr\left(\hat{A}\hat{\rho}\right).
 
\end{equation}
 
\end{equation}
 
\end{define}
 
\end{define}
Řádka 119: Řádka 121:
 
Věnujme se nyní časovému vývoji $\hat{\rho}$. Předpokládejme, že se vývoj každého stavu $\ket{\psi_m(t)}$ řídí Schrödingerovou rovnicí
 
Věnujme se nyní časovému vývoji $\hat{\rho}$. Předpokládejme, že se vývoj každého stavu $\ket{\psi_m(t)}$ řídí Schrödingerovou rovnicí
 
\begin{equation} \label{MatH:SRmathust}
 
\begin{equation} \label{MatH:SRmathust}
i \hbar \deriv{}{t} \ket{\psi_m(t)} = \hat{H} \ket{\psi_m(t)}, \quad resp. \quad
+
i \hbar \deriv{}{t} \ket{\psi_m(t)} = \hat{H} \ket{\psi_m(t)}, \quad \text{resp.} \quad
 
- i \hbar \deriv{}{t} \bra{\psi_m(t)} =  \bra{\psi_m(t)} \hat{H}  
 
- i \hbar \deriv{}{t} \bra{\psi_m(t)} =  \bra{\psi_m(t)} \hat{H}  
 
\end{equation}
 
\end{equation}
Řádka 152: Řádka 154:
 
\hat{A} \ket{a,k} = a \ket{a,k} \quad k = 1, \ldots, l.
 
\hat{A} \ket{a,k} = a \ket{a,k} \quad k = 1, \ldots, l.
 
\]  
 
\]  
Ze zimy víme, že pravděpodobnost $W_{\hat{A}=a,\ket{\psi}}$, že při měření pozorovatelné $\hat{A}$ na systému ve stavu $\ket{\psi}$ naměříme hodnotu $a$, rovna
+
Ze zimy víme, že pravděpodobnost $W_{\hat{A}=a,\ket{\psi}}$, že při měření pozorovatelné $\hat{A}$ na systému ve stavu $\ket{\psi}$ naměříme hodnotu $a$, je rovna
 
\begin{equation} \label{MatH:MereniPoz1}
 
\begin{equation} \label{MatH:MereniPoz1}
 
W_{\hat{A}=a,\ket{\psi}} = \sum_{k=1}^l |\braket{\psi}{a,k}|^2 = \sum_{k=1}^l \braket{\psi}{a,k}\braket{a,k}{\psi} =
 
W_{\hat{A}=a,\ket{\psi}} = \sum_{k=1}^l |\braket{\psi}{a,k}|^2 = \sum_{k=1}^l \braket{\psi}{a,k}\braket{a,k}{\psi} =
Řádka 166: Řádka 168:
 
W_{\hat{A}=a,\hat{\rho}} &= \sum_{m=1}^n P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m} = \\
 
W_{\hat{A}=a,\hat{\rho}} &= \sum_{m=1}^n P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m} = \\
 
&= \sum_{m=1}^n P_m \sum_i \braket{\psi_m}{i} \brapigket{i}{\hat{P}_{\hat{A}=a}}{\psi_m} =
 
&= \sum_{m=1}^n P_m \sum_i \braket{\psi_m}{i} \brapigket{i}{\hat{P}_{\hat{A}=a}}{\psi_m} =
Tr(\hat{P}_{\hat{A}=a} \hat{\rho}),
+
\Tr\left(\hat{P}_{\hat{A}=a} \hat{\rho}\right),
 
\end{align*}
 
\end{align*}
 
kde $(\ket{i})$ představuje ortonormální bázi $\hilbert$.
 
kde $(\ket{i})$ představuje ortonormální bázi $\hilbert$.
Řádka 173: Řádka 175:
 
Pravděpodobnost $W_{\hat{A}=a,\hat{\rho}}$, že při měření pozorovatelné $\hat{A}$ na systému nacházejícím se ve stavu popsaném maticí hustoty $\hat{\rho}$ obdržíme hodnotu $a$, je rovna
 
Pravděpodobnost $W_{\hat{A}=a,\hat{\rho}}$, že při měření pozorovatelné $\hat{A}$ na systému nacházejícím se ve stavu popsaném maticí hustoty $\hat{\rho}$ obdržíme hodnotu $a$, je rovna
 
\begin{equation} \label{MatH:defpravdnam}
 
\begin{equation} \label{MatH:defpravdnam}
W_{\hat{A}=a,\hat{\rho}} = Tr(\hat{P}_{\hat{A}=a} \hat{\rho}).
+
W_{\hat{A}=a,\hat{\rho}} = \Tr\left(\hat{P}_{\hat{A}=a} \hat{\rho}\right).
 
\end{equation}
 
\end{equation}
 
\end{define}
 
\end{define}
Řádka 210: Řádka 212:
 
\hat{\rho} = \sum_{i=1}^3 \alpha_i \hat{\sigma}_i + \alpha_4 \opone, \quad \text{kde} \quad \alpha_i \in \real
 
\hat{\rho} = \sum_{i=1}^3 \alpha_i \hat{\sigma}_i + \alpha_4 \opone, \quad \text{kde} \quad \alpha_i \in \real
 
\]
 
\]
samosdružený, tedy $\hat{\rho} = \hat{\rho}^+$ a podmínka $(iii)$ v definici \ref{MatH:defmathustdef} je tak triviálně splněna. Dále snadno nahlédneme, že $Tr \: \sigma_i = 0$ a $Tr \: \opone = 2$. Abychom zaručili jednotkovou stopu matice hustoty $\hat{\rho}$, budeme hledat její vyjádření ve tvaru
+
samosdružený, tedy $\hat{\rho} = \hat{\rho}^+$ a podmínka $(iii)$ v definici \ref{MatH:defmathustdef} je tak triviálně splněna. Dále snadno nahlédneme, že $\Tr \sigma_i = 0$ a $\Tr \opone = 2$. Abychom zaručili jednotkovou stopu matice hustoty $\hat{\rho}$, budeme hledat její vyjádření ve tvaru
 
\begin{equation} \label{MatH:C2MatHust}
 
\begin{equation} \label{MatH:C2MatHust}
 
\hat{\rho} = \frac{1}{2} \left( \opone + \sum_{i=1}^3 \alpha_i \hat{\sigma}_i \right) =
 
\hat{\rho} = \frac{1}{2} \left( \opone + \sum_{i=1}^3 \alpha_i \hat{\sigma}_i \right) =
Řádka 226: Řádka 228:
 
\alpha_1^2 +\alpha_2^2 +\alpha_3^2 \leq 1.
 
\alpha_1^2 +\alpha_2^2 +\alpha_3^2 \leq 1.
 
\]
 
\]
Poslední nerovnost tvoří množinu, jež bývá nazývána Blochovou sférou. Ta je (i v obecnějších případech) vždy konvexní, přičemž na jejím povrchu leží čisté stavu, uvnitř potom stavy smíšené. Čistý stav $\ket{\psi}$ je vlastním vektorem $\hat{\rho}$ příslušející vlastnímu číslu $\lambda^{(+)}=1$. Jeden z jeho možných tvarů je
+
Poslední nerovnost tvoří množinu, jež bývá nazývána Blochovou koulí. Ta je (i v obecnějších případech) vždy konvexní, přičemž na jejím povrchu leží čisté stavu, uvnitř potom stavy smíšené. Čistý stav $\ket{\psi}$ je vlastním vektorem $\hat{\rho}$ příslušející vlastnímu číslu $\lambda^{(+)}=1$. Jeden z jeho možných tvarů je
 
\[
 
\[
 
\ket{\psi} = \frac{1}{\sqrt{2(1-\alpha_3)}} \left( \begin{array}{c}
 
\ket{\psi} = \frac{1}{\sqrt{2(1-\alpha_3)}} \left( \begin{array}{c}
Řádka 260: Řádka 262:
 
Dále určíme střední hodnotu energie v čase $t=0$ ve stavu $\hat{\rho}$ ($\hat{\rho}$ a $\hat{H}$ zůstávají stále stejné). K tomuto účelu si zvolíme bázi v prostoru $\hilbert = \komplex^2: \Biggl(\ket{1} = \left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right), \ket{2} = \left( \begin{array}{c} 0 \\ 1 \\ \end{array} \right)\Biggr)$. Ze \eqref{MatH:defstrhen} víme, že střední hodnota energie systému ve stavu $\hat{\rho}$ je určena
 
Dále určíme střední hodnotu energie v čase $t=0$ ve stavu $\hat{\rho}$ ($\hat{\rho}$ a $\hat{H}$ zůstávají stále stejné). K tomuto účelu si zvolíme bázi v prostoru $\hilbert = \komplex^2: \Biggl(\ket{1} = \left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right), \ket{2} = \left( \begin{array}{c} 0 \\ 1 \\ \end{array} \right)\Biggr)$. Ze \eqref{MatH:defstrhen} víme, že střední hodnota energie systému ve stavu $\hat{\rho}$ je určena
 
\[
 
\[
\stredni{\hat{H}}_{\hat{\rho}} = Tr(\hat{\rho}\hat{H}) = \sum_{i=1}^2 \brapigket{i}{\hat{\rho}\hat{H}}{i} =
+
\stredni{\hat{H}}_{\hat{\rho}} = \Tr \left(\hat{\rho}\hat{H}\right) = \sum_{i=1}^2 \brapigket{i}{\hat{\rho}\hat{H}}{i} =
 
\frac{1}{2} \left[ E_1(1+\alpha_3) + E_2 (1-\alpha_3)  \right].
 
