Součásti dokumentu 02KVAN2
Zdrojový kód
%\wikiskriptum{02KVAN2}
\section{Teorie rozptylu}
%================================================================================
\subsection{Propagátor poruchově}
%================================================================================
Poruchový rozvoj propagátoru je klíčovým objektem pro kvantovou teorii rozptylu. Budeme uvažovat nejjednodušší případ klasického hamiltoniánu
\begin{equation}
H = \frac{\vec{p}^2}{2m} + \varepsilon V(\vec{x}, t).
\end{equation}
Rozvoj $\prop{\vec{x}_f}{t_f}{\vec{x}_i}{t_i}$ lze odvodit přímo z formulky pro operátor časového vývoje \eqref{PM:NPTUDrozvoj} se členy \eqref{PM:NPTUDaprox}, získanými prostředky nestacionární poruchové teorie. Postačí převést zpět z Diracova do Schrödingerova obrazu:
\begin{equation}
\begin{aligned}
\hat{U}(t_f, t_i) &= \hat{U}_0(t_f, t_i) \sum_{n=0}^{+\infty} \varepsilon^n U^{D^{(n)}}(t_f, t_i) = \sum_{n=0}^{+\infty} \varepsilon^n U^{(n)}(t_f, t_i), \\
\hat{U}^{(n)}(t_f, t_i) &= \hat{U}_0(t_f, t_i) U^{D^{(n)}}(t_f, t_i) =\\
&= \left( \frac{-i}{\hbar} \right)^n \mathop{\int\int\cdots\int}_{t_0 < t_1 < t_2< \ldots < t_n < t_f} dt_1 dt_2 \ldots dt_n \hat{U}_0(t_f, t_i) \hat{V}^D (t_n) \ldots \hat{V}^D (t_2) \hat{V}^D (t_1).
\end{aligned}
\label{}
\end{equation}
Využitím
\begin{equation*}
\hat{V}^D(t) = \hat{U}_0(t, t_0)^{-1} \hat{V}(t) \hat{U}_0(t, t_0)
\end{equation*}
a vztahů \eqref{ZQM:EvolOpVlastnosti} platných pro $\hat{U}_0$ dostáváme po troše úsilí zápis ve Schrödingerově obraze
\begin{equation}
\begin{aligned}
\hat{U}^{(n)}(t_f, t_i) &= \left( \frac{-i}{\hbar} \right)^n \mathop{\int\int\cdots\int}_{t_0 < t_1 < t_2< \ldots < t_n < t_f} dt_1 dt_2 \ldots dt_n \\
&\qquad \hat{U}_0(t_f, t_n) \hat{V}(t_n) \hat{U}_0(t_n, t_{n-1}) \ldots \hat{U}_0(t_2, t_1) \hat{V}(t_1) \hat{U}_0(t_1, t_0).
\end{aligned}
\label{}
\end{equation}
Vzpomeneme si, že propagátor je jednoduše maticovým elementem $\hat{U}(t_f, t_i)$, tedy platí
\begin{equation}
\begin{aligned}
\prop{\vec{x}_f}{t_f}{\vec{x}_i}{t_i} &= \sum_{n=0}^{+\infty} \varepsilon^n \propU{}{(n)}{\vec{x}_f}{t_f}{\vec{x}_i}{t_i}, \\
\propU{}{(n)}{\vec{x}_f}{t_f}{\vec{x}_i}{t_i} &= \left( \frac{-i}{\hbar} \right)^n \mathop{\int\int\cdots\int}_{t_0 < t_1 < t_2< \ldots < t_n < t_f} dt_1 dt_2 \ldots dt_n \\
&\qquad \brapigket{\vec{x}_f}{\hat{U}_0(t_f, t_n) \hat{V}(t_n) \hat{U}_0(t_n, t_{n-1}) \ldots \hat{U}_0(t_2, t_1) \hat{V}(t_1) \hat{U}_0(t_1, t_0)}{\vec{x}_i}.
\end{aligned}
\label{}
\end{equation}
Mezi každou dvojici operátorů vložme rozklad jednotky. Mezipoloh postačí uvažovat $n$, protože maticový element $\hat{V}(t)$ v $x$-reprezentaci je úměrný $\delta$-funkci. Tím přepíšeme všechny evoluční operátory v posledním vztahu na propagátory:
\begin{equation}
\begin{aligned}
\propU{}{(n)}{\vec{x}_f}{t_f}{\vec{x}_i}{t_i} &= \left( \frac{-i}{\hbar} \right)^n \mathop{\int\int\cdots\int}_{t_0 < t_1 < t_2< \ldots < t_n < t_f} dt_1 dt_2 \ldots dt_n \int d^3\vec{x}_1 \int d^3\vec{x}_2 \cdots \int d^3\vec{x}_n \\
&\qquad \propU{0}{}{\vec{x}_f}{t_f}{\vec{x}_n}{t_n} V(\vec{x}_n, t_n) \propU{0}{}{\vec{x}_n}{t_n}{\vec{x}_{n-1}}{t_{n-1}} V(\vec{x}_{n-1},t_{n-1}) \times \\
&\qquad \ldots \times \propU{0}{}{\vec{x}_2}{t_2}{\vec{x}_1}{t_1} V(\vec{x}_1, t_1) \propU{0}{}{\vec{x}_1}{t_1}{\vec{x}_0}{t_0}.
