01RMF:Kapitola4: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
m (Oprava vzorcu na str 57)
m
 
(Není zobrazeno 29 mezilehlých verzí od 5 dalších uživatelů.)
Řádka 1: Řádka 1:
 
%\wikiskriptum{01RMF}
 
%\wikiskriptum{01RMF}
 +
 +
%\wikifile{Image:Tabulka_vlastnosti.pdf}{Tabulka_vlastnosti.pdf}
 +
%\includegraphics[pdf]{Tabulka_vlastnosti}
 +
 
\chapter{Řešení počátečních úloh ODR a PDR}
 
\chapter{Řešení počátečních úloh ODR a PDR}
 
V této části se budeme věnovat již konečně řešení jednotlivých typů diferenciálních rovnic za použití nástrojů, které jsme dosud vybudovali.  
 
V této části se budeme věnovat již konečně řešení jednotlivých typů diferenciálních rovnic za použití nástrojů, které jsme dosud vybudovali.  
Řádka 19: Řádka 23:
 
Předpokládejme, že $y(t)$ je řešením této rovnice, tj. $y(t) \in \Ci$.
 
Předpokládejme, že $y(t)$ je řešením této rovnice, tj. $y(t) \in \Ci$.
 
Zkonstruujme nyní zobecněnou funkci  
 
Zkonstruujme nyní zobecněnou funkci  
$$\tidle{y}(t) := \Theta(t) y(t) \in \D'_{reg}.$$
+
$$\tilde{y}(t) := \Theta(t) y(t) \in \D'_{reg}.$$
Pomocí této funkce se pokusíme náš problém převést do řeči zobecněných funkcí a řešit jej. Proto si připravme derivace výrazu $\tidle{y}(t)$:
+
Pomocí této funkce se pokusíme náš problém převést do řeči zobecněných funkcí a řešit jej. Proto si připravme derivace výrazu $\tilde{y}(t)$:
$$ \dot{\tidle{y}}(t) = \Theta(t)\dot{y}(t) + \delta(t)y(t) = \Theta(t)\dot{y}(t) + \delta(t) y(0) = \Theta(t)\dot{y}(t) + 2\delta(t)$$
+
$$ \dot{\tilde{y}}(t) = \Theta(t)\dot{y}(t) + \delta(t)y(t) = \Theta(t)\dot{y}(t) + \delta(t) y(0) = \Theta(t)\dot{y}(t) + 2\delta(t)$$
$$ \ddot{\tidle{y}}(t) = \dot{y}(t)\delta(t) + \Theta(t)\ddot{y}(t) + 2 \dot{\delta}(t) = \Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t)$$
+
$$ \ddot{\tilde{y}}(t) = \dot{y}(t)\delta(t) + \Theta(t)\ddot{y}(t) + 2 \dot{\delta}(t) = \Theta(t)\ddot{y}(t) +  \dot{y}(t)\delta(t) +  2 \dot{\delta}(t)=\Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t)$$
 
Stojí za zmínku, že již v tomto kroku jsme využili počátečních podmínek a zahrnuli je tímto do řešení.  
 
Stojí za zmínku, že již v tomto kroku jsme využili počátečních podmínek a zahrnuli je tímto do řešení.  
Nyní již můžeme dosadit  
+
Nyní již můžeme dosadit do operátoru $L$:
 
$$ L\tilde{y} = \Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t) + 3(\Theta(t)\dot{y}(t) + 2\delta(t)) + 2\Theta(t) y(t) = \Theta(t) Ly + 7 \delta(t) +2\dot{\delta}(t) =  
 
$$ L\tilde{y} = \Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t) + 3(\Theta(t)\dot{y}(t) + 2\delta(t)) + 2\Theta(t) y(t) = \Theta(t) Ly + 7 \delta(t) +2\dot{\delta}(t) =  
 
\underbrace{\Theta(t)f(t)}_{=\tilde{f}(t)} + 7 \delta(t) +2\dot{\delta}(t).$$
 
\underbrace{\Theta(t)f(t)}_{=\tilde{f}(t)} + 7 \delta(t) +2\dot{\delta}(t).$$
Klasickou úlohu jsme tedy převedli na problém v $\D'$, který už umíme vyřešit. Tato zobecněná úloha jde vždy zkonstruovat pomocí $\tidle{y}(t) := \Theta(t) y(t)$.  
+
Klasickou úlohu jsme tedy převedli na problém v $\D'$, který už umíme vyřešit. Tato zobecněná úloha jde vždy zkonstruovat pomocí $\tilde{y}(t) := \Theta(t) y(t)$.  
 
Úloha tedy přešla na tvar:  
 
Úloha tedy přešla na tvar:  
 
$$L\tilde{y} = \underbrace{\tilde{f}(t) + 7 \delta(t) +2\dot{\delta}(t)}_{F(t)}, \mbox{kde } \tilde{f}(t) = \Theta(t)f(t).$$
 
$$L\tilde{y} = \underbrace{\tilde{f}(t) + 7 \delta(t) +2\dot{\delta}(t)}_{F(t)}, \mbox{kde } \tilde{f}(t) = \Theta(t)f(t).$$
Řádka 39: Řádka 43:
 
V našem případě tedy řešíme rovnici  
 
V našem případě tedy řešíme rovnici  
 
$$LZ = \ddot{Z} + 3 \dot{Z} + 2Z = 0.$$
 
$$LZ = \ddot{Z} + 3 \dot{Z} + 2Z = 0.$$
Její řešení je $Z(t) = C_1 e^{-t}+C_2 e^{-2t}$, po započtení počátečních podmínek máme $Z(t) = e^{-t}-e^{-2t}$ a tedy fundamentální řešení našeho operátoru je tvaru  
+
Její řešení je $Z(t) = C_1 e^{-t}+C_2 e^{-2t}$. Po započtení počátečních podmínek máme $Z(t) = e^{-t}-e^{-2t}$, a tedy fundamentální řešení našeho operátoru je tvaru  
 
$$ \epsilon(t) = \Theta(t) \left( e^{-t}-e^{-2t} \right).$$
 
$$ \epsilon(t) = \Theta(t) \left( e^{-t}-e^{-2t} \right).$$
  
 
\paragraph{II. Vyřešení zobecněné úlohy}
 
\paragraph{II. Vyřešení zobecněné úlohy}
Nyní se pokusíme spočíst konvoluci $\epsilon \ast \F = \tilde{y}$. Nejprve si rozepíšeme z linearity konvoluce veškeré příspěvky a každý z nich poté vyšetříme zvlášť.
+
Nyní se pokusíme spočíst konvoluci $\epsilon \ast F = \tilde{y}$. Nejprve si rozepíšeme z linearity konvoluce veškeré příspěvky a každý z nich poté vyšetříme zvlášť.
 
$$\tilde{y} = \epsilon \ast F  =\epsilon \ast (\tilde{f} + 7 \delta +2\dot{\delta}) = \underbrace{\epsilon \ast \tilde{f}}_{(1)} + \underbrace{7 \epsilon \ast \delta}_{(2)} +
 
$$\tilde{y} = \epsilon \ast F  =\epsilon \ast (\tilde{f} + 7 \delta +2\dot{\delta}) = \underbrace{\epsilon \ast \tilde{f}}_{(1)} + \underbrace{7 \epsilon \ast \delta}_{(2)} +
 
\underbrace{2 \epsilon \ast \dot{\delta}}_{(3)}$$
 
\underbrace{2 \epsilon \ast \dot{\delta}}_{(3)}$$
Řádka 55: Řádka 59:
  
 
\subparagraph{Výpočet (3)}
 
\subparagraph{Výpočet (3)}
$$2 \epsilon \ast \dot{\delta} = 2 \dot{\epsilon} \ast \delta = 2 \dot{\epsilon} = \Theta(t)\left(2 \left( 2-e^{-2t} + -e^{-t}\right)\right)$$
+
$$2 \epsilon \ast \dot{\delta} = 2 \dot{\epsilon} \ast \delta = 2 \dot{\epsilon} = \Theta(t)\left(2 \left( 2e^{-2t}-e^{-t}\right)\right)$$
  
 
\subparagraph{Výpočet (1)}
 
\subparagraph{Výpočet (1)}
 
Pro tuto část výpočtu bychom potřebovali spočítat konvoluci $f\ast g$, kde  $f,g \in \D'_{reg}$ a  $\nf f \subset  \R^+$, $\nf g \subset \R^+$.  
 
Pro tuto část výpočtu bychom potřebovali spočítat konvoluci $f\ast g$, kde  $f,g \in \D'_{reg}$ a  $\nf f \subset  \R^+$, $\nf g \subset \R^+$.  
Pro takový případ ale konvoluci nemáme zavedenou. \footnote{Konvoluci, která by toto umožňovala lze zavést. Tuto její vlastnost bychom ale využili jen zde, proto byla použita jiná definice. Zájemci definici naleznou ve [Šťovíček] } Přesto se můžeme pokusit tento případ vyřešit:
+
Pro takový případ ale konvoluci nemáme zavedenou. \footnote{Konvoluci, která by toto umožňovala, lze zavést. Tuto její vlastnost bychom ale využili jen zde, proto byla použita jiná definice. Zájemci definici naleznou ve [Šťovíček] } Přesto se můžeme pokusit tento případ vyřešit:
 
$$ ((f\ast g)(t),\phi(t)) = (f(t), (g(\tau),\phi(t+\tau))) =\bullet$$
 
$$ ((f\ast g)(t),\phi(t)) = (f(t), (g(\tau),\phi(t+\tau))) =\bullet$$
 
O funkci $(g(\tau),\phi(t+\tau))$ víme, že je třídy $\Ci$. Pokud bychom ještě dokázali říci, že je její nosič omezený, měli bychom vyhráno.  
 
O funkci $(g(\tau),\phi(t+\tau))$ víme, že je třídy $\Ci$. Pokud bychom ještě dokázali říci, že je její nosič omezený, měli bychom vyhráno.  
Řádka 71: Řádka 75:
 
Budeme se jej snažit převést do tvaru definice působení regulární zobecněné funkce. Proto použijeme substituci:
 
Budeme se jej snažit převést do tvaru definice působení regulární zobecněné funkce. Proto použijeme substituci:
  
$$\bullet= \left\{ \begin{array} c \\ \mbox{\scriptsize Substituce} \\ z = t + \tau \\ t =t \end{array}\right\} = \displaystyle \int_{\R} \dd t f(t) \displaystyle \int_{\R} \dd z g(z-t) \phi(z)  =  
+
$$\bullet= \left\{ \begin{array} c \\ \mbox{\scriptsize Substituce} \\ z = t + \tau \\ t =t \end{array}\right\} = \displaystyle \int_{\R} \dd t \. f(t) \displaystyle \int_{\R} \dd z\. g(z-t) \phi(z)  =  
\displaystyle \int_{\R} \dd z \phi(z) \left( \displaystyle \int_{\R} f(t) g(z-t) \dd t \right) $$
+
\displaystyle \int_{\R} \dd z \, \phi(z) \left( \displaystyle \int_{\R} f(t) g(z-t) \dd t \right) $$
  
 
Tímto jsme zjistili, že výsledek konvoluce regulárních zobecněných funkcí je regulární zobecněná funkce, jejíž klasický generátor je klasická konvoluce generátorů zobecněných funkcí.
 