\frac{1}{2} \left[ E_1(1+\alpha_3) + E_2 (1-\alpha_3)  \right].
 
\]  
 
\]  
 
Snadno nahlédneme $\stredni{\hat{H}}_{\hat{\rho}} \in \left\langle E_1, E_2 \right\rangle$, neboť $\alpha_3 \in \left\langle -1, 1 \right\rangle$. Pravděpodobnost $W_{\hat{H}=E_1}$ naměření $\hat{H}=E_1$ je dle \eqref{MatH:defpravdnam} rovna  
 
Snadno nahlédneme $\stredni{\hat{H}}_{\hat{\rho}} \in \left\langle E_1, E_2 \right\rangle$, neboť $\alpha_3 \in \left\langle -1, 1 \right\rangle$. Pravděpodobnost $W_{\hat{H}=E_1}$ naměření $\hat{H}=E_1$ je dle \eqref{MatH:defpravdnam} rovna  
 
\[
 
\[
W_{\hat{H}=E_1} = Tr(\hat{P}_{\hat{H}=E_1} \hat{\rho}) = \frac{1}{2} (1 + \alpha_3),
+
W_{\hat{H}=E_1} = \Tr\left(\hat{P}_{\hat{H}=E_1} \hat{\rho}\right) = \frac{1}{2} (1 + \alpha_3),
 
\]
 
\]
 
kde $\hat{P}_{\hat{H}=E_1}$ představuje projekční operátor tvaru $\hat{P}_{\hat{H}=E_1} = \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \\ \end{array} \right)$. Po průchodu filtrem přechází matice hustoty $\hat{\rho}$ na novou matici $\hat{\rho}_{\hat{H}}$ podle vztahu \eqref{MatH:defpuchfilt}. Přímo můžeme psát
 
kde $\hat{P}_{\hat{H}=E_1}$ představuje projekční operátor tvaru $\hat{P}_{\hat{H}=E_1} = \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \\ \end{array} \right)$. Po průchodu filtrem přechází matice hustoty $\hat{\rho}$ na novou matici $\hat{\rho}_{\hat{H}}$ podle vztahu \eqref{MatH:defpuchfilt}. Přímo můžeme psát
Řádka 286: Řádka 288:
 
kde A je normalizační konstanta. Očekáváme, že kvantově-mechanický soubor určený hamiltoniánem $\hat{H}$ bude popsán maticí hustoty $\hat{\rho}$ definovanou
 
kde A je normalizační konstanta. Očekáváme, že kvantově-mechanický soubor určený hamiltoniánem $\hat{H}$ bude popsán maticí hustoty $\hat{\rho}$ definovanou
 
\[
 
\[
\hat{\rho} = \frac{1}{Tr(e^{-\beta\hat{H}})} e^{-\beta\hat{H}},
+
\hat{\rho} = \frac{1}{\Tr e^{-\beta\hat{H}}} e^{-\beta\hat{H}},
 
\]
 
\]
Dělením stopou $Tr(e^{-\beta\hat{H}})$ je zajištěna jednotková stopa $\hat{\rho}$, samosdružennost $\hat{\rho}$ plyne ze samosdružennosti $\hat{H}$ a pozitivnost $\hat{\rho}$ je snadným důsledkem teorie uvedené u Ritzovy variační metody v následující kapitole. $\hat{\rho}$ je tedy maticí hustoty v korektním smyslu. Ze zimy víme, že soubor vlastních funkcí jednorozměrného harmonického oscilátoru $(\ket{n})_{n=0}^{+\infty}$ tvoří úplnou ortonormální bázi $\hilbert$. Navíc
+
Dělením stopou $\Tr e^{-\beta\hat{H}}$ je zajištěna jednotková stopa $\hat{\rho}$, samosdružennost $\hat{\rho}$ plyne ze samosdružennosti $\hat{H}$ a pozitivnost $\hat{\rho}$ je snadným důsledkem teorie uvedené u Ritzovy variační metody v následující kapitole. $\hat{\rho}$ je tedy maticí hustoty v korektním smyslu. Ze zimy víme, že soubor vlastních funkcí jednorozměrného harmonického oscilátoru $(\ket{n})_{n=0}^{+\infty}$ tvoří úplnou ortonormální bázi $\hilbert$. Navíc
 
\[
 
\[
 
\hat{H}\ket{n} = \hbar \omega (n+\frac{1}{2})\ket{n}.
 
\hat{H}\ket{n} = \hbar \omega (n+\frac{1}{2})\ket{n}.
Řádka 294: Řádka 296:
 
Střední hodnotu energie určíme ze \eqref{MatH:defstrhen}
 
Střední hodnotu energie určíme ze \eqref{MatH:defstrhen}
 
\[
 
\[
\stredni{\hat{H}}_{\hat{\rho}} = Tr (\hat{\rho} \hat{H}) = \frac{1}{Tr(e^{-\beta\hat{H}})}
+
\stredni{\hat{H}}_{\hat{\rho}} = \Tr \left(\hat{\rho} \hat{H}\right) = \frac{1}{\Tr e^{-\beta\hat{H}}}
 
\sum_{n=0}^{+\infty} \brapigket{n}{e^{-\beta\hat{H}} \hat{H}}{n}.
 
\sum_{n=0}^{+\infty} \brapigket{n}{e^{-\beta\hat{H}} \hat{H}}{n}.
 
\]
 
\]
Řádka 309: Řádka 311:
 
\[
 
\[
 
Z(\beta) = \frac{e^{-\frac{\beta\hbar\omega}{2}}}{1-e^{-\beta\hbar\omega}} =
 
Z(\beta) = \frac{e^{-\frac{\beta\hbar\omega}{2}}}{1-e^{-\beta\hbar\omega}} =
\frac{1}{2 sinh\left( \frac{ \beta \hbar \omega}{2} \right)}.
+
\frac{1}{2 \sinh\left( \frac{ \beta \hbar \omega}{2} \right)}.
 
\]
 
\]
 
Výraz \eqref{MatH:HOstrhe} je možno zapsat pomocí $Z(\beta)$
 
Výraz \eqref{MatH:HOstrhe} je možno zapsat pomocí $Z(\beta)$
Řádka 348: Řádka 350:
 
\ket{\psi_1} = \frac{\ket{00} + \ket{11}}{\sqrt{2}},
 
\ket{\psi_1} = \frac{\ket{00} + \ket{11}}{\sqrt{2}},
 
\end{equation}
 
\end{equation}
na tomto stavu je zajímavé, že pokud změříme jeden z podsystémů, víme hned v jakém stavu je druhý podsystém (to vede na EPR paradox, diskuzi mezi EPR trojicí a N. Bohrem doporučujeme jako zajímavou četbu). Můžete sami navíc ověřit, že neexistují stavy $\ket{a}$ a $\ket{b}$ takové, aby $\ket{\psi_1} = \ket{a}\ket{b}$ -- tomu se říká (ne)faktorizovatelnost stavu.
+
na tomto stavu je zajímavé, že pokud změříme jeden z podsystémů, víme hned, v jakém stavu je druhý podsystém (to vede na EPR paradox, diskuzi mezi EPR trojicí a N. Bohrem doporučujeme jako zajímavou četbu). Můžete sami navíc ověřit, že neexistují stavy $\ket{a}$ a $\ket{b}$ takové, aby $\ket{\psi_1} = \ket{a}\ket{b}$ -- tomu se říká (ne)faktorizovatelnost stavu.
  