\end{aligned}
\label{}
\end{equation}
Závislost mezí integrálu jsme v kapitole \ref{sec:nestac} vyřešili zavedením operátoru časového uspořádání $\hat{T}$. Formalizmus propagátoru nám umožňuje nové elegantní řešení použitím retardovaného propagátoru, který si „ohlídá“ správné uspořádání mezí sám a jinak se redukuje na nulu. Můžeme tedy rozdělit všechny integrály a dospět k finální podobě poruchového členu (úvaha funguje pouze, pokud jsme měli správně uspořádané $t_i < t_f$ na začátku, proto $K^{(+)}$ i na levé straně):
\begin{equation}
\begin{aligned}
\propU{}{(+)^{(n)}}{\vec{x}_f}{t_f}{\vec{x}_i}{t_i} &= \left( \frac{-i}{\hbar} \right)^n \prod_{k=1}^n \left( \int d^3\vec{x}_k \int_{t_i}^{t_f} dt_k \right) \\
&\qquad \propU{0}{(+)}{\vec{x}_f}{t_f}{\vec{x}_n}{t_n} V(\vec{x}_n, t_n) \propU{0}{(+)}{\vec{x}_n}{t_n}{\vec{x}_{n-1}}{t_{n-1}} \times \\
&\qquad \ldots \times \propU{0}{(+)}{\vec{x}_2}{t_2}{\vec{x}_1}{t_1} V(\vec{x}_1, t_1) \propU{0}{(+)}{\vec{x}_1}{t_1}{\vec{x}_0}{t_0}.
\end{aligned}
\label{eq:Krozvoj}
\end{equation}
%================================================================================
\subsubsection{Feynmanovy diagramy}
%================================================================================
Existuje velmi jednoduchý a slavný způsob, jak si $n$-tý člen rozvoje zapamatovat: poprvé se zde setkáváme s Feynmanovými diagramy, těmi nejzákladnějšími. Náš Feynmanův diagram bude pouze lomená čára a body na ní. Každá úsečka spojující místo $\vec{x}_a$ v čase $t_a$ s $\vec{x_b}$ v čase $t_b$ odpovídá v integrálu \eqref{eq:Krozvoj} propagátoru volné částice mezi těmito místy a časy. Každý bod zlomu odpovídá potenciálu v místě $\vec{x}$ a čase $t$ (obrázek~\ref{fig:UseckaVrchol}).
\begin{figure}
\centering
\includegraphics{feynman-1}
\caption{Úsečka a vrchol ve Feynmanově diagramu}
\label{fig:UseckaVrchol}
\end{figure}
Všechny takto získané členy se vynásobí a výraz se integruje přes souřadnice zlomů na čáře, které smějí být kdekoli v prostoru. $n$-tý člen tak odpovídá lomené čáře s $n$ zlomy, počátku a konci lomené čáry se připíší $\vec{x}_i, t_i$ a $\vec{x}_f, t_f$ a $k$-tému zlomu $\vec{x}_k, t_k$. Např. Feynmanův diagram druhého členu \eqref{eq:Krozvoj} by byl jako na obrázku~\ref{fig:K2}.
\begin{figure}
\centering
\includegraphics[width=8cm]{feynman-2}
\caption{Feynmanův diagram popisující člen $\propU{}{(+)^{(2)}}{\vec{x}_f}{t_f}{\vec{x}_i}{t_i}$}
\label{fig:K2}
\end{figure}
V QFT se pak Feynmanovy diagramy hodí mnohem víc, protože spojnice mohou být různé (vlnovka, ...) a reprezentovat tak různé druhy částic a body mohou spojovat i víc než jednu částici a popisovat tak různé interakce více druhů částic. Pro $n$-tý řád výpočtu potom diagramy slouží jako jednoduchá pomůcka pro nalezení všech příspěvků do propagátoru (každé interakci bude odpovídat jiný diagram a najít všechny diagramy je relativně snadné).
%================================================================================
\subsection{Použití dráhového integrálu pro popis rozptylu}
%================================================================================
Předpokládáme, že počáteční podmínkou pro popis rozptylu je stav s přesně určenou hybností ($\vec{p}_{i}$) a energií, rovinná vlna \cite{hlav:QM}
\begin{equation}
\psi_{in} (\vec{x}, t) = \frac{1}{(2 \pi \hbar)^\frac{3}{2}} e^{i \frac{\vec{p}_{i} \vec{x}}{\hbar} - \frac{i}{\hbar} \frac{\vec{p}_{i}^2}{2m} t},
\end{equation}
očekáváme, že částice je v počátečním stavu dostatečně daleko od oblasti interakce, takže vliv potenciálu na ni lze zanedbat. Rovinná vlna je však zcela delokalizovaná, proto abychom se nedostali do sporu, předpokládáme \textbf{adiabatickou hypotézu}\footnote{Tento i další předpoklady plynou z idealizace stavů; kdybychom použili vlnový balík, problémy by zmizely, ale konkrétní předpovědi by byly mnohem těžší na výpočet.}
\begin{equation}
V(\vec{x}, t) \underset{t \rightarrow \pm \infty} {\longrightarrow} 0.
\end{equation}
Tento stav se vyvíjí podle rovnice
\begin{equation*}
\ket{\psi^{(+)}(t)} = \hat{U}(t, t_i) \ket{\psi_{in}(t_i)},
\end{equation*}
kde, aby interakce měla čas se plně projevit, uvažujeme limitu $t_i \to -\infty$.