Tímto jsme zjistili, že výsledek konvoluce regulárních zobecněných funkcí je regulární zobecněná funkce, jejíž klasický generátor je klasická konvoluce generátorů zobecněných funkcí.
Řádka 78: Řádka 82:
  
 
Mají-li tedy funkce $f,g$ nosič na kladné polopřímce, lze je zapsat jako $f(t) = \Theta(t)f(t) $  a $g(z-t) = \Theta(z-t) g(z-t)$. Vidíme, že  
 
Mají-li tedy funkce $f,g$ nosič na kladné polopřímce, lze je zapsat jako $f(t) = \Theta(t)f(t) $  a $g(z-t) = \Theta(z-t) g(z-t)$. Vidíme, že  
$\Theta(t) \Theta(z-t) \neq \Leftrightarrow t \in (0,z), z>0$. Pak  
+
$\Theta(t) \Theta(z-t) \neq 0 \Leftrightarrow t \in (0,z), z>0$. Pak  
 
$$ \displaystyle \int _{\R} \dd t f(t) g(z-t) = \Theta(z) \displaystyle \int_{0}^{z} f(t)g(z-t) \dd t.$$
 
$$ \displaystyle \int _{\R} \dd t f(t) g(z-t) = \Theta(z) \displaystyle \int_{0}^{z} f(t)g(z-t) \dd t.$$
 
Naše funkce $\tilde{f}(t)$ a $\epsilon(t)$ splňují z definice předpoklady výše zmíněné, a proto můžeme spočíst jejich konvoluci.  
 
Naše funkce $\tilde{f}(t)$ a $\epsilon(t)$ splňují z definice předpoklady výše zmíněné, a proto můžeme spočíst jejich konvoluci.  
Řádka 88: Řádka 92:
 
Tímto jsme spočetli i poslední člen konvoluce a opět vidíme, že je napsatelný ve tvaru součinu Heavisideovy funkce a nějaké klasické funkce.  
 
Tímto jsme spočetli i poslední člen konvoluce a opět vidíme, že je napsatelný ve tvaru součinu Heavisideovy funkce a nějaké klasické funkce.  
 
Tedy nyní již víme, že $$\tilde{y}(t) = (1)+ (2) + (3) = $$
 
Tedy nyní již víme, že $$\tilde{y}(t) = (1)+ (2) + (3) = $$
$$= \Theta(t) \underbrace{\left[ 7 \left( e^{-t}-e^{-2t} \right) + 2 \left( 2-e^{-2t} + -e^{-t}\right) +
+
$$= \Theta(t) \underbrace{\left[ 7 \left( e^{-t}-e^{-2t} \right) + 2 \left( 2e^{-2t} -e^{-t}\right) +
 
3e^{t} \left[t \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})e^{-\tau}\dd \tau - \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})\tau e^{-\tau}\dd \tau \right] \right]}_{= y(t)}$$
 
3e^{t} \left[t \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})e^{-\tau}\dd \tau - \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})\tau e^{-\tau}\dd \tau \right] \right]}_{= y(t)}$$
  
 
O funkci $y(t)$ bychom mohli tvrdit, že je řešením klasické úlohy. Z našeho postupu to ale nevyplývá. Ve skutečnosti tomu tak ale je a přesvědčí nás o tom následující věta.  
 
O funkci $y(t)$ bychom mohli tvrdit, že je řešením klasické úlohy. Z našeho postupu to ale nevyplývá. Ve skutečnosti tomu tak ale je a přesvědčí nás o tom následující věta.  
 
\begin{theorem}
 
\begin{theorem}
Nechť $u=u(t)$ pro $t \geq 0$ je klasické řešení diferenciální rovnice tvaru  
+
Nechť $u=u(t)$ pro $t \geq 0$ je klasické řešení lineární diferenciální rovnice s konstantními koeficienty tvaru  
$$L u = u^{(n)}+ a_1 u^{(n-1)}+ \dots + a_{n-1}U' +a_n u  = \displaystyle \sum_{k=0}^{n}a_{n-k}u^{(k)} = f(t),$$
+
$$L u = u^{(n)}+ a_1 u^{(n-1)}+ \dots + a_{n-1}u' +a_n u  = \displaystyle \sum_{k=0}^{n}a_{n-k}u^{(k)} = f(t),$$
kde $a_k = const.$ pro všechna $k\in \hat{n}$ a $a_0 = 1$, které splňuje počáteční podmínky $u^{(k)}(0) = u_k$ pro všechna $k\in \hat{n}$ a nechť $f(t)\in L^1_{loc}(\R^+)$ je po částech spojitá funkce.  
+
kde $a_k = konst.$ pro všechna $k\in \{0,1, \dots, n-1 \}$ a $a_0 = 1$, které splňuje počáteční podmínky $u^{(k)}(0) = u_k$ pro všechna $k\in \hat{n}$ a nechť $f(t)\in L^1_{loc}(\R^+)$ je po částech spojitá funkce.  
  
 
Definujeme-li $\tilde{u}(t) = \Theta(t)u(t)$ a $\tilde{f}(t) = \Theta(t) f(t)$, tak potom:
 
Definujeme-li $\tilde{u}(t) = \Theta(t)u(t)$ a $\tilde{f}(t) = \Theta(t) f(t)$, tak potom:
Řádka 140: Řádka 144:
 
\frac{\dd^{n}}{\dd t^{n}} \left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right) & = & \underbrace{Z^{(n-1)}(t-t)}_{Z^{(n-1)}(0) = 1}f(t) + \displaystyle \int_{0}^{t}Z^{(n)}(t-\tau)f(\tau) \dd \tau = f(t)+  \displaystyle \int_{0}^{t}Z^{(n)}(t-\tau)f(\tau) \dd \tau
 
\frac{\dd^{n}}{\dd t^{n}} \left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right) & = & \underbrace{Z^{(n-1)}(t-t)}_{Z^{(n-1)}(0) = 1}f(t) + \displaystyle \int_{0}^{t}Z^{(n)}(t-\tau)f(\tau) \dd \tau = f(t)+  \displaystyle \int_{0}^{t}Z^{(n)}(t-\tau)f(\tau) \dd \tau
 
\end{eqnarray*}
 
\end{eqnarray*}
Vidíme, že všechny derivace existují. To, že je toto řešením dané úlohy plyne z aplikace operátoru  $L$. Je zřejmé, že toto řešení je partikulárním řešením (díky členu $f(t)$ v $n$-té derivaci)  
+
Vidíme, že všechny derivace existují. To, že je toto řešením dané úlohy, plyne z aplikace operátoru  $L$. Je zřejmé, že toto řešení je partikulárním řešením (díky členu $f(t)$ v $n$-té derivaci)  
 
$$ L\left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau  \right)  =  \displaystyle \sum_ {k=0}^{n} a_{n-k} \left(\displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right)^{(k)} = $$
 
$$ L\left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau  \right)  =  \displaystyle \sum_ {k=0}^{n} a_{n-k} \left(\displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right)^{(k)} = $$
 
$$ = f(t) + \displaystyle \int_{0}^{t} \left(\displaystyle \sum_ {k=0}^{n} a_{n-k} Z^{(k)}(t-\tau)f(\tau) \right) \dd \tau = f(t) + \displaystyle \int_{0}^{t} LZ \cdot f(t) \dd \tau = f(t)$$
 
$$ = f(t) + \displaystyle \int_{0}^{t} \left(\displaystyle \sum_ {k=0}^{n} a_{n-k} Z^{(k)}(t-\tau)f(\tau) \right) \dd \tau = f(t) + \displaystyle \int_{0}^{t} LZ \cdot f(t) \dd \tau = f(t)$$
 
Tímto jsme ukázali, že $u(t)$ řeší rovnici $Lu = f$.  
 
Tímto jsme ukázali, že $u(t)$ řeší rovnici $Lu = f$.  
 
Že toto řešení splňuje i počáteční podmínky je taky jednoduché ukázat. Pro $k \in \{0,1, \dots, n-1\}$ plyne z nulovosti integrálu $(I)^{(k)}(0) = 0$ a tedy nepřispívají do počátečních podmínek.
 
Že toto řešení splňuje i počáteční podmínky je taky jednoduché ukázat. Pro $k \in \{0,1, \dots, n-1\}$ plyne z nulovosti integrálu $(I)^{(k)}(0) = 0$ a tedy nepřispívají do počátečních podmínek.
Proto použijeme člen $(II)$ a aplikujeme podmínky na $Z^{(r)}$ a definici koeficientů $c_r$. Odtud snadno vyplývá, že $u^{(r)}(0) = u_r$  
+
Proto použijeme člen $(II)$ a aplikujeme podmínky na $Z^{(r)}$ a definici koeficientů $c_r$. Odtud po dosazení nejvyšší derivace vyjádřené z (derivací) rovnice $LZ = 0$ vyplývá, že $u^{(r)}(0) = u_r$. Dosazovat v plné obecnosti lze, jedná se však o zbytečně dlouhý technický výpočet. Čtenář si jej může provést sám doma, jako cvičení. Důležité je jej umět aplikovat konkrétně.
 
Tímto jsme rovněž ukázali, že splňujeme počáteční podmínky a větu jsme zcela dokázali.  
 
Tímto jsme rovněž ukázali, že splňujeme počáteční podmínky a větu jsme zcela dokázali.  
 
\end{proof}
 
\end{proof}
Řádka 153: Řádka 157:
 
\begin{remark}
 
\begin{remark}
 
Pro parciální diferenciální rovnice nemáme k dispozici nic jako fundamentální systém řešení, který známe z lineárních obyčejných diferenciálních rovnic. Prakticky to znamená, že zabývat se problémem nalezení
 
Pro parciální diferenciální rovnice nemáme k dispozici nic jako fundamentální systém řešení, který známe z lineárních obyčejných diferenciálních rovnic. Prakticky to znamená, že zabývat se problémem nalezení
\uv{obecného řešení PDR} nedává příliš smysl. Zabýváme se tedy vždy úlohou řešit PDR doplněnou o počáteční, eventuelně okrajové podmínky.  
+
\uv{obecného řešení PDR} nedává příliš smysl. Zabýváme se tedy vždy úlohou řešit PDR doplněnou o počáteční, eventuálně okrajové podmínky.  
 
\end{remark}
 
\end{remark}
  
Uvedmě pro ilustraci této poznámky následující příklady:
+
Uveďme pro ilustraci této poznámky následující příklady:
 
\begin{enumerate}
 
\begin{enumerate}
 
\item Rovnici $\pd{}{t}u + a\pd{}{x}u =0$ splní jakákoliv funkce $u(x,t) = f(x-at)$ pro libovolnou $f \in \mathcal{C}^1$.
 