 
To není jediný takový stav, další jsou
 
To není jediný takový stav, další jsou
Řádka 356: Řádka 358:
 
\ket{\psi_4} &=& \frac{\ket{01} - \ket{10}}{\sqrt{2}},
 
\ket{\psi_4} &=& \frac{\ket{01} - \ket{10}}{\sqrt{2}},
 
\end{eqnarray}
 
\end{eqnarray}
dohromady se jim říká Bellovské stavy a tvoří tzv. Bellovu bázi našeho Hilbertova prostoru. Z toho jak jsme zavedli matici hustoty, je jasné, že matice hustoty korespondující s $\ket{\psi_1}$ je
+
dohromady se jim říká Bellovské stavy a tvoří tzv. Bellovu bázi našeho Hilbertova prostoru. Z toho, jak jsme zavedli matici hustoty, je jasné, že matice hustoty korespondující s $\ket{\psi_1}$ je
 
\begin{equation}
 
\begin{equation}
 
\hat{\rho}_1 = \left( \frac{\ket{00} + \ket{11}}{\sqrt{2}} \right)\left( \frac{\bra{00} + \bra{11}}{\sqrt{2}} \right)
 
\hat{\rho}_1 = \left( \frac{\ket{00} + \ket{11}}{\sqrt{2}} \right)\left( \frac{\bra{00} + \bra{11}}{\sqrt{2}} \right)
Řádka 363: Řádka 365:
 
Připomeňme kritérium čistoty stavu pro kvadrát matice hustoty
 
Připomeňme kritérium čistoty stavu pro kvadrát matice hustoty
 
\begin{equation}
 
\begin{equation}
\Tr{\hat{\rho}^2} \leq 1,
+
\Tr \hat{\rho}^2 \leq 1,
 
\end{equation}
 
\end{equation}
které pro $\hat{\rho}_1$ dá jedničku jak má.
+
které pro $\hat{\rho}_1$ dá jedničku, jak má.
 +
 
 +
Pokud by obecná matice hustoty popisovala složený systém, je otázka, jaký stav (matici hustoty) přiřadit příslušnému podsystému.
  
Pokud by obecná matice hustoty popisovala složený systém, je otázka jaký stav (matici hustoty) přiřadit příslušnému podsystému, uvažujme dva systémy $A$ a $B$ a jejich složenému stavu přiřaďme $\hat{\rho}^{AB}$. Podsystému $A$ se pak přirozeně přiřazuje matice $\hat{\rho}^A$, kterou získáme \textit{částečnou stopou} přes systém $B$, označenou a definovanou jako
+
Uvažujme dva systémy $A$ a $B$ a jejich složenému stavu přiřaďme $\hat{\rho}^{AB}$. Podsystému $A$ se pak přirozeně přiřazuje matice $\hat{\rho}^A$, kterou získáme \textit{částečnou stopou} přes systém $B$, označenou a definovanou jako
 
\begin{eqnarray}
 
\begin{eqnarray}
\hat{\rho}^A &=& \mathrm{Tr}_B \left( \hat{\rho}^{AB} \right), \\
+
\hat{\rho}^A &=& \Tr_B \left( \hat{\rho}^{AB} \right), \\
\mathrm{Tr}_B \left( \ket{a_1} \bra{a_2} \otimes \ket{b_1} \bra{b_2} \right) &\equiv & \ket{a_1} \bra{a_2} \Tr{\ket{b_1} \bra{b_2}},
+
\Tr_B \left( \ket{a_1} \bra{a_2} \otimes \ket{b_1} \bra{b_2} \right) &\equiv & \ket{a_1} \bra{a_2} \Tr\left(\ket{b_1} \bra{b_2}\right),
 
\end{eqnarray}
 
\end{eqnarray}
pro $\ket{a_1}, \ket{a_2} \in \mathscr{H}_A$, $\ket{b_1}, \ket{b_2} \in \mathscr{H}_B$. Tento postup je jediný kompatibilní s opačnou procedurou kdy známe stavy podsystémů a složenému stavu přiřazujeme tenzorový součin jejich matic hustoty ($\hat{\rho}^A \otimes \hat{\rho}^B$).
+
pro $\ket{a_1}, \ket{a_2} \in \mathscr{H}_A$, $\ket{b_1}, \ket{b_2} \in \mathscr{H}_B$. Tento postup je jediný kompatibilní s opačnou procedurou, kdy známe stavy podsystémů a složenému stavu přiřazujeme tenzorový součin jejich matic hustoty ($\hat{\rho}^A \otimes \hat{\rho}^B$).
  
 
Pokud nyní zjistíme jaká matice hustoty odpovídá libovolnému podsystému v Bellovském stavu $\hat{\rho_1}$, zjistíme po krátkém výpočtu
 
Pokud nyní zjistíme jaká matice hustoty odpovídá libovolnému podsystému v Bellovském stavu $\hat{\rho_1}$, zjistíme po krátkém výpočtu
 
\begin{eqnarray}
 
\begin{eqnarray}
\hat{\rho}^1_1 &=& \mathrm{Tr}_2 \left( \hat{\rho}_1 \right) = \mathrm{Tr}_2 \left( \frac{\ket{00}\bra{00} + \ket{11}\bra{00} + \ket{00}\bra{11} + \ket{11}\bra{11}}{2}\right) \notag \\
+
\hat{\rho}^1_1 &=& \Tr_2 \left( \hat{\rho}_1 \right) = \Tr_2 \left( \frac{\ket{00}\bra{00} + \ket{11}\bra{00} + \ket{00}\bra{11} + \ket{11}\bra{11}}{2}\right) \notag \\
 
&=& \frac{\ket{0}\bra{0} \braket{0}{0} + \ket{1}\bra{0} \braket{0}{1} + \ket{0}\bra{1} \braket{1}{0} + \ket{1}\bra{1} \braket{1}{1}}{2} \notag \\
 
&=& \frac{\ket{0}\bra{0} \braket{0}{0} + \ket{1}\bra{0} \braket{0}{1} + \ket{0}\bra{1} \braket{1}{0} + \ket{1}\bra{1} \braket{1}{1}}{2} \notag \\
 
&=& \frac{I}{2}.
 
&=& \frac{I}{2}.
Řádka 382: Řádka 386:
 
A každý ví, že stopa kvadrátu takové matice ($I$ je identita) je
 
A každý ví, že stopa kvadrátu takové matice ($I$ je identita) je
 
\begin{equation}
 
\begin{equation}
\Tr{\left(\hat{\rho}^1_1\right)^2} = \frac{1}{2} \leq 1,
+
\Tr \left((\hat{\rho}^1_1)^2\right) = \frac{1}{2} \leq 1,
 
\end{equation}
 
\end{equation}
takže jsme přirozeně dostali smíšený stav z čistého. Je tedy vidět, že smíšené stavy se v kvantové mechanice vyskytnou ať chceme nebo ne.
+
takže jsme přirozeně dostali smíšený stav z čistého. Je tedy vidět, že smíšené stavy se v kvantové mechanice vyskytnou, ať chceme nebo ne.
  
Je možné si položit otázku zda stav provázaný je provázaný v jakékoli bázi, odpověď na ni necháváme čtenáři k dokázání, ano -- provázanost je vlastností zvolené báze.
+
Je možné si položit otázku, zda stav provázaný je provázaný v jakékoli bázi, odpověď na ni necháváme čtenáři k dokázání, ano -- provázanost je vlastností zvolené báze.
  
Zajímavý náhled do problematiky faktorizace stavů vnáší teorém zvaný \textit{Schmidt decomposition}:\\
+
Zajímavý náhled do problematiky faktorizace stavů vnáší teorém zvaný \textbf{Schmidtův rozklad}:\\
 
Nechť $\ket{\psi}$ je čistý stav složeného systému ze systémů $A$ a $B$, potom existují ortonormální báze $\left\{ \ket{i_A} \right\}$, $\left\{ \ket{i_B} \right\}$ prostorů $\mathscr{H}_A$ a $\mathscr{H}_B$ takové, že
 
Nechť $\ket{\psi}$ je čistý stav složeného systému ze systémů $A$ a $B$, potom existují ortonormální báze $\left\{ \ket{i_A} \right\}$, $\left\{ \ket{i_B} \right\}$ prostorů $\mathscr{H}_A$ a $\mathscr{H}_B$ takové, že
 
\begin{equation}
 
\begin{equation}
Řádka 396: Řádka 400:
 
Někdy se mu říká částečná faktorizace.
 
Někdy se mu říká částečná faktorizace.
  
Také se můžeme ptát jak moc je daný stav smíšený a ukazuje se, že jednou z dobrých měr je \textit{Von Neumannova entropie}, která je přímým analogem Shannonovy entropie z teorie informace. Pokud smíšený stav popíšeme jako
+
Také se můžeme ptát jak moc je daný stav smíšený a ukazuje se, že jednou z dobrých měr je \textbf{von Neumannova entropie}, která je přímým analogem Shannonovy entropie z teorie informace. Pokud smíšený stav popíšeme jako
 
\begin{equation}
 
\begin{equation}
 
\hat{\rho} = \sum_i p_i \ket{i}\bra{i},
 
\hat{\rho} = \sum_i p_i \ket{i}\bra{i},
Řádka 406: Řádka 410:
 
Zobecnění takového vztahu tak, aby nebyl závislý na zvolené bázi je
 
Zobecnění takového vztahu tak, aby nebyl závislý na zvolené bázi je
 
\begin{equation}
 
\begin{equation}
S(\hat{\rho}) = - \Tr{\hat{\rho} \ln \hat{\rho}}.
+
S(\hat{\rho}) = - \Tr \left(\hat{\rho} \ln \hat{\rho}\right).
 