Obvykle nás zajímá pravděpodobnost nalezení částice v čase $t_f \rightarrow +\infty$ s danou hodnotou hybnosti $\vec{p}_f$, tj. asymptoticky ve stacionárním stavu
\begin{equation}
\psi_{out} (\vec{x}, t) = \frac{1}{(2 \pi \hbar)^\frac{3}{2}} e^{i \frac{\vec{p}_f \vec{x}}{\hbar} - \frac{i}{\hbar} \frac{\vec{p}_f^2}{2m} t}.
\end{equation}
Všimneme si, že oba limitní stavy lze zapsat pomocí časového vývoje volné částice ($\hat{U}_0$) jako
\begin{equation}
\psi_{in/out}(\vec{x}, t) = \hat{U}_0(t, 0) \ket{\vec{p}_{i/f}}.
\label{eq:faktorizaceRozptyl}
\end{equation}
Uvažujme výraz
\begin{equation}
S_{\vec{p}_f, \vec{p}_i} = \lim_{t_f\to+\infty} \braket{\psi_{out}(t_f)}{\psi^{(+)}(t_f)} = \lim_{t_f\to+\infty} \lim_{t_i\to-\infty} \brapigket{\psi_{out}(t_f)}{\hat{U}(t_f, t_i)}{\psi_{in}(t_i)},
\label{TR:SelementInOut}
\end{equation}
ve kterém převedeme bra i ket pravé strany pomocí \eqref{eq:faktorizaceRozptyl} a přepíšeme jako
\begin{equation}
S_{\vec{p}_f, \vec{p}_i} = \lim_{t_f \to +\infty} \lim_{t_i \to -\infty} \brapigket{\vec{p}_f}{\hat{U}_0(0, t_f) \hat{U}(t_f, t_i) \hat{U}_0(t_i, 0)}{\vec{p}_i}.
\end{equation}
Toto jsou maticové elementy operátoru, který se nazývá \textbf{\boldmath $S$-matice} nebo \textbf{matice/operátor rozptylu}:
\begin{equation}
\hat{S} = \lim_{t_f \to +\infty} \lim_{t_i \to -\infty} \hat{U}_0 (0,t_f) \hat{U} (t_f, t_i) \hat{U}_0 (t_i, 0),
\end{equation}
a často se rozkládá na součin \textbf{Møllerových operátorů}
\begin{equation*}
\hat{\Omega}^{(\pm)} = \lim_{t \rightarrow \mp\infty} \hat{U} (0, t) \hat{U}_0 (t, 0)
\end{equation*}
jako
\begin{equation}
\hat{S} = \left( \hat{\Omega}^{(-)} \right)^\dagger \left( \hat{\Omega}^{(+)} \right).
\end{equation}
Operátor časového vývoje v \eqref{TR:SelementInOut} vyjádříme pomocí propagátoru,
\begin{equation*}
S_{\vec{p}_f, \vec{p}_i} = \lim_{t_{i/f}\rightarrow \mp \infty} \int \dif^3 x_i \dif^3 x_f \overline{\psi_{out}} (\vec{x}_f, t_f) \propR{\vec{x}_f}{t_f}{\vec{x}_i}{t_i} \psi_{in} (\vec{x_i}, t_i),
\end{equation*}
a ten rozepíšeme pomocí \eqref{eq:Krozvoj}:
\begin{equation}
\begin{aligned}
S_{\vec{p}_f, \vec{p}_i} &= \lim_{t_{i/f}\rightarrow \mp \infty} \int \dif^3 x_i \dif^3 x_f \overline{\psi_{out}}(\vec{x}_f, t_f) \propU{0}{(+)}{\vec{x}_f}{t_f}{\vec{x}_i}{t_i} \psi_{in} (\vec{x}_i, t_i) +{}\\
&\qquad + \left( \frac{-i\varepsilon}{\hbar} \right) \lim_{t_{i/f}\rightarrow \mp \infty} \int \dif^3 x_i \dif^3 x_f \dif^3 x_1 \int_{t_i}^{t_f} \dif t_1 \\
&\qquad\qquad \overline{\psi_{out}} (\vec{x}_f, t_f)\propU{0}{(+)}{\vec{x}_f}{t_f}{\vec{x}_1}{t_1} V(\vec{x}_1, t_1) \propU{0}{(+)}{\vec{x}_1}{t_1}{\vec{x}_i}{t_i} \psi_{in} (\vec{x}_i, t_i) +{}\\
&\qquad + \ldots
\end{aligned}
\label{TR:SrozvojX}
\end{equation}
Ukazuje se, že pro explicitní výpočet jednotlivých elementů je výhodné přejít do hybnostní reprezentace, kde%
\footnote{Rozdíl hybností v argumentu $\tilde{V}$ reprezentuje stejnou závislost maticových elementů $\brapigket{\vec{p}_2}{\hat{V}(t)}{\vec{p}_1}$. Dále využíváme toho, že platí $\brapigket{\vec{x}_2}{\hat{H}}{\vec{x}_1}=\hat{H}\delta(\vec{x}_1-\vec{x}_2).$}
\begin{equation*}
\begin{aligned}
\tilde{\psi}_{in/out} (\vec{p}, t)&= \delta^{(3)} (\vec{p} - \vec{p}_{i/f}) e^{- \frac{i}{\hbar} \frac{\vec{p}^2}{2m} t},\\