\item Rovnici $\pd{}{t}u + a\pd{}{x}u =0$ splní jakákoliv funkce $u(x,t) = f(x-at)$ pro libovolnou $f \in \mathcal{C}^1$.
Řádka 171: Řádka 175:
 
\begin{equation}
 
\begin{equation}
 
\label{metoda_charakteristik}
 
\label{metoda_charakteristik}
a(x,t) + u_t + c(x,t)u_x = g(x,t) \ \mbox{s počáteční podmínkou } u(x,0) = u_0(x).
+
a(x,t)u + u_t + c(x,t)u_x = g(x,t) \ \mbox{s počáteční podmínkou } u(x,0) = u_0(x).
 
\end{equation}
 
\end{equation}
  
Řádka 193: Řádka 197:
 
$$ \frac{\dd t}{\dd s} = \tilde{b}(x(s),t(s));$$
 
$$ \frac{\dd t}{\dd s} = \tilde{b}(x(s),t(s));$$
 
$$ \frac{\dd x}{\dd s} = \tilde{c}(x(s),t(s));$$
 
$$ \frac{\dd x}{\dd s} = \tilde{c}(x(s),t(s));$$
$$ \frac{\dd u}{\dd s} +\tilde{a}(x(s),t(s)) = \tilde{g}(x(s),t(s)).$$
+
$$ \frac{\dd u}{\dd s} +\tilde{a}(x(s),t(s))u = \tilde{g}(x(s),t(s)).$$
 
Parametr $s$ slouží k parametrizaci charakteristiky.  
 
Parametr $s$ slouží k parametrizaci charakteristiky.  
 
\end{remark}
 
\end{remark}
Řádka 204: Řádka 208:
 
\item Vyřešíme ODR na charakteristikách z bodu 1, tj. řešíme rovnici $v'(t) + a(X(t),t)v(t) = g(X(t),t)$ s počáteční podmínkou $v(0) = u_0(x_0)$. Řešení označme $v_{x_0}(t)$.  
 
\item Vyřešíme ODR na charakteristikách z bodu 1, tj. řešíme rovnici $v'(t) + a(X(t),t)v(t) = g(X(t),t)$ s počáteční podmínkou $v(0) = u_0(x_0)$. Řešení označme $v_{x_0}(t)$.  
 
\item Vybereme, resp. dosadíme správnou charakteristiku, tj:
 
\item Vybereme, resp. dosadíme správnou charakteristiku, tj:
$$ u(x,t) = \left. {x_0}(t)\right|_{x_0 = p(x,t)}
+
$$ u(x,t) = \left. v_{x_0}(t)\right|_{x_0 = p(x,t)}
 
\end{enumerate}
 
\end{enumerate}
  
Řádka 253: Řádka 257:
 
V této kapitole se budeme zabývat PDR 2. řádu, tj. rovnicí tvaru
 
V této kapitole se budeme zabývat PDR 2. řádu, tj. rovnicí tvaru
 
$$f=Lu = \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u + \displaystyle \sum_{i=1}^{n}b_i(x) \pd{}{x_i} u +c(x)u.$$
 
$$f=Lu = \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u + \displaystyle \sum_{i=1}^{n}b_i(x) \pd{}{x_i} u +c(x)u.$$
Budeme hledat její klasické řešení $u\in \mathcal{C}^2(G)$, $a_{ij}(x)\in \mathcal{C}(G)$,  $b_i(x)\in \mathcal{C}(G)$, kde $G\subset \R^n$.
+
Budeme hledat její klasické řešení $u\in \mathcal{C}^2(G)$, $a_{ij}(x)\in \mathcal{C}(G)$,  $b_i(x)\in \mathcal{C}(G)$,  $c\in \mathcal{C}(G)$, kde $G\subset \R^n$.
  
 
\begin{define}
 
\begin{define}
Řekneme, že lineární parciální diferenciální rovnice 2. řádu je {\bf eliptická}, resp. {\bf hyperbolická}, resp. {\bf parabolická} na $M\subset G$, právě když je eliptická, resp. hyperbolická, resp. parabolická její přidružená kvadratická forma $q(y,x) = y^T\A^{T}(x)y$, kde $\A_{ij} = a_{ij}(x)$ a $\A$ je symetrická.  
+
Řekneme, že lineární parciální diferenciální rovnice 2. řádu je {\bf eliptická}, resp. {\bf hyperbolická}, resp. {\bf parabolická} na $M\subset G$, právě když je eliptická, resp. hyperbolická, resp. parabolická její přidružená kvadratická forma $q(y,x) = y^T\A(x)y$, kde $\A_{ij} = a_{ij}(x)$ a $\A$ je symetrická.  
  
Řekneme, že parciální diferenciální rovnice je v {\bf normálním tvaru}, právě když je matice $\A$ diagonální s 0,-1 a 1 na diagonále. Typicky se tak děje po transformaci.   
+
Řekneme, že parciální diferenciální rovnice je v {\bf normálním tvaru}, právě když je matice $\A$ diagonální s 0, -1 a 1 na diagonále. Typicky se tak děje po transformaci.   
 
\end{define}
 
\end{define}
  
 
\begin{remark}
 
\begin{remark}
Připomeňme, že o kvadratické formě řekneme, že je eliptická, pokud má její matice veškerá vlastní čísla nezáporná nenulová.  
+
Připomeňme, že o kvadratické formě řekneme, že je eliptická, pokud má její matice veškerá vlastní čísla nezáporná nenulová, resp. nekladná nenulová.  
 
Řekneme, že je hyperbolická, pokud jsou veškerá její vlastní čísla nenulová a~není eliptická, tj. má jak kladná, tak záporná vlastní čísla, která jsou nenulová.   
 
Řekneme, že je hyperbolická, pokud jsou veškerá její vlastní čísla nenulová a~není eliptická, tj. má jak kladná, tak záporná vlastní čísla, která jsou nenulová.   
 
Řekneme, že je parabolická, pokud je alespoň jedno její vlastní číslo nulové a alespoň jedno nenulové.
 
Řekneme, že je parabolická, pokud je alespoň jedno její vlastní číslo nulové a alespoň jedno nenulové.
Řádka 282: Řádka 286:
 
Proto je třeba nejdříve spočítat derivace vyjádřené pomocí nových souřadnic:
 
Proto je třeba nejdříve spočítat derivace vyjádřené pomocí nových souřadnic:
 
$$\pd{u}{x} = \pd{u}{\xi}\pd{\xi}{x}+ \pd{u}{\eta}\pd{\eta}{x} $$
 
$$\pd{u}{x} = \pd{u}{\xi}\pd{\xi}{x}+ \pd{u}{\eta}\pd{\eta}{x} $$
$$\pd{u}{y} = \pd{u}{\xi}\pd{\xi}{y}+ \pd{u}{\eta}\pd{\eta}{x} $$
+
$$\pd{u}{y} = \pd{u}{\xi}\pd{\xi}{y}+ \pd{u}{\eta}\pd{\eta}{y} $$
$$ \ppd{u}{x} = \ppd{u}{\xi} \left( \pd{\xi}{x}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{x} + \pd{u}{\xi} \ppd{\xi}{x} + \ppd{u}{\eta} \left( \pd{\eta}{x}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{x} + \pd{u}{\xi} \ppd{\eta}{x} $$
+
$$ \ppd{u}{x} = \ppd{u}{\xi} \left( \pd{\xi}{x}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{x} + \pd{u}{\xi} \ppd{\xi}{x} + \ppd{u}{\eta} \left( \pd{\eta}{x}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{x} + \pd{u}{\eta} \ppd{\eta}{x} $$
$$ \ppd{u}{y} = \ppd{u}{\xi} \left( \pd{\xi}{y}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{y} \pd{\eta}{y} + \pd{u}{\xi} \ppd{\xi}{y} + \ppd{u}{\eta} \left( \pd{\eta}{y}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{y} \pd{\eta}{y} + \pd{u}{\xi} \ppd{\eta}{y} $$
+
$$ \ppd{u}{y} = \ppd{u}{\xi} \left( \pd{\xi}{y}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{y} \pd{\eta}{y} + \pd{u}{\xi} \ppd{\xi}{y} + \ppd{u}{\eta} \left( \pd{\eta}{y}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{y} \pd{\eta}{y} + \pd{u}{\eta} \ppd{\eta}{y} $$
 
$$\spd{u}{x}{y} = \ppd{u}{\xi}\pd{\xi}{x}\pd{\xi}{y} + \spd{u}{\xi}{\eta} \pd{\eta}{x} \pd{\xi}{y} + \pd{u}{\xi} \spd{\xi}{x}{y} + \ppd{u}{\eta} \pd{\eta}{x} \pd{\eta}{y} + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{y} + \pd{u}{\eta} \spd{\eta}{x}{y}$$
 
$$\spd{u}{x}{y} = \ppd{u}{\xi}\pd{\xi}{x}\pd{\xi}{y} + \spd{u}{\xi}{\eta} \pd{\eta}{x} \pd{\xi}{y} + \pd{u}{\xi} \spd{\xi}{x}{y} + \ppd{u}{\eta} \pd{\eta}{x} \pd{\eta}{y} + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{y} + \pd{u}{\eta} \spd{\eta}{x}{y}$$
 
Nyní tyto členy dosadíme do původní rovnice a rovnici upravíme. Při úpravě nás budou zajímat pouze členy vyjadřující druhou derivaci $u$ podle nových proměnných.  
 
Nyní tyto členy dosadíme do původní rovnice a rovnici upravíme. Při úpravě nás budou zajímat pouze členy vyjadřující druhou derivaci $u$ podle nových proměnných.  
 