\end{equation}
 
\end{equation}
  
Podíváme se proč je zrovna tahle entropie vhodnou mírou smíšenosti. Pro čistý stav platí
+
Podíváme se, proč je zrovna tato entropie vhodnou mírou smíšenosti. Pro čistý stav platí
 
\begin{equation}
 
\begin{equation}
 
\hat{\rho}^2 = \hat{\rho},
 
\hat{\rho}^2 = \hat{\rho},
Řádka 419: Řádka 423:
 
S(\hat{\rho}_1^1) = S(\frac{I}{2}) = \ln 2,
 
S(\hat{\rho}_1^1) = S(\frac{I}{2}) = \ln 2,
 
\end{equation}
 
\end{equation}
což se dá snadno ukázat, že je maximální entropie takového systému. Stav, který jsme dostali z Bellovského stavu, byl maximálně smíšený! Obecně se dá ukázat, že Von Neumannova entropie je svázána se vzdáleností stavu od povrchu Blochovské sféry, o které doporučujeme studentům vyhledat víc informací, pokud ji ještě neviděli.
+
což se dá snadno ukázat, že je maximální entropie takového systému. Stav, který jsme dostali z Bellovského stavu, byl maximálně smíšený! Obecně se dá ukázat, že Von Neumannova entropie je svázána se vzdáleností stavu od povrchu Blochovy sféry, o které doporučujeme studentům vyhledat víc informací, pokud ji ještě neviděli.

Verze z 12. 5. 2017, 16:31

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02KVAN2

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02KVAN2Hoskoant 6. 5. 201411:44
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůPotocvac 12. 6. 201711:17
Header editovatHlavičkový souborPotocvac 12. 6. 201718:07 header.tex
Kapitola0 editovatPředmluvaHoskoant 6. 5. 201410:48 predmluva.tex
Kapitola1 editovatAlgebraická teorie momentu hybnostiPotocvac 8. 6. 201813:31 kapitola1.tex
Kapitola2 editovatTenzorové operátory, Wigner-Eckartův teorémKubuondr 13. 6. 201812:22 kapitola2.tex
Kapitola3 editovatDalší ekvivalentní způsoby zápisu kvantové mechanikyKubuondr 13. 6. 201813:00 kapitola3.tex
Kapitola4 editovatMatice hustoty a smíšené kvantové stavyKubuondr 12. 6. 201809:59 kapitola4.tex
Kapitola5 editovatPřibližné metody v kvantové mechaniceKubuondr 9. 6. 201821:23 kapitola5.tex
Kapitola6 editovatPropagátorPotocvac 3. 5. 201816:34 kapitola6.tex
Kapitola7 editovatDráhový integrálKubuondr 5. 4. 202017:09 kapitola7.tex
Kapitola8 editovatTeorie rozptyluKubuondr 13. 6. 201807:54 kapitola8.tex
Kapitola9 editovatPartiční sumaKubuondr 13. 6. 201808:14 kapitola9.tex
Kapitola10 editovatReprezentace vícečásticových systémůKubuondr 11. 6. 201809:34 kapitola10.tex
Kapitola11 editovatKvantování klasických políKubuondr 13. 6. 201810:45 kapitola11.tex
Kapitola12 editovatLiteraturaHoskoant 6. 5. 201410:53 kapitolaA.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:wkb-1.pdf wkb-1.pdf
Image:wkb-2.pdf wkb-2.pdf
Image:wkb-3.pdf wkb-3.pdf
Image:wkb-4.pdf wkb-4.pdf
Image:wkb-5.pdf wkb-5.pdf
Image:wkb-ho.pdf wkb-ho.pdf
Image:itw-1.pdf itw-1.pdf
Image:drahy-1.pdf drahy-1.pdf
Image:drahy-2.pdf drahy-2.pdf
Image:feynman-1.pdf feynman-1.pdf
Image:feynman-2.pdf feynman-2.pdf
Image:feynman-3.pdf feynman-3.pdf
Image:feynman-4.pdf feynman-4.pdf
Image:rozptyl-1.pdf rozptyl-1.pdf
Image:rozptyl-2.pdf rozptyl-2.pdf

Zdrojový kód

%\wikiskriptum{02KVAN2}
\section{Matice hustoty}
Ve fyzice se setkáváme se situacemi, kdy nelze experimentálně získat úplnou informaci o stavu systému v daný okamžik (např. z důvodu příliš velkého počtu částic, nedostatečné kvality aparatury, či z nemožnosti dostatečně rychle zpracovat získaná data). V takovém případě se uchylujeme ke statistickému popisu. Nejprve si připomeneme, jak ke statistickému popisu přistupuje klasická hamiltonovská fyzika.
 
Ve statistické fyzice je stav systému popsán funkcí $\rho: TM \mapsto \real_0^+$, nazývanou hustota pravděpodobnosti, která každému bodu fázového prostoru $TM$ přiřadí pravděpodobnost (resp. její hustotu), že se systém v daný časový okamžik v daném stavu nalézá. Tato funkce musí splňovat normalizační podmínku
\[
	\int\limits_{TM} \rho(x,p)dx\:dp = 1.
\]
 
Střední hodnota pozorovatelné $A$ popsané funkcí $a(x,p)$ ve stavu určeném hustotou pravděpodobnosti $\rho$ je dána
\[
	\stredni{A}_{\rho} = \int\limits_{TM} a(x,p) \rho(x,p) \: dx \: dp.
\]
 
Vývoj hustoty pravděpodobnosti v čase řídí rovnice kontinuity (viz \cite{posp:TSF})
\[
	\parcder{\rho}{t} = - \sum_{k=1}^{3N} \left[ 
	\parcder{}{x_k} \left( \rho \parcder{x_k}{t} \right) + \parcder{}{p_k} \left( \rho \parcder{x_k}{t} \right) \right].
\]
Za předpokladu, že pohyb každého bodu fázového prostoru je určen Hamiltonovými pohybovými rovnicemi
\[
	\deriv{x_k}{t} = \parcder{H}{p_k}, \quad \deriv{p_k}{t} = - \parcder{H}{x_k},
\]
je možno pro časový vývoj hustoty pravděpodobnosti odvodit Liouvillovu větu
\[
	\parcder{\rho}{t} = \sum_{k=1}^{3N} \left[ \parcder{H}{x_k} \parcder{\rho}{p_k} - 
	\parcder{H}{p_k} \parcder{\rho}{x_k} \right] = \{ H, \rho \}.
\]
 
\begin{remark}
Za povšimnutí stojí, že časový vývoj pozorovatelné $a(x,p)$ je určen rovněž Poissonovou závorkou, ovšem s opačným znaménkem:
\begin{equation} \label{MatH:klasvyvpoz2}
	\parcder{a}{t} = \{ a,H \}.
\end{equation}
\end{remark}
 
V analogii očekáváme, že kvantové hustoty pravděpodobnosti budou operátory na $\hilbert$, které každému stavu přiřadí pravděpodobnost, že se v něm systém nachází.
 
V dalším odvozování uvažujeme konečný počet normalizovaných stavů $(\ket{\psi_m})_{m=1}^n$, ve kterých se systém může nacházet. Zobecnění výsledků, jež obdržíme, na spočetný, nebo dokonce nespočetný počet stavů se nedá obecně provést a sama kvantová mechanika jej bere jako postulát. 
 
Stav systému v kvantové mechanice je popsán vektorem $\ket{\psi} \in \hilbert$. Tomuto stavu je možno přiřadit projektor $\hat{P}_{\ket{\psi}} = \ket{\psi} \bra{\psi}$. Snadno nahlédneme, že tento projektor nezávisí na výběru fáze, tedy $\hat{P}_{\ket{\psi}} = \hat{P}_{e^{i \varphi}\ket{\psi}}$, $\forall \varphi \in \real$.
 