\tpropU{0}{(+)}{\vec{p}_2}{t_2}{\vec{p}_1}{t_1} &= \theta(t_2-t_1) \delta^{(3)} (\vec{p}_2 - \vec{p}_1) e^{-\frac{i}{\hbar} \frac{\vec{p}_2^2}{2m} (t_2 - t_1)},\\
\tilde{V}(\vec{p}_2-\vec{p}_1, t) &= \int \frac{\dif^3 x}{(2 \pi \hbar)^\frac{3}{2}} e^{-\frac{i}{\hbar} (\vec{p}_2 - \vec{p}_1) \vec{x}} V(\vec{x}, t)
\end{aligned}
\end{equation*}
a rozvoj \eqref{TR:SrozvojX} přechází na tvar
\begin{equation}
\begin{aligned}
S_{\vec{p}_f, \vec{p}_i} &= \lim_{t_{i/f}\rightarrow \mp \infty} \int \dif^3 p_1 \overline{\tilde{\psi}_{out}}(\vec{p}_1, t_f) \theta(t_f-t_i) e^{-\frac{i}{\hbar}\frac{\vec{p}_1^2}{2m} (t_f - t_i)} \tilde{\psi}_{in} (\vec{p}_i, t_i) +{}\\
&\qquad + \left( \frac{-i\varepsilon}{\hbar} \right) \lim_{t_{i/f}\rightarrow \mp \infty} \int \dif^3 p_1 \dif^3 p_2 \int_{t_i}^{t_f} \dif t_1 \\
&\qquad\qquad \overline{\tilde{\psi}_{out}} (\vec{p}_2, t_f) \theta(t_f-t_1) e^{-\frac{i}{\hbar}\frac{\vec{p}_2^2}{2m} (t_f - t_1)} \tilde{V}(\vec{p}_2 - \vec{p}_1, t_1) \theta(t_1-t_i) e^{-\frac{i}{\hbar}\frac{\vec{p}_1^2}{2m} (t_1 - t_i)} \tilde{\psi}_{in} (\vec{p}_i, t_i) +{}\\
&\qquad + \ldots
\end{aligned}
\label{TR:SrozvojP}
\end{equation}
a po dosazení explicitního tvaru $\tilde{\psi}$
\begin{equation*}
\begin{aligned}
S_{\vec{p}_f, \vec{p}_i} &= \lim_{t_{i/f}\rightarrow \mp \infty} \theta(t_f-t_i) \delta^{(3)}(\vec{p}_f - \vec{p}_i) +{}\\
&\qquad + \left( \frac{-i\varepsilon}{\hbar} \right) \lim_{t_{i/f}\rightarrow \mp \infty} \int_{t_i}^{t_f} \dif t_1 \theta(t_f-t_1) e^{\frac{i}{\hbar}\frac{\vec{p}_f^2}{2m} t_1} \tilde{V}(\vec{p}_f - \vec{p}_i, t_1) \theta(t_1-t_i) e^{-\frac{i}{\hbar}\frac{\vec{p}_i^2}{2m} t_1} +{}\\
&\qquad + \ldots
\end{aligned}
\end{equation*}
V posledním výrazu je snadné vyhodnotit limity počátečního a koncového času interakce. Z časových integrálů od $t_i$ do $t_f$ se stanou integrály od $-\infty$ do $+\infty$ a $\theta$-funkce zahrnující jeden z krajních časů vymizí (nahradí se $1$). Vnitřní $\theta$-funkce zůstanou, jak ukazuje další člen rozvoje:
\begin{equation}
\begin{aligned}
S_{\vec{p}_f, \vec{p}_i} &= \delta^{(3)}(\vec{p}_f - \vec{p}_i) +{}\\
&\qquad + \left( \frac{-i\varepsilon}{\hbar} \right) \int \dif t_1 e^{\frac{i}{\hbar}\frac{\vec{p}_f^2}{2m} t_1} \tilde{V}(\vec{p}_f - \vec{p}_i, t_1) e^{-\frac{i}{\hbar}\frac{\vec{p}_i^2}{2m} t_1} +{}\\
&\qquad + \left( \frac{-i\varepsilon}{\hbar} \right)^2 \int \dif t_1 \dif t_2 \dif^3 p_1 \\
&\qquad\qquad e^{\frac{i}{\hbar}\frac{\vec{p}_f^2}{2m} t_2} \tilde{V}(\vec{p}_f - \vec{p}_1, t_2) \theta(t_2 - t_1) e^{-\frac{i}{\hbar}\frac{\vec{p}_1^2}{2m} (t_2 - t_1)} \tilde{V}(\vec{p}_1 - \vec{p}_i, t_1) e^{-\frac{i}{\hbar}\frac{\vec{p}_i^2}{2m} t_1} +{}\\
&\qquad + \ldots
\end{aligned}
\label{TR:VysledekP}
\end{equation}
Tento rozvoj se interpretuje tak, že první člen odpovídá situaci, kdy k žádné interakci nedojde a částice pouze proletí beze změny hybnosti, a pro účely rozptylu se ignoruje. Druhý člen odpovídá jednomu zapůsobení poruchy dané operátorem $\hat{V}(t)$, které může proběhnout v jakýkoli okamžik $t_1 \in (-\infty, +\infty)$ a může změnit hybnost dle maticového elementu $\hat{V}(t)$ v hybnostní reprezentaci. Další členy obsahují časově uspořádaný součin (díky přítomnosti funkcí $\theta$) více takových událostí a jsou úměrné vyšším mocninám poruchového parametru $\varepsilon$. Tuto interpretaci ukazuje obrázek~\ref{fig:RozptylRozvoj}.