Zbylé členy můžeme vnořit do nové funkce $ \tilde{F}$. Proto rovnice po transformaci souřadnic přejde do tvaru
 
Zbylé členy můžeme vnořit do nové funkce $ \tilde{F}$. Proto rovnice po transformaci souřadnic přejde do tvaru
 
$$\ppd{u}{\xi} \underbrace{\left(a\left(\pd{\xi}{x}\right)^2 + c\left(\pd{\xi}{y}\right)^2 + b\left(\pd{\xi}{x} \pd{\xi}{y}\right) \right)}_{I}  
 
$$\ppd{u}{\xi} \underbrace{\left(a\left(\pd{\xi}{x}\right)^2 + c\left(\pd{\xi}{y}\right)^2 + b\left(\pd{\xi}{x} \pd{\xi}{y}\right) \right)}_{I}  
  + \ppd{u}{\eta} \underbrace{\left(a\left(\pd{\eta}{x}\right)^2 + c\left(\pd{\eta}{y}\right)^2 + b\left(\pd{\eta}{x} \pd{\eta}{y}\right) \right}_{II} +$$
+
  + \ppd{u}{\eta} \underbrace{\left(a\left(\pd{\eta}{x}\right)^2 + c\left(\pd{\eta}{y}\right)^2 + b\left(\pd{\eta}{x} \pd{\eta}{y}\right) \right)}_{II} +$$
 
   $$ + \spd{u}{\xi}{\eta} \underbrace{\left( 2a\left(\pd{\xi}{x}\pd{\eta}{x}\right) + 2c\left(\pd{\xi}{y}\pd{\eta}{y}\right) +  
 
   $$ + \spd{u}{\xi}{\eta} \underbrace{\left( 2a\left(\pd{\xi}{x}\pd{\eta}{x}\right) + 2c\left(\pd{\xi}{y}\pd{\eta}{y}\right) +  
 
b\left(\pd{\eta}{x} \pd{\xi}{y} + \pd{\xi}{x} \pd{\eta}{y} \right) \right)}_{III} + \tilde{F}(\nabla u,u,\xi,\eta).$$
 
b\left(\pd{\eta}{x} \pd{\xi}{y} + \pd{\xi}{x} \pd{\eta}{y} \right) \right)}_{III} + \tilde{F}(\nabla u,u,\xi,\eta).$$
 
Zabývejme se nyní členem $I$; ten lze totiž přepsat do následující podoby:
 
Zabývejme se nyní členem $I$; ten lze totiž přepsat do následující podoby:
$$ (I) = \left(\ppd{u}{x}\right) \left( a+ b\left(\frac{\pd{\xi}{y}}{\pd{\xi}{x}}\right) +c \left(\frac{\pd{\xi}{y}}{\pd{\xi}{x}}\right)^2 \right)$$
+
$$ (I) = \left(\ppd{\xi}{x}\right) \left( a+ b\left(\frac{\pd{\xi}{y}}{\pd{\xi}{x}}\right) +c \left(\frac{\pd{\xi}{y}}{\pd{\xi}{x}}\right)^2 \right)$$
 
Vidíme, že jsme v závorce obdrželi kvadratický výraz $a + b\lambda + c \lambda^2 =0 $ pro $\lambda(x,y) = \frac{\pd{\xi}{y}}{\pd{\xi}{x}}$.
 
Vidíme, že jsme v závorce obdrželi kvadratický výraz $a + b\lambda + c \lambda^2 =0 $ pro $\lambda(x,y) = \frac{\pd{\xi}{y}}{\pd{\xi}{x}}$.
 
Stejný kvadratický výraz bychom obdrželi, kdybychom vytkli člen $\left( \pd{\eta}{x}\right)^2$ ve členu $II$. Proto pokud má ona určující kvadratická rovnice právě jeden dvojnásobný kořen, jsme schopni  
 
Stejný kvadratický výraz bychom obdrželi, kdybychom vytkli člen $\left( \pd{\eta}{x}\right)^2$ ve členu $II$. Proto pokud má ona určující kvadratická rovnice právě jeden dvojnásobný kořen, jsme schopni  
Řádka 309: Řádka 313:
 
\item {\it Parabolická}
 
\item {\it Parabolická}
  
dle definice právě když má přidružená kvadratická forma $\A$ alespoň jedno vlastní číslo rovno nule. Toto je ekvivalentní tomu, že $\mathrm{det}\A = 0 = ac - \frac{b^2}{4}$. Toto ale znamená totéž co fakt, že
+
Dle definice, právě když má přidružená kvadratická forma $\A$ alespoň jedno vlastní číslo rovno nule. Toto je ekvivalentní tomu, že $\mathrm{det}\A = 0 = ac - \frac{b^2}{4}$. Toto ale znamená totéž co fakt, že
 
diskriminant $d(x,y)$ kvadratické rovnice je nulový a to je ekvivalentní s tvrzením, že kvadratická rovnice má právě jeden dvojnásobný kořen.  
 
diskriminant $d(x,y)$ kvadratické rovnice je nulový a to je ekvivalentní s tvrzením, že kvadratická rovnice má právě jeden dvojnásobný kořen.  
  
 
\item{\it Eliptická}
 
\item{\it Eliptická}
  
Aby rovnice byla eliptická, je potřeba aby její přidružená kvadratická forma měla dvě vlastní čísla $\lambda_{\pm}$ stejného znaménka, tj. buď $\lambda_{\pm} > 0$, nebo $\lambda_{\pm}<0$.  
+
Aby rovnice byla eliptická, je potřeba, aby její přidružená kvadratická forma měla dvě vlastní čísla $\lambda_{\pm}$ stejného znaménka, tj. buď $\lambda_{\pm} > 0$, nebo $\lambda_{\pm}<0$.  
 
Pro vlastní čísla matice 2$\times$2 platí vztah  
 
Pro vlastní čísla matice 2$\times$2 platí vztah  
 
$$\lambda_{\pm} = \frac{\mathrm{tr}\A}{2}\pm \frac{1}{2}\sqrt{(\mathrm{tr}\A)^2 - \mathrm{det}\A}.$$
 
$$\lambda_{\pm} = \frac{\mathrm{tr}\A}{2}\pm \frac{1}{2}\sqrt{(\mathrm{tr}\A)^2 - \mathrm{det}\A}.$$
Řádka 339: Řádka 343:
 
%V této části je něco špatně... Opravit!  
 
%V této části je něco špatně... Opravit!  
 
Tedy rovnici \ref{pdr} jsme převedli do očekávaného normálního tvaru
 
Tedy rovnici \ref{pdr} jsme převedli do očekávaného normálního tvaru
$$\ppd{u}{\eta} = \frac{\tilde{F}(\nabla u,u,\xi,\eta)}{II} = 0$$
+
$$\ppd{u}{\eta} + \frac{\tilde{F}(\nabla u,u,\xi,\eta)}{II} = 0$$
  
 
\paragraph{Eliptická a hyperbolická rovnice}
 
\paragraph{Eliptická a hyperbolická rovnice}
 
Ukázali jsme, že aby byla rovnice eliptická nebo hyperbolická, musí mít rovnice  $a + b\lambda + c \lambda^2 =0 $ dva různé kořeny. Díky nim můžeme zvolit souřadnice $\xi, \eta$ tak, že   
 
Ukázali jsme, že aby byla rovnice eliptická nebo hyperbolická, musí mít rovnice  $a + b\lambda + c \lambda^2 =0 $ dva různé kořeny. Díky nim můžeme zvolit souřadnice $\xi, \eta$ tak, že   
 
vynulují členy $I$ a $II$. Pak dostáváme rovnici tvaru:
 
vynulují členy $I$ a $II$. Pak dostáváme rovnici tvaru:
$$\spd{u}{\eta}{\xi} = \frac{\tilde{F}(\nabla u,u,\xi,\eta)}{III} = 0$$
+
$$\spd{u}{\eta}{\xi} + \frac{\tilde{F}(\nabla u,u,\xi,\eta)}{III} = 0$$
 
Tato rovnice není v normálním tvaru. pro převod budeme muset ještě jednou provést transformaci souřadnic. Jelikož u eliptické rovnice existují dva komplexně sdružené kořeny, funkce $\xi,\eta$ transformují do komplexních proměnných, což musíme touto transformací změnit. V hyperbolickém případě, kdy jsou řešení kvadratické rovnice reálná, jsou nové souřadnice $\xi,\eta$ rovněž reálné, ale tvar rovnice zatím neukazuje přímo na to, že by byla hyperbolická, což se právě novou transformací budeme snažit změnit.  
 
Tato rovnice není v normálním tvaru. pro převod budeme muset ještě jednou provést transformaci souřadnic. Jelikož u eliptické rovnice existují dva komplexně sdružené kořeny, funkce $\xi,\eta$ transformují do komplexních proměnných, což musíme touto transformací změnit. V hyperbolickém případě, kdy jsou řešení kvadratické rovnice reálná, jsou nové souřadnice $\xi,\eta$ rovněž reálné, ale tvar rovnice zatím neukazuje přímo na to, že by byla hyperbolická, což se právě novou transformací budeme snažit změnit.  
  
Řádka 355: Řádka 359:
 
\subparagraph{Eliptický případ}
 
\subparagraph{Eliptický případ}
 
Je vhodné si uvědomit, že díky komplexnímu sdružení kořenů kvadratické rovnice budou komplexně sdruženy i funkce $\xi,\eta$. Tohoto využijeme a pomocí transformace
 
Je vhodné si uvědomit, že díky komplexnímu sdružení kořenů kvadratické rovnice budou komplexně sdruženy i funkce $\xi,\eta$. Tohoto využijeme a pomocí transformace
$r = \xi + \eta = 2\Re \xi, s= \im(\xi - \eta) = - \mathrm{Im}\xi$ z nich vytvoříme reálné souřadnice. Potom již můžeme psát
+
$r = \xi + \eta = 2\Re \xi, s= \im(\xi - \eta) = - 2\mathrm{Im}\xi$ z nich vytvoříme reálné souřadnice. Potom již můžeme psát
 
$$ \spd{u}{\xi}{\eta} = \pd{}{\xi}\left(\pd{u}{\eta}\right)=  \pd{}{\xi}\left(\pd{u}{r} - \im \pd{u}{s}\right) = \ppd{u}{r} + \im \spd{u}{r}{s} - \im \left(\spd{u}{r}{s} + \im \ppd{u}{s}\right) = \ppd{u}{r} + \ppd{u}{s},$$
 
$$ \spd{u}{\xi}{\eta} = \pd{}{\xi}\left(\pd{u}{\eta}\right)=  \pd{}{\xi}\left(\pd{u}{r} - \im \pd{u}{s}\right) = \ppd{u}{r} + \im \spd{u}{r}{s} - \im \left(\spd{u}{r}{s} + \im \ppd{u}{s}\right) = \ppd{u}{r} + \ppd{u}{s},$$
 
což je už rovnice v požadovaném normálním tvaru.
 
což je už rovnice v požadovaném normálním tvaru.
Řádka 369: Řádka 373:
  
 
\noindent Nejprve napíšeme určující kvadratickou rovnici: $$x^3 -xy^2 \lambda^2 = 0.$$  
 
\noindent Nejprve napíšeme určující kvadratickou rovnici: $$x^3 -xy^2 \lambda^2 = 0.$$  
Její diskriminant  je $$d(x,y) 4x^4y^2 > 0 s.v. $$
+
Její diskriminant  je $$d(x,y) = 4x^4y^2 > 0 \ s.v. $$
 
Odtud plyne, že rovnice je skoro všude hyperbolická, kromě bodů $x=0$, $y=0$. Zde přechází v parabolickou.  
 
Odtud plyne, že rovnice je skoro všude hyperbolická, kromě bodů $x=0$, $y=0$. Zde přechází v parabolickou.  
 