Pokud je systém s pravděpodobností $P_m$ ve stavu popsaném vektorem $\ket{\psi_m}$, potom je přirozené uvažovat operátor 
\begin{equation} \label{MatH:defmathust}
	\hat{\rho} = \sum_{m=1}^n P_m \ket{\psi_m} \bra{\psi_m}.
\end{equation}
Podmínku normalizace
\[
	\sum_{m=1}^n P_m = 1
\]
je možno na úrovni $\hat{\rho}$ vyjádřit pomocí stopy operátoru $\Tr \hat{\rho} = 1$.
 
\begin{define}
Buď $\hat{B}$ operátor na $\hilbert$, $(\ket{i})$ ortonormální báze $\hilbert$. Potom definujeme \textbf{stopu operátoru} $\hat{B}$ dle předpisu
\[
	\Tr \hat{B} = \sum_i \brapigket{i}{\hat{B}}{i}.
\]
\end{define}
 
\begin{remark}
Pokud $|\Tr \hat{B}| < + \infty$, lze ukázat, že hodnota $\Tr \hat{B}$ nezávisí na výběru báze $(\ket{i})$.
\end{remark}
 
\begin{theorem}
Nechť $\ket{\psi} \in \hilbert$, $\braket{\psi}{\psi}=1$, $\hat{\rho}$ operátor definovaný dle \eqref{MatH:defmathust} splňující
\[
	\hat{\rho} \ket{\psi} = \rho \ket{\psi}.
\]
Potom $\rho \in \real_0^+$ ($\hat{\rho}$ je pozitivní operátor).
\end{theorem}
\begin{proof}
Dle definice $\hat{\rho}$ platí
\[
	\hat{\rho} \ket{\psi} = \sum_{m=1}^n P_m \ket{\psi_m} \braket{\psi_m}{\psi} = \rho \ket{\psi}.
\]
Vynásobením této rovnosti zleva bra $\bra{\psi}$ dostáváme
\[
	\sum_{m=1}^n P_m |\braket{\psi_m}{\psi}|^2 = \rho \braket{\psi}{\psi},
\]
odkud již plyne $\rho \in \real_0^+$.
\end{proof}
 
Operátor \eqref{MatH:defmathust} je tedy pozitivní, má jednotkovou stopu a navíc (jak snadno nahlédneme z jeho definice) je samosdružený. Zobecněním získáváme první hledaný postulát.
 
\begin{define}[Postulát 1]\label{MatH:defmathustdef}
Stavy v kvantové mechanice jsou popsány operátory $\hat{\rho}$ nazývanými \textbf{matice hustoty} (operátor hustoty, statistický operátor) s vlastnostmi
	\begin{enumerate}[$(i)$]
		\item $Tr \hat{\rho} = 1$,
		\item $\hat{\rho}$ je pozitivní $\Bigl(\forall \ket{\psi} \in \hilbert: \brapigket{\psi}{\hat{\rho}}{\psi} \geq 0\Bigr)$,
		\item $\hat{\rho}$ je samosdružený $\Bigl(\hat{\rho} = \hat{\rho}^+\Bigr)$.
	\end{enumerate}	
Matice hustoty mající hodnost rovnu jedné nazýváme \textbf{čisté stavy}. Všechny ostatní nazýváme \textbf{smíšené stavy}.
\end{define}
 
\begin{remark}
Podmínky $(i)+(ii)$ implikují omezenost $\hat{\rho}$.
\end{remark}
 
Přestupme nyní k určení střední hodnoty pozorovatelné $\hat{A}$ ve stavu popsaném maticí hustoty $\hat{\rho}$ (označmě $\stredni{\hat{A}}_{\hat{\rho}} $) definované ve smyslu \eqref{MatH:defmathust}. V analogii s klasickou fyzikou píšeme
\[
	\stredni{\hat{A}}_{\hat{\rho}} = \sum_{m=1}^n P_m \stredni{\hat{A}}_{\ket{\psi_m}},
\]
kde $\stredni{\hat{A}}_{\ket{\psi_m}}$ je střední hodnota pozorovatelné $\hat{A}$ ve stavu $\ket{\psi_m}$. Buď $(\ket{i})$ ortonormální báze $\hilbert$, potom
\begin{align*}
	\stredni{\hat{A}}_{\hat{\rho}} &= \sum_{m=1}^n P_m \sum_i \brapigket{\psi_m}{\hat{A}}{i} \braket{i}{\psi_m} =
		\sum_{m=1}^n \sum_i \braket{i}{\psi_m} P_m \brapigket{\psi_m}{\hat{A}}{i} = \\
		&= \sum_{m=1}^n \Tr\left(P_m \ket{\psi_m}\bra{\psi_m} \hat{A}\right) = \Tr\left(\hat{\rho}\hat{A}\right).
\end{align*}
 
\begin{remark}
	Pokud $|\Tr \hat{A}| < + \infty$, platí $\Tr\left(\hat{\rho}\hat{A}\right) = \Tr\left(\hat{A}\hat{\rho}\right)$.
\end{remark}
 
\begin{define}[Postulát 2]
Střední hodnota $\stredni{\hat{A}}_{\hat{\rho}}$ pozorovatelné $\hat{A}$ ve stavu popsaném maticí hustoty $\hat{\rho}$ je rovna
\begin{equation} \label{MatH:defstrhen}
	\stredni{\hat{A}}_{\hat{\rho}} = \Tr\left(\hat{\rho}\hat{A}\right) = \Tr\left(\hat{A}\hat{\rho}\right).
\end{equation}
\end{define}
 
Věnujme se nyní časovému vývoji $\hat{\rho}$. Předpokládejme, že se vývoj každého stavu $\ket{\psi_m(t)}$ řídí Schrödingerovou rovnicí
\begin{equation} \label{MatH:SRmathust}
	i \hbar \deriv{}{t} \ket{\psi_m(t)} = \hat{H} \ket{\psi_m(t)}, \quad \text{resp.} \quad
	- i \hbar \deriv{}{t} \bra{\psi_m(t)} =  \bra{\psi_m(t)} \hat{H} 
\end{equation}
a že k jiné změně směsi stavů nedochází. Matici hustoty $\hat{\rho}$ je tedy možno zapsat
\[
	\hat{\rho}(t)= \sum_{m=1}^n P_m \ket{\psi_m(t)} \bra{\psi_m(t)}
\]
Zderivováním poslední rovnosti podle času a dosazením časových derivací stavů z \eqref{MatH:SRmathust} dostáváme
\begin{align*}
	i \hbar \deriv{}{t} \hat{\rho}(t) &= i \hbar \sum_{m=1}^n P_m 
		\left[ \frac{-i}{\hbar} \hat{H} \ket{\psi_m(t)} \bra{\psi_m(t)} +  
				\frac{i}{\hbar} \ket{\psi_m(t)} \bra{\psi_m(t)} \hat{H}  \right] = \\
		&= \hat{H}\hat{\rho}(t) - \hat{\rho}(t)\hat{H} = 
				\komut{\hat{H}}{\hat{\rho}(t)}.
\end{align*}
 
\begin{define}[Postulát 3]
Časový vývoj matice hustoty $\hat{\rho}(t)$ se řídí von Neumanovou rovnicí
\begin{equation} \label{MatH:defvonNeum}
	i \hbar \deriv{}{t} \hat{\rho}(t) = \komut{\hat{H}}{\hat{\rho}(t)}.
\end{equation}
\end{define}
 
\begin{remark}
Srovnáním von Neumanovy rovnice \eqref{MatH:defvonNeum} s rovnicí popisující časový vývoj operátoru v Heisenbergově reprezentaci \eqref{ZQM:HeissOpEq} zjišťujeme, že komutátory vystupující na pravých stranách těchto rovnic jsou vzájemně opačné. Je to však ve shodě s vývojem pozorovatelných a hustoty pravděpodobnosti v klasické mechanice (ronvice \eqref{ZQM:klasvyvpoz1} a \eqref{MatH:klasvyvpoz2})
\end{remark}
 
Zbývá nám vyřešit, jak se změní matice hustoty $\hat{\rho}$, provedeme-li na systému měření pozorovatelné $\hat{A}$. Mějme čistý stav $\ket{\psi}$, na němž naměříme hodnotu $a$ pozorovatelné $\hat{A}$ (symbolicky $\hat{A}=a$). V důsledku měření přejde systém do stavu $\hat{P}_{\hat{A}=a}\ket{\psi}$, kde $\hat{P}_{\hat{A}=a}$ je projektor na vlastní podprostor příslušející vlastní hodnotě $a$ (projekční postulát).
 