\begin{figure}[t]
\centering
\includegraphics{rozptyl-1}
\caption{Možné dráhy částice odpovídající poruchovým členům 0., 1. a 2. řádu při průchodu interakční oblastí}
\label{fig:RozptylRozvoj}
\end{figure}
Feynmanovy diagramy pro zapamatování výsledku je potřeba trochu upravit vzhledem k faktu, že v důsledku přechodu od $x$- k $p$-reprezentaci přestal být operátor potenciální energie $\hat{V}(t)$ multiplikativní (nebo v jazyce maticových elementů diagonální). Zato propagátor hybnost zachovává. Proto příspěvek k integrandu za každý vrchol bude potřeba určit ze vstupní a výstupní hybnosti a času $t$, zatímco člen odpovídající úsečce obsahuje počáteční a koncový čas a hybnost podél pohybu. Obrázek~\ref{fig:UseckaVrchol} se tedy změní tak, že místo indexů $\vec{x}$ u \textsl{vrcholů} budou indexy $\vec{p}$ u \textsl{spojnic}, viz obrázek~\ref{fig:UseckaVrcholP}.
\begin{figure}[t]
\centering
\includegraphics{feynman-3}
\caption{Úsečky a vrcholy v budování členů rozvoje propagátoru v $p$-reprezentaci}
\label{fig:UseckaVrcholP}
\end{figure}
%================================================================================
\subsubsection{Od času k energii}
%================================================================================
Je také možné, i když pro naše účely poněkud zbytné, provést Fourierovu transformaci v čase. Tento postup je běžný hlavně v QFT a je to tedy příprava na další rok.
Nejprve si potřebujeme připravit vzoreček pro regularizovanou Fourierovu transformaci $\theta(t)$,%
\footnote{Limita lze provést pouze ve smyslu zobecněných funkcí, nahrazení $\varepsilon \to 0$ by dalo nesprávný výsledek.}
\begin{equation*}
\int_\mathbb{R} e^{i(\omega + i\varepsilon)t}\theta(t) \dif t = \int_0^\infty e^{i(\omega + i\varepsilon)t} \dif t = \frac{1}{i (\omega + i\varepsilon)} \left[ e^{i(\omega + i\varepsilon)t} \right]_0^\infty = \frac{-1}{i (\omega + i \varepsilon)} = \frac{i}{\omega +i\varepsilon}.
\end{equation*}
Pokud nyní označíme
\begin{equation}
\begin{aligned}
\tilde{\tilde{V}}(\vec{p}_2 - \vec{p}_1, E_2 - E_1) &= \frac{1}{(2\pi\hbar)^4} \int \dif^3 x \dif t e^{\frac{i}{\hbar} ((E_2 - E_1) t - (\vec{p}_2 - \vec{p}_1) \vec{x})} V(\vec{x}, t), \\
\ttpropU{}{(+)}{\vec{p}_2}{E_2}{\vec{p}_1}{E_1} &= \frac{1}{2\pi\hbar} \int \dif t_1 \dif t_2 e^{\frac{i}{\hbar} E_2 t_2} \tpropU{}{(+)}{\vec{p}_2}{t_2}{\vec{p}_1}{t_1} e^{- \frac{i}{\hbar} E_1 t_1},
\end{aligned}
\label{TR:PrevodPE}
\end{equation}
už máme skoro všechno připravené na rozvoj v energii, ještě vyčíslíme explicitně $K_0$ propagátor volné částice. Krátký výpočet s regularizací a použitím odvozeného vzorečku dá
\begin{equation}
\ttpropU{0}{(+)}{\vec{p}_2}{E_2}{\vec{p}_1}{E_1} = \lim_{\varepsilon \rightarrow 0^{+}} \delta^{(3)} (\vec{p}_2 - \vec{p}_1) \delta(E_2-E_1) \frac{i \hbar}{E_1 - \frac{\vec{p}_1^2}{2m} + i\varepsilon},
\end{equation}
kde limitu z regularizace nemůžeme hned odstranit, protože kdybychom za $E_0$ dosadili, měli bychom problém s divergencí.
$n$-tý člen rozvoje propagátoru opět dostaneme z upravených Feynmanových diagramů, kde každé úsečce je přiřazena hybnost a energie a člen se získá poskládáním členů dle obrázku~\ref{fig:energie}. Krajním úsečkám diagramu přiřadíme $E_i, \vec{p}_i$ a $E_f, \vec{p}_f$, vnitřním oindexované dvojice. Za $E_i$ a $E_f$ se do integrálu dosadí $\vec{p}_i^2/2m$ a $\vec{p}_f^2/2m$ a přes vnitřní energie a hybnosti se integruje. Výsledek vyjde opět v energetické reprezentaci a je možné jej převést do hybnostní pomocí inverzního vztahu k~\eqref{TR:PrevodPE}. Jako poslední krok se provede limita $\varepsilon \to 0_+$. Typicky k výpočtu budete potřebovat reziduální větu z analýzy.
\begin{figure}
\centering
\includegraphics{feynman-4}
\caption{Feynmanovy diagramy v energii a hybnosti}
\label{fig:energie}
\end{figure}
%================================================================================
\subsubsection{Coulombův rozptyl}
%================================================================================
Odvozený vztah \eqref{TR:VysledekP} lze vyzkoušet na Coulombově rozptylu, který nás v prvním řádu dovede k Rutherfordově formuli, známé z Teoretické fyziky. Jako první krok bude potřeba si připravit Fourierovu transformaci Coulombova potenciálu
\begin{equation}
V = \frac{Z e^2}{4 \pi \varepsilon_0 r},
\end{equation}
tedy bude třeba spočítat
\begin{equation}
\tilde{V} (\vec{p}_2 - \vec{p}_1, t) = \frac{Z e^2}{4 \pi \varepsilon_0} \int \frac{\exp \left( - \frac{i}{\hbar} (\vec{p}_2 - \vec{p}_1) \vec{x} \right)}{(2 \pi \hbar)^3} \frac{1}{r} \dif^3 x =: v(\vec{p}_2 - \vec{p}_1).