Kořeny určující rovnice jsou $\lambda_{\pm} = \pm \frac{x}{y}$ a tedy odtud máme řešení například \footnote{Řešení bude vícero, mohu to různě pronásobit konstantami atp.} $\ln x = \mp \ln y +C$,
 
Kořeny určující rovnice jsou $\lambda_{\pm} = \pm \frac{x}{y}$ a tedy odtud máme řešení například \footnote{Řešení bude vícero, mohu to různě pronásobit konstantami atp.} $\ln x = \mp \ln y +C$,
Řádka 377: Řádka 381:
  
 
\paragraph{Lineární PDR 2. řádu s konstantními koeficienty a $n$ proměnnými}
 
\paragraph{Lineární PDR 2. řádu s konstantními koeficienty a $n$ proměnnými}
Díky konstantnosti koeficientů jsme schopni provést převod na normální tvar i pro obecně $n$ proměnných, neboť se jedná o úlohu eekvivalentní s převodem matice do polární báze a
+
Díky konstantnosti koeficientů jsme schopni provést převod na normální tvar pro obecně $n$ proměnných, neboť se jedná o úlohu ekvivalentní s převodem matice do polární báze
vystačíme si jen s lineárnní transformací.  
+
Vystačíme si jen s lineární transformací.  
 
Mějme rovnici tvaru
 
Mějme rovnici tvaru
 
$$ \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij} \spd{u}{x_i}{x_j} + F(\nabla u, u) = (\nabla ^T \A \nabla )u + F(\nabla u, u)$$  
 
$$ \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij} \spd{u}{x_i}{x_j} + F(\nabla u, u) = (\nabla ^T \A \nabla )u + F(\nabla u, u)$$  
Označme $(b_1, b_2, \dots , b_n)$ polární bázi matice a dále označme $\mathbb{B}$ matici \footnote{Na přednášce se sice říkalo, že se jedná o matici složenou z vektorů polární báze, ale ta by striktně vztao matici $\A$ transformovala \uv{jen } na diagonální matici s vlastními čísly na diagonále. Matice $\mathbb{B}$ v sobě ještě nese podobnostní transformaci, která provede \uv{přeškálování}. }, která spňuje $\mathbb{B}^T \A \mathbb{B} = \mathbb{D}$, kde $\mathbb{D}$ je diagonální matice s plus mínus jedničkami a nulami na diagonále. Pak můžeme rovnici upravit do podoby
+
Označme $(b_1, b_2, \dots , b_n)$ polární bázi matice a dále označme $\mathbb{B}$ matici \footnote{Jedná o matici složenou z vektorů polární báze, což jsou vlastní
 +
vektory pronásobené odmocninou příslušeného vlastního čísla. }, která spňuje $\mathbb{B}^T \A \mathbb{B} = \mathbb{D}$, kde $\mathbb{D}$ je diagonální matice s plus mínus jedničkami a nulami na diagonále. Pak můžeme rovnici upravit do podoby
 
$$ \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij} \spd{u}{x_i}{x_j} + F(\nabla u, u) = (\nabla^T \mathbb{B}\mathbb{B}^T \A \mathbb{B}\mathbb{B}^T \nabla)u + F(\nabla u, u) =  
 
$$ \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij} \spd{u}{x_i}{x_j} + F(\nabla u, u) = (\nabla^T \mathbb{B}\mathbb{B}^T \A \mathbb{B}\mathbb{B}^T \nabla)u + F(\nabla u, u) =  
 
\left( (\mathbb{B}^T\nabla)^T \mathbb{B}^T \A \mathbb{B} (\mathbb{B}^T \nabla) \right)u + F(\nabla u, u) =$$
 
\left( (\mathbb{B}^T\nabla)^T \mathbb{B}^T \A \mathbb{B} (\mathbb{B}^T \nabla) \right)u + F(\nabla u, u) =$$
Řádka 392: Řádka 397:
  
 
\subsection{Řešení počátečních úloh lineárních PDR 2. řádu}
 
\subsection{Řešení počátečních úloh lineárních PDR 2. řádu}
V této kapitole se budeme soustředit na nalezení řešení typických zástupců parabolických, hyperbolických a eliptických rovnic. Díky transformacím budeme schopni společně s touto znalostí řešit značnou část PDR.
+
V této kapitole se budeme soustředit na nalezení řešení dvou typických zástupců parabolických a hyperbolických rovnic. Díky transformacím budeme schopni společně s touto znalostí řešit značnou část PDR.
Postup bude analogický jako u ODR, jen s tím rozdílem, že nebude tak rigrózní. V podstatě nebudeme schopni obecně ověřit existenci konvoluce a stejně tak nebudeme schopni ověřit souvislost řešení zobecněné a klasické úlohy.  
+
Postup bude analogický jako u ODR, jen s tím rozdílem, že nebude tak rigorózní. V podstatě nebudeme schopni obecně ověřit existenci konvoluce a stejně tak nebudeme schopni ověřit souvislost řešení zobecněné a klasické úlohy.  
  
 
\begin{enumerate}
 
\begin{enumerate}
Řádka 402: Řádka 407:
 
Určíme potřebné derivace
 
Určíme potřebné derivace
 
$$\ppd{}{x} \tilde{u}(x,t) = \Theta(t)\ppd{}{x} u(x,t)$$
 
$$\ppd{}{x} \tilde{u}(x,t) = \Theta(t)\ppd{}{x} u(x,t)$$
$$ \pd{}{t} \tilde{u}(x,t) = \Theta(t)\ppd{}{t} u(x,t) + u_0(x) \ts \delta(t)$$
+
$$ \pd{}{t} \tilde{u}(x,t) = \Theta(t)\pd{}{t} u(x,t) + u_0(x) \ts \delta(t)$$
 
Pak po dosazení do počáteční úlohy máme  
 
Pak po dosazení do počáteční úlohy máme  
 
$$L\tilde{u} = \Theta(t) \left( \pd{}{t}u - \lambda \ppd{}{x} u\right) +  u_0(x) \ts \delta(t) = \Theta(t) f(t) + u_0(x) \ts \delta(t) = \tilde{f} + u_0(x) \ts \delta(t)$$
 
$$L\tilde{u} = \Theta(t) \left( \pd{}{t}u - \lambda \ppd{}{x} u\right) +  u_0(x) \ts \delta(t) = \Theta(t) f(t) + u_0(x) \ts \delta(t) = \tilde{f} + u_0(x) \ts \delta(t)$$
Řádka 412: Řádka 417:
 
$$\epsilon(x,t) = \frac{\Theta(t)}{2\sqrt{\lambda \pi t}}e^{-\frac{x^2}{4\lambda t}} $$
 
$$\epsilon(x,t) = \frac{\Theta(t)}{2\sqrt{\lambda \pi t}}e^{-\frac{x^2}{4\lambda t}} $$
 
\item Nyní se vraťme k řešení zobecněné úlohy. Druhý sčítanec nyní upravíme:
 
\item Nyní se vraťme k řešení zobecněné úlohy. Druhý sčítanec nyní upravíme:
$$\left(\epsilon(x,t) \ast ( u_0(x) \ts \delta(t)), \phi(x,t) \right) = (\epsilon(x,t), ( u_0(\xi) \ts \delta(\tau),\phi(x+\xi,t+\tau)))  =$$
+
$$\left(\epsilon(x,t) \ast ( u_0(x) \ts \delta(t)), \phi(x,t) \right) = (\epsilon(x,t), ( (u_0(\xi) \ts \delta(\tau),\phi(x+\xi,t+\tau)))  =$$
 
$$= (\epsilon(x,t), ( u_0(\xi) ,\phi(x+\xi,t)))  = (\epsilon(x,t)\ast u_0(x),\phi(x,t)) $$
 
$$= (\epsilon(x,t), ( u_0(\xi) ,\phi(x+\xi,t)))  = (\epsilon(x,t)\ast u_0(x),\phi(x,t)) $$
 
Zde je nutno poznamenat, že vůbec nevíme, jestli má vůbec celá tato úprava smysl.  
 
Zde je nutno poznamenat, že vůbec nevíme, jestli má vůbec celá tato úprava smysl.  
Řádka 420: Řádka 425:
 
$$ \epsilon(x,t) \ast (\Theta(t)f(t,x)) = \displaystyle \int_{\R}\dd \tau \displaystyle \int_{\R}\dd \xi \frac{\Theta(\tau)}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}} \Theta(t-\tau)f(t-\tau,x-\xi) =$$
 
$$ \epsilon(x,t) \ast (\Theta(t)f(t,x)) = \displaystyle \int_{\R}\dd \tau \displaystyle \int_{\R}\dd \xi \frac{\Theta(\tau)}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}} \Theta(t-\tau)f(t-\tau,x-\xi) =$$
 
$$= \Theta(t) \displaystyle \int_{0}^{t}\dd \tau \displaystyle \int_{\R} \frac{1}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}}f(t-\tau,x-\xi) $$
 
$$= \Theta(t) \displaystyle \int_{0}^{t}\dd \tau \displaystyle \int_{\R} \frac{1}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}}f(t-\tau,x-\xi) $$
Tímto jsme nalezli řešení zobecněné úlohy rovnice vedení tepla v $\R^{1+1}$, které je tvaru $\tilde{u}(x,t) = \Theta(t) u(x,t)$.
+
Tímto jsme nalezli řešení zobecněné úlohy rovnice vedení tepla v $\R^{1+1}$, které je tvaru $\tilde{u}(x,t) = \Theta(t) u(x,t)$. Vyjádřeme řešení této úlohy v úplném tvaru
Vyjádřeme řešení této úlohy v úplném tvaru
+
$$\tilde{u}(t,x) = \Theta(t) \underbrace{\left[  \displaystyle \int_{0}^{t}\dd \tau \displaystyle \int_{\R} \frac{1}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}}f(t-\tau,x-\xi)\dd \xi +  
$$\tilde{u}(t,x) = \Theta(t) \underbrace{\left[  \displaystyle \int_{0}^{t}\dd \tau \displaystyle \int_{\R} \frac{1}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}}f(t-\tau,x-\xi) +  
+
\frac{1}{2\sqrt{\pi \lambda t}} \displaystyle \int_{\R} \dd \xi u_0(x-\xi) e^{-\frac{\xi^2}{4\lambda t}} \dd \xi\right]}_{= u(t), \ \mbox{\scriptsize což je řešením klasické úlohy.}}$$
\frac{1}{2\sqrt{\pi \lambda t}} \displaystyle \int_{\R} \dd \xi u_0(x-\xi) e^{-\frac{\xi^2}{4\lambda t}}\right]}_{= u(t), \ \mbox{což je řešením klasické úlohy.}}$$
+
 
Že je toto řešení klasické úlohy si čtenář může zkusit sám ověřit na konkrétním příkladě. Například volbou  $f(t,x) = e^{-t}\cos x$ a počáteční podmínkou $u_0(x) = \cos x$.  
 
