Součásti dokumentu 02KVAN2
Zdrojový kód
%\wikiskriptum{02KVAN2}
\section{Partiční suma}
Nezávisí-li $\hat{H}$ explicitně na čase, lze propagátor přepsat s pomocí báze $(\ket{\psi_j})_{j\in\mathscr{I}}$, $\hat{H} \ket{\psi_j} = E_j \ket{\psi_j} $ na
\begin{equation*}
\begin{aligned}
\prop{\vec{x}_2}{t_2}{\vec{x}_1}{t_1} =: K(\vec{x}_2; \vec{x}_1; t_2 - t_1) &= \braket{\vec{x}_2, t_2}{\vec{x}_1, t_1} \\
&= \sum_n \braket{\vec{x}_2, t_2}{\psi_n} \braket{\psi_n}{\vec{x}_1, t_1} \\
&= \sum_n \exp \left( - \frac{i}{\hbar} E_n (t_2 - t_1) \right) \psi_n(\vec{x}_2) \overline{\psi}_n(\vec{x}_1).
\end{aligned}
\end{equation*}
Pokud se formálně označí $t_2 - t_1 = - i \beta \hbar$, dostáváme matici hustoty Gibbsova rozdělení v $x$-reprezentaci
\begin{equation*}
K(\vec{x}_2; \vec{x}_1; - i \beta \hbar) = \sum_n e^{- \beta E_n} \psi_n(\vec{x}_2) \overline{\psi}_n(\vec{x}_1) = \brapigket{\vec{x}_2}{e^{-\beta \hat{H}}}{\vec{x}_1}.
\end{equation*}
Metody výpočtu propagátoru tedy můžeme použít pro získání tohoto objektu.
Z nezávislosti stopy na volbě báze a jejích vzorců v energetické a v $x$-reprezentaci můžeme určit partiční funkci
\begin{equation*}
Z(\beta) = \sum_n e^{- \beta E_n} = \Tr \left(e^{-\beta \hat{H}}\right) = \int \dif^3 x K(\vec{x}; \vec{x}; - i \hbar \beta),
\end{equation*}
Úplně stejně jako ve statistické fyzice se nyní může odvodit, že střední hodnoty a další momenty se dají vyjádřit jako
\begin{equation*}
\begin{aligned}
\stredni{E}_{\hat{\rho}} &= - \frac{\partial }{\partial \beta} \ln (Z(\beta)), \\
\stredni{\left( E - \stredni{E} \right)^2}_{\hat{\rho}} &= \frac{\partial^2 }{\partial \beta^2} \ln (Z(\beta)),\\
&\hskip 7pt\vdots
\end{aligned}
\end{equation*}
%================================================================================
\subsection{Použití k výpočtu středních hodnot pozorovatelných ve vakuovém stavu}
%================================================================================
Uvažujme pozorovatelnou $\hat{A}$ a stav $\ket{0}$ s minimální energií. Úloha určení střední hodnoty $\langle A \rangle_{\ket{0}}$ je obzvlášť důležitá v teorii pole, se kterou se setkáme v poslední kapitole, a kde je mnoho problémů možno převést na hledání \textbf{vakuových středních hodnot}.
Trik, který se použije k výpočtu takové střední hodnoty operátoru $\hat{A}$, závisejícího jen na $A = A(\vec{x})$, je následující:
\begin{equation}
\begin{aligned}
\brapigket{0}{\hat{A}}{0} &= \lim_{T \rightarrow 0^+} \frac{\Tr\left(\hat{A} \hat{\rho}(T)\right)}{Z(\beta)} = \lim_{\beta \rightarrow +\infty} \frac{\Tr\left(\hat{A} \hat{\rho}(\beta) \right)}{Z(\beta)} \\
&= \lim_{\beta \rightarrow +\infty} \frac{\int \dif^3 x \sum_n e^{- \beta E_n} \psi_n(\vec{x}) \overline{\psi}_n(\vec{x}) A(\vec{x})}{Z(\beta)} \\
&= \lim_{\beta \rightarrow +\infty} \frac{\int \dif^3 x A(\vec{x}) K(\vec{x}; \vec{x}; - i \beta \hbar)}{Z(\beta)}.
\end{aligned}
\label{eq:stredniHodnota}
\end{equation}
Do \eqref{eq:stredniHodnota} dosadíme za propagátor pomocí dráhového integrálu
\begin{equation*}
\brapigket{0}{\hat{A}}{0} = \lim_{\beta \rightarrow +\infty} \frac{1}{Z(\beta)} \int \mathscr{D} \vec{x}(\tau) A(\vec{x}(0)) \exp \left( \frac{1}{\hbar} \int_0^{\beta\hbar} L_{\mathrm{Eukl.}} (\vec{x}(\tau), \dot{\vec{x}} (\tau), \tau) \dif \tau \right),
\end{equation*}
kde se integruje přes všechny uzavřené trajektorie $\vec{x}(\tau): \langle 0, \beta\hbar \rangle \rightarrow \mathbb{R}^3$, $\vec{x}(0) = \vec{x}(\beta\hbar)$ a $L_{\mathrm{Eukl.}}$ získáme nahrazením:
\begin{eqnarray}
t & \rightarrow & - i \tau, \\
\dif t & \rightarrow & -i \dif \tau, \\
\frac{\dif}{\dif t} & \rightarrow & i \frac{\dif}{\dif \tau}.