\end{equation}
To je divergentní integrál a opět ho musíme regularizovat, to provedeme přenásobením vniřku integrálu $e^{-ar}$, $a>0$, a nakonec položíme $a \rightarrow 0$. Integraci provedeme ve sférických souřadnicích s osou $z$ natočenou ve směru $\vec{p}$
\begin{equation*}
\begin{aligned}
v (\vec{p}) &= \left. \frac{Z e^2}{4 \pi \varepsilon_0} \int \frac{\exp \left( - \frac{i}{\hbar} \vec{p}\vec{x} -ar \right)}{(2 \pi \hbar)^3} \frac{1}{r} \dif^3 x \right|_{a=0} \\
&= \left. \frac{Z e^2}{4 \pi \varepsilon_0 (2 \pi \hbar)^3} \int e^{- \frac{i}{\hbar} p r \cos \theta - ar} r \sin \theta \dif \theta \dif r \dif \varphi \right|_{a=0} \\
&= \left. \frac{1}{2} \frac{Z e^2}{\varepsilon_0 (2 \pi \hbar)^3} \int_0^\pi \underbrace{[\ldots]}_{0} + \frac{1}{a + \frac{i}{h} p \cos \theta} \int_0^\infty e^{-(\frac{i}{\hbar} p \cos \theta + a)r}\dif r \sin \theta \dif \theta \right|_{a=0} \notag \\
&\hskip 6pt\vdots \\
&= \frac{Z e^2}{(2 \pi)^3 \varepsilon_0 \hbar p^2},
\end{aligned}
\end{equation*}
kde $p = |\vec{p}|$. Tento mezivýsledek dosadíme \eqref{TR:VysledekP} s volbou $\varepsilon = 1$ (malost opravy předpokládáme již vyjádřenou malou hodnotou konstanty $e$). Podíváme se pouze na opravu prvního řádu: nultý řád odpovídá minutí rozptylového jádra a vyšší řády zanedbáme.%
\footnote{Poctivější výpočet by ukázal, že zanedbáváme nekonečno, ale vyřešení takové drobné nepříjemnosti přenecháme částicovým fyzikům.}
V integraci přes čas najdeme Fourierovu transformaci jedničky, která dá jako výsledek $\delta$-funkci
\begin{equation*}
\begin{aligned}
S_{\vec{p}_f, \vec{p}_i} &= - \frac{i}{\hbar} \frac{Z e^2}{(2 \pi)^3 \varepsilon_0 \hbar (\vec{p}_f - \vec{p}_i)^2} \int \dif t_1 \exp \left( \frac{i t_1 }{\hbar} \left( \frac{\vec{p}_f^2}{2m} - \frac{\vec{p}_i^2}{2m} \right)\right) \\
&= - \frac{i}{\hbar} \frac{Z e^2}{(2 \pi)^2 \varepsilon_0 (\vec{p}_f - \vec{p}_i)^2} \delta\left( \frac{\vec{p}_f^2}{2m} - \frac{\vec{p}_i^2}{2m} \right).
\end{aligned}
\end{equation*}
Náš konečný cíl je určit závislost účinného průřezu rozptylu na prostorovém úhlu, to jest
\begin{equation}
\frac{\dif\sigma}{\dif\Omega} = A \frac{\dif P}{\dif\Omega},
\label{TR:UPdef}
\end{equation}
kde $A$ představuje plošný průřez svazku dopadajících částic. Nastává rozpor s dříve položeným předpokladem rovinné dopadající vlny, protože ta má nekonečný průřez. Předvedeme si tedy (protentokrát) úplný výpočet, ve kterém uvažujeme superpozici rovinných vln s hybnostmi blízkými $\vec{p}_0$,
\begin{equation*}
\ket{\psi_{in}} = \int \dif^3 \mathord{\Delta p} \frac{1}{(2\pi\sigma_p^2)^{3/4}} e^{-\frac{(\Delta\vec{p})^2}{4\sigma_p^2}} \ket{\vec{p}_0 + \Delta\vec{p}},
\end{equation*}
kde $\sigma_p$ určuje rozptyl hybností $\ll |p_0|$. To je minimalizující vlnový balík, který v čase $t=0$ prochází počátkem souřadnic se střední hybností $\vec{p}_0$. Potom amplituda pravděpodobnosti naměření výsledné hybnosti $\vec{p}_f$ je
\begin{equation}
\begin{aligned}
\brapigket{\vec{p}_f}{\hat{S}}{\psi_{in}} &= \int \dif^3 \mathord{\Delta p} \frac{1}{(2\pi\sigma_p^2)^{3/4}} e^{-\frac{(\Delta\vec{p})^2}{4\sigma_p^2}} S_{\vec{p}_f,\vec{p}_0 + \Delta\vec{p}} \\
&= -\frac{i\alpha}{(2\pi\sigma_p^2)^{3/4} \hbar \pi} \int \dif^3 \mathord{\Delta p} \frac{1}{(\vec{p}_f - \vec{p}_0 - \Delta\vec{p})^2} \delta\left( \frac{\vec{p}_f^2}{2m} - \frac{(\vec{p}_0 + \Delta\vec{p})^2}{2m} \right) e^{-\frac{(\Delta\vec{p})^2}{4\sigma_p^2}},
\end{aligned}
\label{TR:CoulombStart}
\end{equation}
kde
\begin{equation*}
\alpha = \frac{Ze^2}{4\pi\varepsilon_0}.