Že je toto řešení klasické úlohy si čtenář může zkusit sám ověřit na konkrétním příkladě. Například volbou  $f(t,x) = e^{-t}\cos x$ a počáteční podmínkou $u_0(x) = \cos x$.  
 
 
\end{enumerate}
 
\end{enumerate}
 +
 +
Jako zástupce hyperbolických operátorů, budeme řešit počáteční úlohu vlnové rovnice v 1 dimensi, s pravou stranou $f(t,x)$ a počátečními podmínkami $u_0=u(0,x)$, $u_1=\dot{u}(0,x)$.
 +
 +
$$L_W\tilde{u} = \bigg(\ppd{}{t} - a^2 \Delta\bigg)\tilde{u} = \dot{\delta}(t)\ts u(0,x) + \delta(t)\ts \dot{u}(0,x) +  \Theta(t)\ddot{u}(t,x) - \Theta(t)\ppd{}{x} u(x,t)=$$
 +
 +
$$=\Theta(t)f(t,x) + \dot{\delta}(t)\ts u(0,x) + \delta(t)\ts \dot{u}(0,x)$$.
 +
 +
Dále upravme konvoluci tohoto výrazu s fundamentálním řešením
 +
 +
$$\E(t,x)\ast\bigg(\tilde{f}(t,x) + \dot{\delta}(t)\ts u(0,x) + \delta(t)\ts \dot{u}(0,x)\bigg)=\E(t,x)\ast\tilde{f}(t,x) + \pd{}{t}(\E(t,x)\ast u_0) + \E(t,x)\ast u_1$$
 +
 +
Dosazením $\E(t,x) = \dfrac{\Theta(t)}{2a}\Theta(at-|x|)$ získáme zobecněné řešení, vzorec je ale ještě třeba řádně upravit
 +
 +
$$\E_1\ast\tilde{f}=\displaystyle \int_{\R} \displaystyle \int_{\R} \dfrac{\Theta(t-\tau)}{2a}\Theta(a(t-\tau)-|x-\xi|)\Theta(\tau)f(\tau,\xi) \displaystyle \dd \xi \dd \tau=\displaystyle \dfrac{\Theta(t)}{2a} \int_{0}^{t} \displaystyle \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\tau,\xi) \displaystyle \dd \xi \dd \tau$$
 +
 +
$$\dot{\E_1}\ast u_0=\pd{}{t}\int_{\R}  \dfrac{\Theta(at-|x-\xi|)}{2a} \Theta(t)u_0 (\xi)\dd\xi =\dfrac{\Theta(t)}{2a}(au_0(x-at)+au_0(x+at))$$
 +
 +
$$\E_1\ast u_1= \ \int_{\R}  \dfrac{\Theta(t)}{2a}\Theta(at-|x-\xi|) u_1 (\xi)\dd \xi = \dfrac{\Theta(t)}{2a}\int_{x-at}^{x+at}u_1 (\xi)\dd \xi$$
 +
 +
Sečteme-li předchozí výrazy a vytkneme z nich Heavisidovu funkci získáme klasické řešení
 +
 +
$$u(t,x)=\displaystyle \dfrac{1}{2a} \bigg( \int_{0}^{t} \displaystyle \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\tau,\xi) \displaystyle \dd \xi \dd \tau + \int_{x-at}^{x+at} u_1 (\xi)\dd \xi\bigg) + \dfrac{u_0 (x-at)+u_0 (x+at)}{2} $$
 +
  
 
\subsection{Hledání fundamentálních řešení $\E$ některých operátorů}
 
\subsection{Hledání fundamentálních řešení $\E$ některých operátorů}
Řádka 435: Řádka 461:
 
Tento operátor zde vyřešíme pro $n=1$. Pro obecné $n$ bude vyřešen na cvičeních.  
 
Tento operátor zde vyřešíme pro $n=1$. Pro obecné $n$ bude vyřešen na cvičeních.  
 
Hledejme tedy fundamentální řešení $\E(t,x)$
 
Hledejme tedy fundamentální řešení $\E(t,x)$
$$L_{H}\left(\pd{}{t} - \lambda\ppd{}{x} \right)\E(t,x) = \delta(t,x) = \delta(t) \ts \delta(x)$$
+
$$L_{H}\E(t,x) = \left(\pd{}{t} - \lambda\ppd{}{x} \right)\E(t,x) = \delta(t,x) = \delta(t) \ts \delta(x)$$
 
Aplikujme na celou rovnici částečnou Fourierovu transformaci v proměnné $x$:
 
Aplikujme na celou rovnici částečnou Fourierovu transformaci v proměnné $x$:
 
$$\F_x\left[ \left(\pd{}{t} - \lambda\ppd{}{x} \right)\E(t,x)\right](t,\xi) = \F_x \left[ \delta(t) \ts \delta(x) \right](t,\xi) = \delta(t) \ts \F_x \left[ \delta(x) \right](\xi) = \delta(t) \ts 1$$
 
$$\F_x\left[ \left(\pd{}{t} - \lambda\ppd{}{x} \right)\E(t,x)\right](t,\xi) = \F_x \left[ \delta(t) \ts \delta(x) \right](t,\xi) = \delta(t) \ts \F_x \left[ \delta(x) \right](\xi) = \delta(t) \ts 1$$
Řádka 447: Řádka 473:
 
$$ \E(t,x) = \F^{-1}_x \left[ \hat{\E}^x (t,\xi) \right] (t,x) = \Theta(t) \F^{-1}_x \left[ e^{-\lambda \xi^2 t} \right](t,x) = \frac{\Theta(t)}{2\pi} \F_x \left[ e^{-\lambda \xi^2 t} \right](t,x)
 
$$ \E(t,x) = \F^{-1}_x \left[ \hat{\E}^x (t,\xi) \right] (t,x) = \Theta(t) \F^{-1}_x \left[ e^{-\lambda \xi^2 t} \right](t,x) = \frac{\Theta(t)}{2\pi} \F_x \left[ e^{-\lambda \xi^2 t} \right](t,x)
 
= \frac{\Theta(t)}{2 \sqrt{\lambda  t\pi}} e^{-\frac{x^2}{4\lambda t}}$$
 
= \frac{\Theta(t)}{2 \sqrt{\lambda  t\pi}} e^{-\frac{x^2}{4\lambda t}}$$
Tímto jsme našli řešení operátoru vedení tepla v jedné prostorové a jedné časové dimenzi.  
+
Tímto jsme našli řešení operátoru vedení tepla v jedné prostorové a jedné časové dimenzi.
  
 
Obecné řešení operátoru vedení tepla má tvar
 
Obecné řešení operátoru vedení tepla má tvar
 
$$ \E(t,x) = \frac{\Theta(t)}{(2\sqrt{\pi \lambda t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4\lambda t }}$$
 
$$ \E(t,x) = \frac{\Theta(t)}{(2\sqrt{\pi \lambda t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4\lambda t }}$$
  
Určit fundamentální řešení některých operátorů je snadné. U jiných je to značně obtížné. Následující věta popíše metodu, pomocí které určíme např. fundamentální řešení Laplaceovy rovnice.
+
kde $\Vert x \Vert^2=\sum_{1}^{n} x_k^2$. Určit fundamentální řešení některých operátorů je snadné. U jiných je to značně obtížné. Následující věta popíše metodu, pomocí které určíme např. fundamentální řešení Laplaceovy rovnice.
 +
 
 
\begin{theorem}[Metoda sestupu]
 
\begin{theorem}[Metoda sestupu]
Nechť $u(t,x) \in \D'(\R^{n+1})$ je zobecněná funkce s omezeným nosičem v $t$, tj. $\exists R>0$ takové, že $\forall x$ je $\nf u(t,x) \subset B_R(0)$, která je řešením diferenciální rovnice  
+
Nechť $u(t,x) \in \D'(\R^{1+n})$ je zobecněná funkce s omezeným nosičem v $t$, tj. $\exists R>0$ takové, že $\forall x$ je $\nf u(t,x) \subset B_R(0)$, která je řešením diferenciální rovnice  
 
$\left( \displaystyle \sum_{k=1}^{n} \frac{\partial^k}{\partial t^k} L_k + L_0\right) u(t,x) = \delta(t) \ts f(x)$, kde $L_k, L_0$ jsou lineární diferenciální operátory působící v $x\in \R^n$ s
 
$\left( \displaystyle \sum_{k=1}^{n} \frac{\partial^k}{\partial t^k} L_k + L_0\right) u(t,x) = \delta(t) \ts f(x)$, kde $L_k, L_0$ jsou lineární diferenciální operátory působící v $x\in \R^n$ s
 
koeficienty třídy $\Ci$. Potom $u_0$ definované  
 
koeficienty třídy $\Ci$. Potom $u_0$ definované  
Řádka 461: Řádka 488:
 
\begin{proof}
 
\begin{proof}
 
$$(L_0u_0(x), \phi(x)) := (u_0(x),\tilde{L}_0\phi(x))$$
 
$$(L_0u_0(x), \phi(x)) := (u_0(x),\tilde{L}_0\phi(x))$$
Operátor $\tilde{L}_0$ působí na testovací funkci tak, jako operátor $L_0$ jen navíc zahrnuje změnu znaménka vyplývající z defincie derivace v $\D$ a před provedením derivace je testovací funkce napřed  
+
Operátor $\tilde{L}_0$ působí na testovací funkci tak jako operátor $L_0$, jen navíc zahrnuje změnu znaménka vyplývající z definice derivace v $\D$ a před provedením derivace je testovací funkce napřed  
 
vynásobena příslušným koeficientem (z tohoto důvodu byla požadována hladkost v předpokladech). Uveďme konkrétní příklad. Máme-li operátor $L_0= a(x)\frac{\dd^3}{\dd x^3}$, tak operátor  
 
vynásobena příslušným koeficientem (z tohoto důvodu byla požadována hladkost v předpokladech). Uveďme konkrétní příklad. Máme-li operátor $L_0= a(x)\frac{\dd^3}{\dd x^3}$, tak operátor  
 
$\tilde{L}_0 = (-1)^3 \frac{\dd^3}{\dd x^3} (a(x) \cdot )$. Nyní již v této notaci dokazujme tvrzení.
 