\end{eqnarray}
Toto nahrazení dává
\begin{equation}
\begin{aligned}
L &= \frac{1}{2} m \dot{\vec{x}}^2 - V(\vec{x}) \\
\rightarrow L_{\mathrm{Eukl.}} &= - \frac{1}{2} m \dot{\vec{x}}^2 - V(\vec{x}),
\end{aligned}
\end{equation}
takže $L_{\mathrm{Eukl.}} \leq 0$ pro kladné $V$. Abychom mohli pokračovat dál, musíme si definovat další pojem.
\subsubsection{Funkcionální derivace}
\label{sec:funkcionalni derivace}
Bez soustředění se na matematickou korektnost se zde stručně seznámíme s \textbf{funkcionální derivací}. Je-li
\begin{equation}
F[\eta] = \int G(\eta, \dot{\eta}, \ddot{\eta}, \ldots, \eta^{(k)}, t) \dif t,
\end{equation}
kde $\eta: \langle a, b \rangle \rightarrow \mathbb{R}$ s příslušnými derivacemi, zavedeme funkcionální derivaci
\begin{equation}
\frac{\delta F}{\delta \eta (t)}
\end{equation}
pomocí výpočtu variace $F$:
\begin{equation}
\delta F[\eta] = \int_a^b \frac{\delta F}{\delta \eta(t)} \delta \eta (t) \dif t.
\end{equation}
Příklad takového systému jsme už viděli v \cite{sto:TEF}
\begin{equation}
S[\eta] = \int_a^b L(\eta, \dot{\eta}, t) \dif t,
\end{equation}
kde $\frac{\delta S}{\delta \eta(t)} $ dává přesně levou stranu Euler--Lagrangeových rovnic. Při výpočtu tedy rozvineme funkci $ G(\eta, \dot{\eta}, \ddot{\eta}, \ldots, \eta^{(k)}, t)$ do Taylorovy řady a ponecháme jen první řád.
Často lze psát
\begin{equation}
\frac{\delta F}{\delta \eta (t)} = \lim_{\varepsilon \rightarrow 0^+} \frac{1}{\varepsilon} \left( F[\eta + \varepsilon \delta(t)] - F[\eta] \right),
\end{equation}
podobně jako jsme to provedli při výpočtu propagátoru LHO dráhovým integrálem.
Vraťme se k výpočtu střední hodnoty pozorovatelné $\hat{A}$ ve stavu $\ket{0}$. Označíme si
\begin{equation}
Z[\beta, \vec{\eta}] = \int \mathscr{D} \vec{x}(\tau) \exp \left( \frac{1}{\hbar} \int_0^{\hbar \beta} \left\lbrace L_{\mathrm{Eukl.}}(\vec{x}(\tau), \dot{\vec{x}} (\tau), \tau) + \vec{x}(\tau) \cdot \vec{\eta}(\tau) \right\rbrace \dif \tau \right),
\end{equation}
kde dráhový integrál je opět přes všechny uzavřené trajektorie $\vec{x}: \langle 0, \hbar \beta \rangle \rightarrow \mathbb{R}^3$.
Zapišme $A(\vec{x})$ pomocí vytvořujícího funkcionálu (Taylorova rozvoje)
\begin{equation}
A(\vec{x}) = \sum_{\vec{n}} a_{\vec{n}} x_1^{n_1} x_2^{n_2} x_3^{n_3} \equiv \sum_{\vec{n}} a_{\vec{n}} \vec{x}^{\vec{n}},
\end{equation}
potom
\begin{equation*}
\brapigket{0}{\hat{A}}{0} = \left. \lim_{\beta \rightarrow +\infty} \frac{1}{Z(\beta)} \int \mathscr{D} \vec{x}(\tau) \sum_{\vec{n}} a_{\vec{n}} \vec{x}^{\vec{n}}(0) \exp \left( \frac{1}{\hbar} \int_0^{\hbar \beta} \left\lbrace L_{\mathrm{Eukl.}} + \vec{x} \vec{\eta} \right\rbrace \dif \tau \right) \right|_{\vec{\eta} = 0},
\end{equation*}
kde každé $x_i^k(0)$ rozepíšeme pomocí funkcionální derivace jako $\left(\frac{\hbar \delta}{\delta \eta_i(0)}\right)^k$ díky exponenciále, která za nimi následuje. Obdržíme tak výsledek ve velmi kompaktní formě, zapsaný pomocí zavedeného označení
\begin{equation}
\brapigket{0}{\hat{A}}{0} = \left. \lim_{\beta \rightarrow +\infty} \frac{1}{Z(\beta)} A\left( \frac{\hbar \delta}{\delta \eta_1(0)}, \frac{\hbar \delta}{\delta \eta_2(0)}, \frac{\hbar \delta}{\delta \eta_3(0)} \right) Z[\beta, \vec{\eta}] \right|_{\vec{\eta}(\tau) \equiv 0}.
\end{equation}
To je mimořádně užitečný vztah pro zájemce o QFT. Zápisem funkcionálních derivací v závorce máme na mysli dosazení za příslušné složky $\vec{x}$ do vytvořujícího funkcionálu pro $A(\vec{x})$.