\end{equation*}
\begin{figure}[t]
\centering
\includegraphics{rozptyl-2}
\caption{Parametry dopadající vlny}
\label{fig:RozptylBalik}
\end{figure}
Argument $\delta$-funkce rozepíšeme jako
\begin{equation*}
\frac{\vec{p}_f^2}{2m} - \frac{(\vec{p}_0 + \Delta\vec{p})^2}{2m} = \frac{\vec{p}_f^2 - \vec{p}_0^2 - 2\vec{p}_0\cdot\Delta\vec{p}}{2m} + O\bigl(|\Delta\vec{p}|^2\bigr)
\end{equation*}
a uvažujeme $\vec{p}_0 = (0, 0, p_0)$, tedy
\begin{equation*}
\delta\left( \frac{\vec{p}_f^2}{2m} - \frac{(\vec{p}_0 + \Delta\vec{p})^2}{2m} \right) \approx \delta\left( \frac{p_0}{m} \left( \Delta p_z - \frac{\vec{p}_f^2 - p_0^2}{2p_0} \right) \right)
\end{equation*}
Protože dále je integrand nezanedbatelný pouze pro $|\Delta\vec{p}| \lesssim \sigma_p \ll p_0$ (díky exponenciále) a pro $|\vec{p}_f| \approx |\vec{p}_0 + \Delta\vec{p}| \approx p_0$ (díky $\delta$-funkci), můžeme v argumentu nahradit
\begin{equation*}
\frac{\vec{p}_f^2}{2m} - \frac{(\vec{p}_0 + \Delta\vec{p})^2}{2m} \approx \frac{p_0}{m} \left( \Delta p_z - \frac{(|\vec{p}_f| - p_0)(|\vec{p}_f| + p_0)}{2p_0} \right) \approx \frac{p_0}{m} \left( \Delta p_z - (|\vec{p}_f| - p_0) \right).
\end{equation*}
To nám umožní částečně zintegrovat \eqref{TR:CoulombStart} přes $\Delta p_z$:
\begin{equation*}
\brapigket{\vec{p}_f}{\hat{S}}{\psi_{in}} \approx -\frac{i\alpha m}{(2\pi\sigma_p^2)^{3/4} \hbar \pi p_0} \int \dif^2 \mathord{\Delta p} \frac{1}{(\vec{p}_f - \vec{p}_0 - \Delta\vec{p})^2} e^{-\frac{(\Delta\vec{p})^2}{4\sigma_p^2} - \frac{(|\vec{p}_f| - p_0)^2}{4\sigma_p^2}}.
\end{equation*}
Dále v integrandu díky stejnému pozorování o velikosti $\vec{p}_f$ aproximujeme
\begin{equation}
(\vec{p}_f - \vec{p}_0 - \Delta\vec{p})^2 = \vec{p}_f^2 + \vec{p}_0^2 - 2\vec{p}_f\cdot\vec{p}_0 + O\bigr(|\Delta\vec{p}|\bigr) \approx 2p_0^2(1 - \cos\vartheta) = 4p_0^2\sin^2\frac{\vartheta}{2},
\label{TR:sin2}
\end{equation}
kde $\vartheta$ je úhel rozptýlené vlny $\vec{p}_f$ od směru dopadající vlny $\vec{p}_0$ (osy $z$). Zanedbali jsme $\Delta\vec{p}$ v jakékoli mocnině, aby se snáze integrovalo ve zbytku, což je již jen dvourozměrný Gaussův integrál
\begin{equation*}
\begin{aligned}
\brapigket{\vec{p}_f}{\hat{S}}{\psi_{in}} &\approx -\frac{i\alpha m}{(2\pi\sigma_p^2)^{3/4} \hbar \pi p_0} \frac{1}{4p_0^2\sin^2\frac{\vartheta}{2}} e^{- \frac{(|\vec{p}_f| - p_0)^2}{4\sigma_p^2}} \int \dif^2 \Delta p e^{-\frac{(\Delta\vec{p})^2}{4\sigma_p^2}} \\
&= -\frac{i\alpha m}{(2\pi\sigma_p^2)^{3/4} \hbar \pi p_0} \frac{1}{4p_0^2\sin^2\frac{\vartheta}{2}} e^{- \frac{(|\vec{p}_f| - p_0)^2}{4\sigma_p^2}} 4\pi\sigma_p^2 \\
&= -\frac{i\alpha m\sqrt{\sigma_p}}{(2\pi)^{3/4} \hbar p_0^3\sin^2\frac{\vartheta}{2}} e^{- \frac{(|\vec{p}_f| - p_0)^2}{4\sigma_p^2}}
\end{aligned}
\end{equation*}
Tento výsledek odpovídá hustotě pravděpodobnosti naměření $\vec{p}_f$
\begin{equation*}
w(\vec{p}_f) = \frac{\sigma_p}{(2\pi)^{3/2}} \left( \frac{\alpha m}{\hbar p_0^3 \sin^2\frac{\vartheta}{2}} \right)^2 e^{- \frac{(|\vec{p}_f| - p_0)^2}{2\sigma_p^2}}
\end{equation*}
a celkové pravděpodobnosti (integrované ve sférických souřadnicích použitím prostorového úhlu $\dif\Omega = \sin\vartheta\dif\vartheta\dif\varphi$)
\begin{equation*}
\begin{aligned}
P &= \int p_f^2 \dif p_f \dif\Omega w(\vec{p}_f) = \int \dif\Omega \frac{\sigma_p}{(2\pi)^{3/2}} \left( \frac{\alpha m}{\hbar p_0^3 \sin^2\frac{\vartheta}{2}} \right)^2 \int \dif p_f p_f^2 e^{-\frac{(|\vec{p}_f| - p_0)^2}{2\sigma_p^2}} \\