$\tilde{L}_0 = (-1)^3 \frac{\dd^3}{\dd x^3} (a(x) \cdot )$. Nyní již v této notaci dokazujme tvrzení.
 
$$(u_0(x),\tilde{L}_0\phi(x)) = (u(t,x),\tilde{L}_0\phi(x)\eta(t)) + \underbrace{\displaystyle \sum_{k=1}^{n}\left(u(t,x), \left(\frac{\partial^k}{\partial t^k} \tilde{L}_k\right)  
 
$$(u_0(x),\tilde{L}_0\phi(x)) = (u(t,x),\tilde{L}_0\phi(x)\eta(t)) + \underbrace{\displaystyle \sum_{k=1}^{n}\left(u(t,x), \left(\frac{\partial^k}{\partial t^k} \tilde{L}_k\right)  
(\phi(x)\eta(t) \right) }_{=0, \ \eta(t) \ \mbox{ \scriptsize je rovno 1}} = $$
+
(\phi(x)\eta(t)) \right) }_{=0, \ \eta(t) \ \mbox{ \scriptsize je rovno 1}} = $$
$$= \left(  u(t,x), \left( \frac{\partial^k}{\partial t^k} \tilde{L}_k + \tilde{L}_0\right)(\phi(x)\eta(t)) \right) = \left(\left(\displaystyle \sum_{k=1}^{n} \frac{\partial^k}{\partial t^k} L_k + L_0\right) u(t,x), \phi(x)\eta(t)\right) =$$
+
$$= \left(  u(t,x), \left( \sum_{k=1}^{n}\frac{\partial^k}{\partial t^k} \tilde{L}_k + \tilde{L}_0\right)(\phi(x)\eta(t)) \right) = \left(\left(\displaystyle \sum_{k=1}^{n} \frac{\partial^k}{\partial t^k} L_k + L_0\right) u(t,x), \phi(x)\eta(t)\right) =$$
 
$$ = (\delta(t) \ts f(x),\phi(x)\eta(t) ) = (f(x),\phi(x))$$
 
$$ = (\delta(t) \ts f(x),\phi(x)\eta(t) ) = (f(x),\phi(x))$$
 
\end{proof}
 
\end{proof}
Řádka 472: Řádka 499:
  
 
\begin{remark}
 
\begin{remark}
Je-li funkce $u(t,x) \in \D'_{reg}$ a  $\displaystyle \int_{\R}u(t,x)\in L^1_{loc}$, tak i pro tento případ jsme schopni určit $u_0(x)$.  
+
Je-li funkce $u(t,x) \in \D'_{reg}$ a  $\displaystyle \int_{\R}u(t,x) \dd t\in L^1_{loc}(\R^n)$, tak i pro tento případ jsme schopni určit $u_0(x)$.  
$$(u_0(x),\phi(x)):= (u(t,x),\phi(x)\eta(t) ) = \displaystyle \int_{\R} \dd t \displaystyle \int_{\R^n} \dd x \_ u(t,x) \phi(x) \eta(t) =
+
$$(u_0(x),\phi(x)):= (u(t,x),\phi(x)\eta(t) ) = \displaystyle \int_{\R^{1+n}\ u(t,x) \phi(x) \eta(t) \dd(t,x) =
 
\displaystyle \int_{\R^n} \phi(x) \left(\displaystyle \int_{\R} \dd t u(t,x) \right)$$
 
\displaystyle \int_{\R^n} \phi(x) \left(\displaystyle \int_{\R} \dd t u(t,x) \right)$$
Jelikož tato úprava platí pro všechny testovací funkce, je  $\displaystyle \int_{\R} \dd t \_ u(t,x) = u_0(x)$
+
Jelikož tato úprava platí pro všechny testovací funkce, je  $\displaystyle \int_{\R} \dd t \ u(t,x) = u_0(x)$
  
 
Je-li $u(t,x) = \delta(t) \ts v(x)$, pak $u_0(x) = v(x)$.  
 
Je-li $u(t,x) = \delta(t) \ts v(x)$, pak $u_0(x) = v(x)$.  
 
\end{remark}
 
\end{remark}
 
\paragraph{Vlnová rovnice}
 
Opět připomeneme tvar vlnové rovnice v $\R^3$
 
$$\ppd{}{t} - a^2 \Delta_{x,y,z}$$
 
na cvičeních bude ukázáno, že pro dimenzi 3 platí
 
$$\E_3(t,x) = \frac{\Theta(t)}{2\pi a^2 t} \delta_{S_{at}}(x)$$
 
Nyní pomocí metody sestupu  (v $x_3$) ukážeme, jak lze získat fundamentální řešení $\E_2(t,x)$ vlnové rovnice v dimenzi 2.
 
$$(\E_2(x_1,x_2,t), \phi(x_1,x_2,t))  = (\E_3 (x_1,x_2,x_3,t),\phi(x_1,x_2,t)\eta(x_3)) =
 
\frac{1}{2\pi a^2}\displaystyle \int_{0}^{+\infty} \dd t\displaystyle \int_{S_{at}} \frac{\phi(x_1,x_2,t)}{t} \underbrace{\eta(x_3)}_{=1} \dd S =$$
 
Jedná se o plošný integrál prvního druhu, proto zvolme následující parametrizaci
 
$$\begin{array}{c}
 
x_3 = \pm \sqrt{a^2t^2 - x_1^2 - x_2^2}\\
 
(at)^2 \geq x_1^2 + x_2^2 \\
 
\left\Vert \frac{\dd x_3}{\dd x_1} \times \frac{\dd x_3}{\dd x_2} \right\Vert = \frac{at}{\sqrt{a^2t^2 - x_1^2 - x_2^2}}
 
\end{array}$$
 
Po ní zkoumaný integrál přejde do tvaru (2 před integrálem vzejde díky parametrizaci přes dvě polokoule)
 
$$\frac{2}{2\pi a^2} \displaystyle \int_{0}^{+\infty} \dd t \displaystyle \int_{(at)^2 \geq x_1^2 + x_2^2 } \! \dd x_1 \_ \dd x_2 \frac{at}{\sqrt{a^2t^2 - x_1^2 - x_2^2}} \frac{\phi(x_1,x_2,t)}{t} =$$
 
$$= \frac{1}{\pi a} \displaystyle \int_{\R} \dd t \displaystyle \int_{\R^2} \dd x_1 \dd x_2 \frac{\Theta(t) \Theta(a^2t^2 - x_1^2 - x_2^2) }{\sqrt{a^2t^2 - x_1^2 - x_2^2}} \phi(x_1,x_2,t)$$
 
Odtud již plyne řešení (díky první části poznámky  a po drobné úpravě spočívající v přepsání a odmocnění argumentu ve druhé Heavisideově funkci)
 
$$ \E_2(x_1,x_2,t) = \frac{1}{\pi a} \frac{\Theta(t) \Theta(at - \Vert x_1x_2 \Vert)}{\sqrt{a^2t^2 - x_1^2 - x_2^2}} $$
 
  
 
\paragraph{Laplaceova rovnice}
 
\paragraph{Laplaceova rovnice}
Řádka 505: Řádka 512:
 
Má tvar
 
Má tvar
 
$$\E_2(x) = \frac{1}{2\pi} \ln \Vert x \Vert $$
 
$$\E_2(x) = \frac{1}{2\pi} \ln \Vert x \Vert $$
Pro $n\geq3 $ určíme fundamentální řešení z fundamentálního řešení rovnice vedení tepla metodou sestupu v proměnné $t$. Opět využijeme první poznámky, která zajišťuje funkčnost metody.  
+
Pro $n\geq3 $ budeme demonstrovat určení fundamentální řešení z fundamentálního řešení rovnice vedení tepla metodou sestupu v proměnné $t$. Využijeme přitom první poznámky, která zajišťuje funkčnost metody.  
 
$$u_0(x) = \displaystyle \int_{\R} \frac{\Theta(t)}{(2\sqrt{\pi  t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4 t }} \dd t
 
$$u_0(x) = \displaystyle \int_{\R} \frac{\Theta(t)}{(2\sqrt{\pi  t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4 t }} \dd t
 
= \displaystyle \int_{0}^{+\infty} \frac{1}{(2\sqrt{\pi  t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4 t }} \dd t$$  
 
= \displaystyle \int_{0}^{+\infty} \frac{1}{(2\sqrt{\pi  t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4 t }} \dd t$$  
 
Provedeme substituci v $t$:  
 
Provedeme substituci v $t$:  
 
$$\begin{array}{c}
 
$$\begin{array}{c}
\frac{\left\Vert x \right\Vert ^2}{4 t } \\
+
\frac{\left\Vert x \right\Vert ^2}{4 t } = u\\
 
  - \frac{\left\Vert x \right\Vert ^2}{4 t^2 } \dd t = \dd u \Rightarrow \dd t = -\frac{4 t^2 }{\left\Vert x \right\Vert ^2}\dd u = -\frac{\Vert x\Vert ^2}{4u^2}\dd u  
 
  - \frac{\left\Vert x \right\Vert ^2}{4 t^2 } \dd t = \dd u \Rightarrow \dd t = -\frac{4 t^2 }{\left\Vert x \right\Vert ^2}\dd u = -\frac{\Vert x\Vert ^2}{4u^2}\dd u  
 
\end{array}$$
 
\end{array}$$
 
Poté přejde po několika drobných úpravách ve tvar
 
Poté přejde po několika drobných úpravách ve tvar
$$\frac{1}{(2\sqrt{\pi t})^n} \frac{4^{n/2}}{4}\Vert x\Vert ^{-n+2} \displaystyle \int_{0}^{+\infty} u^{\frac{n}{2}-2}e^{-u} \dd u = \frac{\Gamma(\frac{n}{2}-1)}{4\pi ^{\frac{n}{2}} \Vert x\Vert^{n-2}} = \E_n(x) $$
+
$$\frac{1}{(2\sqrt{\pi})^n} \frac{4^{n/2}}{4}\Vert x\Vert ^{-n+2} \displaystyle \int_{0}^{+\infty} u^{\frac{n}{2}-2}e^{-u} \dd u = \frac{\Gamma(\frac{n}{2}-1)}{4\pi ^{\frac{n}{2}} \Vert x\Vert^{n-2}} = \E_n(x) $$
  