Mějme ortonormální bázi vektorů $(\ket{a,k})_{k=1}^l$ tvořící vlastní podprostor operátoru $\hat{A}$ příslušející jeho vlastní hodnotě $a$, tedy
\[
	\hat{A} \ket{a,k} = a \ket{a,k} \quad k = 1, \ldots, l.
\] 
Ze zimy víme, že pravděpodobnost $W_{\hat{A}=a,\ket{\psi}}$, že při měření pozorovatelné $\hat{A}$ na systému ve stavu $\ket{\psi}$ naměříme hodnotu $a$, je rovna
\begin{equation} \label{MatH:MereniPoz1}
	W_{\hat{A}=a,\ket{\psi}} = \sum_{k=1}^l |\braket{\psi}{a,k}|^2 = \sum_{k=1}^l \braket{\psi}{a,k}\braket{a,k}{\psi} =
		\brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi},	
\end{equation}
kde $\hat{P}_{\hat{A}=a}$ je projekční operátor splňující 
\[
	\hat{P}_{\hat{A}=a} = \sum_{k=1}^l \ket{a,k}\bra{a,k}, \quad
	\hat{P}_{\hat{A}=a} = \hat{P}_{\hat{A}=a} \hat{P}_{\hat{A}=a}.
\]
Je přirozené očekávat, že pravděpodobnost $W_{\hat{A}=a,\hat{\rho}}$ naměření $\hat{A}=a$ na systému popsaného maticí hustoty $\hat{\rho}$ definované dle \eqref{MatH:defmathust} bude rovna
\begin{align*}
	W_{\hat{A}=a,\hat{\rho}} &= \sum_{m=1}^n P_m \brapigket{\psi_m}{\hat{P}_{\hat{A}=a}}{\psi_m} = \\
		&= \sum_{m=1}^n P_m \sum_i \braket{\psi_m}{i} \brapigket{i}{\hat{P}_{\hat{A}=a}}{\psi_m} =
		\Tr\left(\hat{P}_{\hat{A}=a} \hat{\rho}\right),
\end{align*}
kde $(\ket{i})$ představuje ortonormální bázi $\hilbert$.
 
\begin{define}[Postulát 4]
Pravděpodobnost $W_{\hat{A}=a,\hat{\rho}}$, že při měření pozorovatelné $\hat{A}$ na systému nacházejícím se ve stavu popsaném maticí hustoty $\hat{\rho}$ obdržíme hodnotu $a$, je rovna
\begin{equation} \label{MatH:defpravdnam}
	W_{\hat{A}=a,\hat{\rho}} = \Tr\left(\hat{P}_{\hat{A}=a} \hat{\rho}\right).
\end{equation}
\end{define}
 
Pokud na čistém stavu $\ket{\psi}$ provádíme opakované měření pozorovatelné $\hat{A}$ a systém nejsme schopní roztřídit dle výsledku (např. z důvodu velkého počtu měření), získáváme smíšený stav. Držme se opět definice matice hustoty \eqref{MatH:defmathust}. Systém v počátečním čistém stavu $\ket{\psi}$ (předpokládejme $\braket{\psi}{\psi} = 1$) je popsán maticí hustoty $\hat{\rho}_{\ket{\psi}} = \ket{\psi}\bra{\psi}$. Po provedení měření $\hat{A}=a$ systém přechází do stavu $\hat{P}_{\hat{A}=a}\ket{\psi}$ (vzniklý vektor již nemusí být normalizovaný k jedničce) s maticí hustoty $\hat{\rho}_{\hat{A}=a,\ket{\psi}}$ definovanou obdobně
\begin{equation} \label{MatH:MereniPoz2}
	\hat{\rho}_{\hat{A}=a,\ket{\psi}} = \frac{\hat{P}_{\hat{A}=a} \ket{\psi} \bra{\psi} \hat{P}_{\hat{A}=a}}
		{\braket{\hat{P}_{\hat{A}=a} \psi}{\hat{P}_{\hat{A}=a} \psi}} =
			\frac{\hat{P}_{\hat{A}=a} \ket{\psi} \bra{\psi} \hat{P}_{\hat{A}=a}}
		{\brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi}}.
\end{equation}
Dle předpokladu však na čistém stavu $\ket{\psi}$ neměříme pouze hodnotu $\hat{A}=a$, nýbrž hodnoty z celého spektra operátoru $A$. Zohledněním tohoto faktu můžeme výsledný smíšený stav charakterizovat maticí hustoty $\hat{\rho}_{\hat{A},\ket{\psi}}$ definovanou jako
\begin{align*}
	\hat{\rho}_{\hat{A},\ket{\psi}} &= \sum_{a \in \sigma(\hat{A})} W_{\hat{A}=a,\ket{\psi}} \hat{\rho}_{\hat{A}=a,\ket{\psi}} =
		\sum_{a \in \sigma(\hat{A})} \brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi}
		\frac{\hat{P}_{\hat{A}=a} \ket{\psi} \bra{\psi} \hat{P}_{\hat{A}=a}}
		{\brapigket{\psi}{\hat{P}_{\hat{A}=a}}{\psi}} = \\
		&= \sum_{a \in \sigma(\hat{A})} \hat{P}_{\hat{A}=a} \hat{\rho}_{\ket{\psi}} \hat{P}_{\hat{A}=a},
\end{align*}	
kde bylo užito rovností \eqref{MatH:MereniPoz1} a \eqref{MatH:MereniPoz2}.
 
\begin{define}[Postulát 5]
Pokud byl systém na počátku ve stavu popsaném maticí $\hat{\rho}$, po měření pozorovatelné $\hat{A}$ se nachází ve stavu popsaném maticí $\hat{\rho}_{\hat{A}}$ definovanou
\begin{equation} \label{MatH:defpuchfilt}
	\hat{\rho}_{\hat{A}} = \sum_{a \in \sigma(\hat{A})} \hat{P}_{\hat{A}=a} \hat{\rho} \hat{P}_{\hat{A}=a}.
\end{equation}
\end{define}
 
\begin{example}
Matice hustoty na $\hilbert = \komplex^2$.
 
Matice hustoty $\hat{\rho} \in \komplex^{2,2}$ musí dle definice \ref{MatH:defmathustdef} splňovat 3 podmínky. Při jejím hledáním přejdeme do báze $(\hat{\sigma}_1, \hat{\sigma}_2, \hat{\sigma}_3, \opone)$, kde $\hat{\sigma}_i$ jsou Pauliho matice \eqref{ZQM:PaulihoMatice} a $\opone$ představuje jednotkový operátor.
 