&\approx \int \dif\Omega \underbrace{\frac{\sigma_p^2}{2\pi} \left( \frac{\alpha m}{\hbar p_0^2 \sin^2\frac{\vartheta}{2}} \right)^2}_{dP/d\Omega}
\end{aligned}
\end{equation*}
Nakonec si vzpomeneme, že neurčitost hybnosti v $x$ a v $y$ velikosti $\sigma_p$ odpovídají díky Heisenbergovým relacím neurčitosti v poloze (viz obrázek~\ref{fig:RozptylBalik})
\begin{equation*}
\sigma_x = \sigma_y = \frac{\hbar}{2\sigma_p}
\end{equation*}
a tedy ploše svazku $A \propto \pi \bigl(\hbar/(2\sigma_p)\bigr)^2$, a dosadíme do \eqref{TR:UPdef}%
\footnote{Gaussovský svazek o rozptylu $\sigma_x$ nemá jasnou hranici, ale blízko středu má hustotu pravděpodobnosti blízkou konstantě $1/(2\pi\sigma_x^2)$. Dosadíme tedy plošný obsah $A = 2\pi \sigma_x^2$, odpovídající rovnoměrnému rozdělení po celé ploše.}
\begin{equation}
\frac{d\sigma}{d\Omega} = 2\pi \left( \frac{\hbar}{2\sigma_p} \right)^2 \frac{\sigma_p^2}{2\pi} \left( \frac{\alpha m}{\hbar p_0^2 \sin^2\frac{\vartheta}{2}} \right)^2 = \left( \frac{\alpha m}{2p_0^2\sin^2 \frac{\vartheta}{2}} \right)^2 = \left( \frac{Z e^2}{8 \pi \varepsilon_0 m v_0^2} \right)^2 \frac{1}{\sin^4 \frac{\vartheta}{2}}.
\label{TR:vysledek}
\end{equation}
To je slavná \textbf{Rutherfordova formule}. Svůj název nese po autorovi experimentu, který ukázal rozložení náboje v látce a prosadil planetární model atomu nad pudingovým. Experimenty probíhaly v letech 1909--1914 a první vysvětlení jejich výsledku podal E. Rutherford v roce 1911. Jednalo se o bombardování zlaté folie $\alpha$ částicemi, podle pudingového modelu by se při srážení částice neměly rozptylovat do prostoru (i zpětně), ale pouze mírně vychylovat z původního směru. Zatímco kdyby náboj byl soustředěn v protonovém \textsl{jádře}, docházelo by ke zpětným odrazům a i odrazům do různých směrů. Při pohledu na vzoreček, který později dostal jméno Rutherfordův, vidíme, že se Rutherford nespletl se svojí, ryze kinematickou, předpovědí (nezapomínejte, že jsme napsali pouze derivaci účinného průřezu, ne přímo vztah pro průřez samotný). Nutno poznamenat, že sami objevitelé nejprve chtěli pozorovat rozptylování částic na pudingovém modelu, ale detektory za folií ne a ne dávat správné hodnoty (dokonce je kvůli tomu podezřívali, že nefungují), vše se ale napravilo, když detektor umístili před folii i do dalších míst kolem a našli chybějící částice, které se rozptylovaly i zpětně.
V současnosti Rutherfordova formule hraje nezastupitelnou roli v \textsl{HEIS} (High-energy ion scattering) metodách ve spektroskopii. Měřením účinného průřezu srážek v různých prostorových úhlech lze totiž určit protonové číslo látky, kterou bombardujeme, a tím i určit její prvkové složení. Při započítání rozptylování na elektronech lze určit hloubku, do které záření v materiálu pronikne v závislosti na energii dopadajícího záření (\textsl{stopping power}). Dohromady je tak možné zjistit řadu informací o zkoumaném materiálu.
Při pohledu na výsledek \eqref{TR:vysledek} a aproximaci \eqref{TR:sin2} vidíme, že všechny fyzikálně podstatné členy lze získat použitím $S_{\vec{p}_f, \vec{p}_i}$ jako amplitudy pravděpodobnosti a umocněním na druhou. To samozřejmě není možné kvůli přítomnosti $\delta$-funkce. Nicméně po jejím \textsl{škrtnutí} a umocnění na druhou zbyde rozdíl již jen v přítomnosti několik konstant ($2\pi\hbar$ a hmotnosti). Proto takto kompletní postup stačí obvykle provést jednou a zapamatovat si tyto rozdíly jako „opravu“ pro ostatní instance.