Jelikož $\hat{\sigma}_i = \hat{\sigma}_i^+$ a $\opone = \opone^+$, je i operátor $\hat{\rho}$ definovaný jako
\[
	\hat{\rho} = \sum_{i=1}^3 \alpha_i \hat{\sigma}_i + \alpha_4 \opone, \quad \text{kde} \quad \alpha_i \in \real
\]
samosdružený, tedy $\hat{\rho} = \hat{\rho}^+$ a podmínka $(iii)$ v definici \ref{MatH:defmathustdef} je tak triviálně splněna. Dále snadno nahlédneme, že $\Tr \sigma_i = 0$ a $\Tr \opone = 2$. Abychom zaručili jednotkovou stopu matice hustoty $\hat{\rho}$, budeme hledat její vyjádření ve tvaru
\begin{equation} \label{MatH:C2MatHust}
	\hat{\rho} = \frac{1}{2} \left( \opone + \sum_{i=1}^3 \alpha_i \hat{\sigma}_i \right) =
	\frac{1}{2}
	\left( \begin{array}{cc}
    			1+\alpha_3 				& \alpha_1 - i\alpha_2 \\
    			\alpha_1 + i\alpha_2 & 1-\alpha_3 \\	 		\end{array} \right),
\end{equation}
kde bylo užito explicitních tvarů Pauliho matic \eqref{ZQM:PaulihoMatice}. Zbývá nám zaručit pozitivnost $\hat{\rho}$. Snadno nahlédneme, že vlastní čísla matice \eqref{MatH:C2MatHust} jsou rovna
\[
	\lambda^{(\pm)} = \frac{1 \pm \sqrt{\alpha_1^2 +\alpha_2^2 +\alpha_3^2}}{2},
\]
a tudíž je podmínkou pozitivity $\hat{\rho}$ nerovnost
\[
	\alpha_1^2 +\alpha_2^2 +\alpha_3^2 \leq 1.
\]
Poslední nerovnost tvoří množinu, jež bývá nazývána Blochovou koulí. Ta je (i v obecnějších případech) vždy konvexní, přičemž na jejím povrchu leží čisté stavu, uvnitř potom stavy smíšené. Čistý stav $\ket{\psi}$ je vlastním vektorem $\hat{\rho}$ příslušející vlastnímu číslu $\lambda^{(+)}=1$. Jeden z jeho možných tvarů je
\[
	\ket{\psi} = \frac{1}{\sqrt{2(1-\alpha_3)}} \left( \begin{array}{c}
    			\alpha_1 - i\alpha_2 	 \\
    			1-\alpha_3 \\	 \end{array} \right), \quad \braket{\psi}{\psi} = 1. 
\] 
Snadno nahlédneme, že 
\[
	\ket{\psi} \bra{\psi} = \frac{1}{2(1-\alpha_3)} \left( \begin{array}{c}
   						\alpha_1 - i\alpha_2 	 \\
    						1-\alpha_3 \\						 \end{array} \right)
    																\left( \begin{array}{cc}
    						\alpha_1 + i\alpha_2, & 1-\alpha_3	 \\ 			\end{array} \right) = \hat{\rho}.
\]
Předpokládejme hamiltonián $\hat{H}$ ve tvaru $\hat{H} = \left( \begin{array}{cc}
    			E_1 & 0 \\
    			0 & E_2 \\	 \end{array} \right)$, $E_1 \leq E_2$. Položme $\alpha_i = \alpha_i(t)$. Víme, že časový vývoj matice hustoty $\hat{\rho}$ se řídí von Neumanovou rovnicí \eqref{MatH:defvonNeum}, která po dosazení $\hat{H}$, $\hat{\rho}$ a po úpravě získává tvar
\[
	i \hbar \left( \begin{array}{cc}
    					\dot{\alpha}_3 				& \dot{\alpha}_1 - i\dot{\alpha}_2 \\
    					\dot{\alpha}_1 + i\dot{\alpha}_2 & \dot{\alpha}_3 \\	 		\end{array} \right) = (E_1 - E_2)
    			\left( \begin{array}{cc}
    					0 				& \alpha_1 - i\alpha_2 \\
    					-\alpha_1 - i\alpha_2 & 0 \\	 		\end{array} \right).	
\]
Řešení pro $\alpha_3(t)$ je triviální. Řešení $\alpha_1(t)$, $\alpha_1(t)$ se naleze elegantně přechodem k nové funkci $z(t)=\alpha_1(t)-i\alpha_2(t)$. Časový vývoj matice hustoty $\hat{\rho}=\hat{\rho}(t)$ je pak možno zapsat
\[
	\hat{\rho}(t) = \frac{1}{2} \left( \begin{array}{cc}
    		1 + \alpha_3(0) & \bigl[\alpha_1(0) - i\alpha_2(0)\bigr] \exp \left\{ - \frac{i}{\hbar} (E_1 - E_2) t  \right\} \\
    		\bigl[\alpha_1(0) + i\alpha_2(0)\bigr] \exp \left\{ \frac{i}{\hbar} (E_1 - E_2) t  \right\} & 1 - \alpha_3(0) \\ 
    							\end{array} \right).
\]
Dále určíme střední hodnotu energie v čase $t=0$ ve stavu $\hat{\rho}$ ($\hat{\rho}$ a $\hat{H}$ zůstávají stále stejné). K tomuto účelu si zvolíme bázi v prostoru $\hilbert = \komplex^2: \Biggl(\ket{1} = \left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right), \ket{2} = \left( \begin{array}{c} 0 \\ 1 \\ \end{array} \right)\Biggr)$. Ze \eqref{MatH:defstrhen} víme, že střední hodnota energie systému ve stavu $\hat{\rho}$ je určena
\[
	\stredni{\hat{H}}_{\hat{\rho}} = \Tr \left(\hat{\rho}\hat{H}\right) = \sum_{i=1}^2 \brapigket{i}{\hat{\rho}\hat{H}}{i} =
		\frac{1}{2} \left[ E_1(1+\alpha_3) + E_2 (1-\alpha_3)  \right].
\] 
Snadno nahlédneme $\stredni{\hat{H}}_{\hat{\rho}} \in \left\langle E_1, E_2 \right\rangle$, neboť $\alpha_3 \in \left\langle -1, 1 \right\rangle$. Pravděpodobnost $W_{\hat{H}=E_1}$ naměření $\hat{H}=E_1$ je dle \eqref{MatH:defpravdnam} rovna 
\[
	W_{\hat{H}=E_1} = \Tr\left(\hat{P}_{\hat{H}=E_1} \hat{\rho}\right) = \frac{1}{2} (1 + \alpha_3),
\]
kde $\hat{P}_{\hat{H}=E_1}$ představuje projekční operátor tvaru $\hat{P}_{\hat{H}=E_1} = \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \\ \end{array} \right)$. Po průchodu filtrem přechází matice hustoty $\hat{\rho}$ na novou matici $\hat{\rho}_{\hat{H}}$ podle vztahu \eqref{MatH:defpuchfilt}. Přímo můžeme psát
\[
	\hat{\rho}_{\hat{H}} = \sum_{E=E_1,E_2} \hat{P}_{\hat{H}=E} \hat{\rho} \hat{P}_{\hat{H}=E} = \frac{1}{2}
	\left( \begin{array}{cc}
    					1+\alpha_3 & 0 \\
    					0 & 1-\alpha_3 \\	\end{array} \right).
\]
Měřením energie tedy byla vytvořena stacionární matice hustoty. 
\end{example}
 
\begin{example}
Mějme kanonický soubor kvantových jednorozměrných harmonických oscilátorů s určeným multiplikátorem $\beta = \frac{1}{k_BT}$. Určete střední hodnotu energie a její rozptyl. Výsledky ověřte limitními přechody $\beta \rightarrow 0$, $\beta \rightarrow + \infty$.
 
Nejpravděpodobnější rozdělení $\rho(x,p)$ klasického kanonického souboru popsaného hamiltoniánem $H(x,p)$ má tvar (viz \cite{posp:TSF})
\[
	\rho(x,p) = A \: \exp\left\{-\beta H(x,p) \right\},
\]
kde A je normalizační konstanta. Očekáváme, že kvantově-mechanický soubor určený hamiltoniánem $\hat{H}$ bude popsán maticí hustoty $\hat{\rho}$ definovanou
\[
	\hat{\rho} = \frac{1}{\Tr e^{-\beta\hat{H}}} e^{-\beta\hat{H}},
\]
Dělením stopou $\Tr e^{-\beta\hat{H}}$ je zajištěna jednotková stopa $\hat{\rho}$, samosdružennost $\hat{\rho}$ plyne ze samosdružennosti $\hat{H}$ a pozitivnost $\hat{\rho}$ je snadným důsledkem teorie uvedené u Ritzovy variační metody v následující kapitole. $\hat{\rho}$ je tedy maticí hustoty v korektním smyslu. Ze zimy víme, že soubor vlastních funkcí jednorozměrného harmonického oscilátoru $(\ket{n})_{n=0}^{+\infty}$ tvoří úplnou ortonormální bázi $\hilbert$. Navíc
\[
	\hat{H}\ket{n} = \hbar \omega (n+\frac{1}{2})\ket{n}.
\]
Střední hodnotu energie určíme ze \eqref{MatH:defstrhen}
\[
	\stredni{\hat{H}}_{\hat{\rho}} = \Tr \left(\hat{\rho} \hat{H}\right) = \frac{1}{\Tr e^{-\beta\hat{H}}}
		\sum_{n=0}^{+\infty} \brapigket{n}{e^{-\beta\hat{H}} \hat{H}}{n}.
\]
S operátorem v exponentu se vypořádáme provedením rozkladu dle jeho spektra, hamiltonián v sumě mimo exponent necháme působit na ket $\ket{n}$
\begin{equation} \label{MatH:HOstrhe}
	\stredni{\hat{H}}_{\hat{\rho}} = \frac{1}{\sum_{n=0}^{+\infty} e^{-\beta\hbar\omega(n+\frac{1}{2})}} 
		\sum_{n=0}^{+\infty} \hbar\omega(n+\frac{1}{2}) e^{-\beta\hbar\omega(n+\frac{1}{2})}.
\end{equation}
Označne
\[
	Z(\beta) = \sum_{n=0}^{+\infty} e^{-\beta\hbar\omega(n+\frac{1}{2})}.
\]
Jedná se o geometrickou řadu, jež můžeme sečíst s výsledkem
\[
	Z(\beta) = \frac{e^{-\frac{\beta\hbar\omega}{2}}}{1-e^{-\beta\hbar\omega}} =
		 \frac{1}{2 \sinh\left( \frac{ \beta \hbar \omega}{2} \right)}.
\]
Výraz \eqref{MatH:HOstrhe} je možno zapsat pomocí $Z(\beta)$
\[
	\stredni{\hat{H}}_{\hat{\rho}} = \frac{1}{Z(\beta)} \frac{- d Z(\beta)}{d \beta}
\]
a tím snadno najít hledanou střední hodnotu
\[
	\stredni{\hat{H}}_{\hat{\rho}} = \frac{\hbar \omega}{2} \coth \left( \frac{\beta\hbar\omega}{2} \right) \rightarrow
		\begin{cases}
			\xrightarrow[]{\beta \rightarrow 0 \: (T \rightarrow +\infty)} + \infty,  \\ 
			\xrightarrow[]{\beta \rightarrow +\infty \: (T \rightarrow 0)}  \frac{\hbar \omega}{2}.
		\end{cases}
\]
 
Podobnými úpravami získáme vyjádření pro rozptyl energie
\[
	(\Delta \hat{H})_{\hat{\rho}}^2 = \stredni{\hat{H}^2}_{\hat{\rho}} - \stredni{\hat{H}}^2_{\hat{\rho}} =
		\left( \frac{\hbar \omega}{2} \right)^2 \frac{1}{\sinh^2\left( \frac{\beta \hbar \omega}{2} \right)} \rightarrow
		\begin{cases}
			\xrightarrow[]{\beta \rightarrow 0 \: (T \rightarrow +\infty)} + \infty,  \\ 
			\xrightarrow[]{\beta \rightarrow +\infty \: (T \rightarrow 0)} 0.
		\end{cases}
\]
Zamyšlení nad získanými limitními výsledky nechám na čtenáři.
\end{example}
 
 
\subsection{Provázané stavy}
Mohlo by se zdát, že smíšené stavy vůbec nemusíme uvažovat v situacích, kdy máme přesné informace o systému, není to ale tak.
 
Uvažujme Hilbertův prostor $\mathbb{C}^2$ daný složením dvou identických systémů, každý s Hilbertovým prostorem $\mathbb{C}$ ($\mathbb{C} \otimes \mathbb{C}$ je izomorfní $\mathbb{C}^2$), 4 vektory báze takového prostoru označíme
\begin{equation}
	\left\{ \ket{00}, \ket{01}, \ket{10}, \ket{11} \right\},
\end{equation}
což je zkrácený zápis tenzorového součinu, zavedený už v zimě. Zkoumejme stav
\begin{equation}
	\ket{\psi_1} = \frac{\ket{00} + \ket{11}}{\sqrt{2}},
\end{equation}
na tomto stavu je zajímavé, že pokud změříme jeden z podsystémů, víme hned, v jakém stavu je druhý podsystém (to vede na EPR paradox, diskuzi mezi EPR trojicí a N. Bohrem doporučujeme jako zajímavou četbu). Můžete sami navíc ověřit, že neexistují stavy $\ket{a}$ a $\ket{b}$ takové, aby $\ket{\psi_1} = \ket{a}\ket{b}$ -- tomu se říká (ne)faktorizovatelnost stavu.
 
To není jediný takový stav, další jsou
\begin{eqnarray}
	\ket{\psi_2} &=& \frac{\ket{00} - \ket{11}}{\sqrt{2}}, \\
	\ket{\psi_3} &=& \frac{\ket{10} + \ket{01}}{\sqrt{2}}, \\
	\ket{\psi_4} &=& \frac{\ket{01} - \ket{10}}{\sqrt{2}},
\end{eqnarray}
dohromady se jim říká Bellovské stavy a tvoří tzv. Bellovu bázi našeho Hilbertova prostoru. Z toho, jak jsme zavedli matici hustoty, je jasné, že matice hustoty korespondující s $\ket{\psi_1}$ je
\begin{equation}
	\hat{\rho}_1 = \left( \frac{\ket{00} + \ket{11}}{\sqrt{2}} \right)\left( \frac{\bra{00} + \bra{11}}{\sqrt{2}} \right)
\end{equation}
 
Připomeňme kritérium čistoty stavu pro kvadrát matice hustoty
\begin{equation}
	\Tr \hat{\rho}^2 \leq 1,
\end{equation}
které pro $\hat{\rho}_1$ dá jedničku, jak má.
 
Pokud by obecná matice hustoty popisovala složený systém, je otázka, jaký stav (matici hustoty) přiřadit příslušnému podsystému.
 
Uvažujme dva systémy $A$ a $B$ a jejich složenému stavu přiřaďme $\hat{\rho}^{AB}$. Podsystému $A$ se pak přirozeně přiřazuje matice $\hat{\rho}^A$, kterou získáme \textit{částečnou stopou} přes systém $B$, označenou a definovanou jako
\begin{eqnarray}
	\hat{\rho}^A &=& \Tr_B \left( \hat{\rho}^{AB} \right), \\
	\Tr_B \left( \ket{a_1} \bra{a_2} \otimes \ket{b_1} \bra{b_2} \right) &\equiv & \ket{a_1} \bra{a_2} \Tr\left(\ket{b_1} \bra{b_2}\right),
\end{eqnarray}
pro $\ket{a_1}, \ket{a_2} \in \mathscr{H}_A$, $\ket{b_1}, \ket{b_2} \in \mathscr{H}_B$. Tento postup je jediný kompatibilní s opačnou procedurou, kdy známe stavy podsystémů a složenému stavu přiřazujeme tenzorový součin jejich matic hustoty ($\hat{\rho}^A \otimes \hat{\rho}^B$).
 
Pokud nyní zjistíme jaká matice hustoty odpovídá libovolnému podsystému v Bellovském stavu $\hat{\rho_1}$, zjistíme po krátkém výpočtu
\begin{eqnarray}
	\hat{\rho}^1_1 &=& \Tr_2 \left( \hat{\rho}_1 \right) = \Tr_2 \left( \frac{\ket{00}\bra{00} + \ket{11}\bra{00} + \ket{00}\bra{11} + \ket{11}\bra{11}}{2}\right) \notag \\
	&=& \frac{\ket{0}\bra{0} \braket{0}{0} + \ket{1}\bra{0} \braket{0}{1} + \ket{0}\bra{1} \braket{1}{0} + \ket{1}\bra{1} \braket{1}{1}}{2} \notag \\
	&=& \frac{I}{2}.
\end{eqnarray}
A každý ví, že stopa kvadrátu takové matice ($I$ je identita) je
\begin{equation}
	\Tr \left((\hat{\rho}^1_1)^2\right) = \frac{1}{2} \leq 1,
\end{equation}
takže jsme přirozeně dostali smíšený stav z čistého. Je tedy vidět, že smíšené stavy se v kvantové mechanice vyskytnou, ať chceme nebo ne.
 
Je možné si položit otázku, zda stav provázaný je provázaný v jakékoli bázi, odpověď na ni necháváme čtenáři k dokázání, ano -- provázanost je vlastností zvolené báze.
 
Zajímavý náhled do problematiky faktorizace stavů vnáší teorém zvaný \textbf{Schmidtův rozklad}:\\
Nechť $\ket{\psi}$ je čistý stav složeného systému ze systémů $A$ a $B$, potom existují ortonormální báze $\left\{ \ket{i_A} \right\}$, $\left\{ \ket{i_B} \right\}$ prostorů $\mathscr{H}_A$ a $\mathscr{H}_B$ takové, že
\begin{equation}
	\ket{\psi} = \sum_i \lambda_i \ket{i_A} \ket{i_B},
\end{equation}
kde navíc $\lambda_i \geq 0$ pro $\forall i$, $\sum_i \lambda_i^2 = 1$. $\lambda_i$ se nazývají Schmidtovy koeficienty.\\
Někdy se mu říká částečná faktorizace.
 
Také se můžeme ptát jak moc je daný stav smíšený a ukazuje se, že jednou z dobrých měr je \textbf{von Neumannova entropie}, která je přímým analogem Shannonovy entropie z teorie informace. Pokud smíšený stav popíšeme jako
\begin{equation}
	\hat{\rho} = \sum_i p_i \ket{i}\bra{i},
\end{equation}
von Neumannova entropie je definována
\begin{equation}
	S(\hat{\rho}) = - \sum_i p_i \ln p_i. \label{eq:rozkladP}
\end{equation}
Zobecnění takového vztahu tak, aby nebyl závislý na zvolené bázi je
\begin{equation}
	S(\hat{\rho}) = - \Tr \left(\hat{\rho} \ln \hat{\rho}\right).
\end{equation}
 
Podíváme se, proč je zrovna tato entropie vhodnou mírou smíšenosti. Pro čistý stav platí
\begin{equation}
	\hat{\rho}^2 = \hat{\rho},
\end{equation}
takže jedno $p_i$ v \eqref{eq:rozkladP} je jednička a zbytek nuly, tudíž $S=0$ pro takový stav.
 
A pokud zkusíme spočíst takovou entropii pro redukovanou matici zmiňovaného Bellovského stavu, dostaneme
\begin{equation}
	S(\hat{\rho}_1^1) = S(\frac{I}{2}) = \ln 2,
\end{equation}
což se dá snadno ukázat, že je maximální entropie takového systému. Stav, který jsme dostali z Bellovského stavu, byl maximálně smíšený! Obecně se dá ukázat, že Von Neumannova entropie je svázána se vzdáleností stavu od povrchu Blochovy sféry, o které doporučujeme studentům vyhledat víc informací, pokud ji ještě neviděli.