 
Vyjádříme-li toto speciálně pro dimenzi 3, dostáváme  
 
Vyjádříme-li toto speciálně pro dimenzi 3, dostáváme  
 
  $$\E_3(x) = \frac{1}{4\pi \Vert x\Vert}$$
 
  $$\E_3(x) = \frac{1}{4\pi \Vert x\Vert}$$
  
 +
\paragraph{Vlnová rovnice}
 +
Opět připomeneme tvar vlnové rovnice v $\R^3$
 +
$$\ppd{}{t} - a^2 \Delta_{x,y,z}$$
 +
na cvičeních bude ukázáno, že pro dimenzi 3 platí
 +
$$\E_3(t,x) = \frac{\Theta(t)}{4\pi a^2 t} \delta_{S_{at}}(x)$$
 +
 +
My nyní pomocí metody sestupu  (v $x_3$) ukážeme, jak lze získat fundamentální řešení $\E_2(t,x)$ vlnové rovnice v dimenzi 2.
 +
$$(\E_2(x_1,x_2,t), \phi(x_1,x_2,t))  = (\E_3 (x_1,x_2,x_3,t),\phi(x_1,x_2,t)\eta(x_3)) =
 +
\frac{1}{2\pi a^2}\displaystyle \int_{0}^{+\infty} \dd t\displaystyle \int_{S_{at}} \frac{\phi(x_1,x_2,t)}{t} \underbrace{\eta(x_3)}_{=1} \dd S =$$
 +
Jedná se o plošný integrál prvního druhu, proto zvolme následující parametrizaci
 +
$$\begin{array}{c}
 +
x_3 = \pm \sqrt{a^2t^2 - x_1^2 - x_2^2}\\
 +
(at)^2 \geq x_1^2 + x_2^2 \\
 +
\left\Vert \frac{\dd x_3}{\dd x_1} \times \frac{\dd x_3}{\dd x_2} \right\Vert = \frac{at}{\sqrt{a^2t^2 - x_1^2 - x_2^2}}
 +
\end{array}$$
 +
Po ní zkoumaný integrál přejde do tvaru (2 před integrálem vzejde díky parametrizaci přes dvě polokoule)
 +
$$\frac{2}{4\pi a^2} \displaystyle \int_{0}^{+\infty} \dd t \displaystyle \int_{(at)^2 \geq x_1^2 + x_2^2 } \! \dd (x_1,x_2) \frac{at}{\sqrt{a^2t^2 - x_1^2 - x_2^2}} \frac{\phi(x_1,x_2,t)}{t} =$$
 +
$$= \frac{1}{2\pi a} \displaystyle \int_{\R} \dd t \displaystyle \int_{\R^2} \dd (x_1,x_2) \frac{\Theta(t) \Theta(a^2t^2 - x_1^2 - x_2^2) }{\sqrt{a^2t^2 - x_1^2 - x_2^2}} \phi(x_1,x_2,t)$$
 +
Odtud již plyne řešení (díky první části poznámky). Abychom dostali řešení v elegantním tvaru, přepíšeme ještě podmínku $(at)^2 \geq x_1^2 + x_2^2 = (at)^2 \geq \Vert x \Vert ^2$, tu odmocníme, a máme 
 +
$ at \geq \Vert x \Vert $. Pak tuto množinu, přes kterou integrujeme, můžeme vnořit do integrálu pomocí Heavisideovy funkce, jako tomu bylo v předešlém postupu. Tímto získáme finální podobu fundamentálního řešení:
 +
$$ \E_2(x_1,x_2,t) = \frac{1}{2\pi a} \frac{\Theta(t) \Theta(at - \Vert x \Vert)}{\sqrt{a^2t^2 - \Vert x \Vert^2}} $$
  
 
Tímto jsme dokončili celou kapitolu a zároveň jsme se tímto vymanili ze sevření zobecněných funkcí.
 
Tímto jsme dokončili celou kapitolu a zároveň jsme se tímto vymanili ze sevření zobecněných funkcí.

Aktuální verze z 9. 4. 2019, 15:15

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01RMF

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01RMFMazacja2 16. 12. 201618:29
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůMazacja2 28. 12. 201613:12
Header editovatHlavičkový souborMazacja2 18. 12. 201621:10 header.tex
Kapitola0 editovatPředmluvaMazacja2 9. 11. 201620:51 predmluva.tex
Kapitola1 editovatMotivaceJohndavi 8. 4. 201916:34 motivace.tex
Kapitola2 editovatZobecněné funkceLomicond 7. 12. 201916:51 zobecnene_funkce.tex
Kapitola3 editovatIntegrální transformaceLomicond 25. 12. 201915:58 integralni_transformace.tex
Kapitola4 editovatŘešení dif. rovnicJohndavi 9. 4. 201915:15 reseni.tex
Kapitola5 editovatIntegrální rovniceJohndavi 8. 4. 201916:25 Kapitola5.tex
Kapitola6 editovatSturm-Liouvilleova teorieJohndavi 8. 4. 201915:35 Kapitola6.tex

Zdrojový kód

%\wikiskriptum{01RMF}
 
%\wikifile{Image:Tabulka_vlastnosti.pdf}{Tabulka_vlastnosti.pdf}
%\includegraphics[pdf]{Tabulka_vlastnosti} 
 
\chapter{Řešení počátečních úloh ODR a PDR}
V této části se budeme věnovat již konečně řešení jednotlivých typů diferenciálních rovnic za použití nástrojů, které jsme dosud vybudovali. 
Schéma řešení již pro zobecněné lineární diferenciální rovnice známe. Máme-li
$$L u = f \mbox{ v } \D' ,$$
pak pokud naleznu řešení $L\epsilon = \delta$, tak jsme ukázali, že $u = \epsilon \ast f$ řeší rovnici $L u = f $. 
Fundamentální řešení $\epsilon$ budeme hledat právě pomocí integrálních transformací. 
 
Dodejme, že v následujících kapitolách nejprve vždy uvedeme konkrétní příklad řešení dané úlohy a následně postup abstrahujeme do věty, která bude popisovat řešení. 
 
\section{Lineární ODR s konstantními koeficienty}
Řešte počáteční úlohu:
\begin{eqnarray*}
\ddot{y} + 3\dot{y}+2y & = & 3te^t \\
y(0) & = & 2 \\
\dot{y}(0) & = &1 \\
\end{eqnarray*}
Označme $Ly = \ddot{y} + 3\dot{y}+2y $ a $f = 3te^t$. 
Předpokládejme, že $y(t)$ je řešením této rovnice, tj. $y(t) \in \Ci$.
Zkonstruujme nyní zobecněnou funkci 
$$\tilde{y}(t) := \Theta(t) y(t) \in \D'_{reg}.$$
Pomocí této funkce se pokusíme náš problém převést do řeči zobecněných funkcí a řešit jej. Proto si připravme derivace výrazu $\tilde{y}(t)$:
$$ \dot{\tilde{y}}(t) = \Theta(t)\dot{y}(t) + \delta(t)y(t) = \Theta(t)\dot{y}(t) + \delta(t) y(0) = \Theta(t)\dot{y}(t) + 2\delta(t)$$
$$ \ddot{\tilde{y}}(t) = \dot{y}(t)\delta(t) + \Theta(t)\ddot{y}(t) + 2 \dot{\delta}(t) = \Theta(t)\ddot{y}(t) +  \dot{y}(t)\delta(t) +  2 \dot{\delta}(t)=\Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t)$$
Stojí za zmínku, že již v tomto kroku jsme využili počátečních podmínek a zahrnuli je tímto do řešení. 
Nyní již můžeme dosadit do operátoru $L$:
$$ L\tilde{y} = \Theta(t)\ddot{y}(t) +  \delta(t) +  2 \dot{\delta}(t) + 3(\Theta(t)\dot{y}(t) + 2\delta(t)) + 2\Theta(t) y(t) = \Theta(t) Ly + 7 \delta(t) +2\dot{\delta}(t) = 
\underbrace{\Theta(t)f(t)}_{=\tilde{f}(t)} + 7 \delta(t) +2\dot{\delta}(t).$$
Klasickou úlohu jsme tedy převedli na problém v $\D'$, který už umíme vyřešit. Tato zobecněná úloha jde vždy zkonstruovat pomocí $\tilde{y}(t) := \Theta(t) y(t)$. 
Úloha tedy přešla na tvar: 
$$L\tilde{y} = \underbrace{\tilde{f}(t) + 7 \delta(t) +2\dot{\delta}(t)}_{F(t)}, \mbox{kde } \tilde{f}(t) = \Theta(t)f(t).$$
Řešení této úlohy je $\tilde{y} = \epsilon \ast F$. 
Řešení rozdělíme do dvou kroků, nejprve nalezneme fundamentální řešení a následně vyřešíme zobecněnou úlohu. 
 
 
\paragraph{I. Fundamentální řešení $\epsilon$}
Řešíme úlohu $L\epsilon = \delta$. Ze cvičení (eventuálně [Šťovíček]) víme, že fundamentální řešení je možné hledat ve tvaru $\epsilon(t) = \Theta(t)Z(t)$, kde funkce 
$Z(t)$ splňuje $LZ=0 $ a počáteční podmínky $Z(0) =0$ a $\dot{Z}(0) = 1$. 
V našem případě tedy řešíme rovnici 
$$LZ = \ddot{Z} + 3 \dot{Z} + 2Z = 0.$$
Její řešení je $Z(t) = C_1 e^{-t}+C_2 e^{-2t}$. Po započtení počátečních podmínek máme $Z(t) = e^{-t}-e^{-2t}$, a tedy fundamentální řešení našeho operátoru je tvaru 
$$ \epsilon(t) = \Theta(t) \left( e^{-t}-e^{-2t} \right).$$
 
\paragraph{II. Vyřešení zobecněné úlohy}
Nyní se pokusíme spočíst konvoluci $\epsilon \ast F = \tilde{y}$. Nejprve si rozepíšeme z linearity konvoluce veškeré příspěvky a každý z nich poté vyšetříme zvlášť.
$$\tilde{y} = \epsilon \ast F  =\epsilon \ast (\tilde{f} + 7 \delta +2\dot{\delta}) = \underbrace{\epsilon \ast \tilde{f}}_{(1)} + \underbrace{7 \epsilon \ast \delta}_{(2)} +
\underbrace{2 \epsilon \ast \dot{\delta}}_{(3)}$$
 
Výpočty jednotlivých konvolucí provedeme postupně v následujících odstavcích:
 
\subparagraph{Výpočet (2)}
$$ 7 \epsilon \ast \delta = 7 \epsilon = \Theta (t)\left(7 \left( e^{-t}-e^{-2t} \right) \right)$$
Poznamenejme, že se vždy budeme snažit převést řešení na tvar $\Theta(t)$ krát nějaká funkce. Proč je toto pro nás důležité, vyplývá z konstrukce řešení, neboť jsme volili jako
zobecněné řešení funkci tvaru $\tilde{y}(t) = \Theta(t) y(t)$, kde $y(t)$ bylo řešením klasické rovnice. 
 
\subparagraph{Výpočet (3)}
$$2 \epsilon \ast \dot{\delta} = 2 \dot{\epsilon} \ast \delta = 2 \dot{\epsilon} = \Theta(t)\left(2 \left( 2e^{-2t}-e^{-t}\right)\right)$$
 
\subparagraph{Výpočet (1)}
Pro tuto část výpočtu bychom potřebovali spočítat konvoluci $f\ast g$, kde  $f,g \in \D'_{reg}$ a  $\nf f \subset  \R^+$, $\nf g \subset \R^+$. 
Pro takový případ ale konvoluci nemáme zavedenou. \footnote{Konvoluci, která by toto umožňovala, lze zavést. Tuto její vlastnost bychom ale využili jen zde, proto byla použita jiná definice. Zájemci definici naleznou ve [Šťovíček] } Přesto se můžeme pokusit tento případ vyřešit:
$$ ((f\ast g)(t),\phi(t)) = (f(t), (g(\tau),\phi(t+\tau))) =\bullet$$
O funkci $(g(\tau),\phi(t+\tau))$ víme, že je třídy $\Ci$. Pokud bychom ještě dokázali říci, že je její nosič omezený, měli bychom vyhráno. 
(Toto je v podstatě jediný rozdíl mezi naší definicí konvoluce a tou, ve skriptech prof. Šťovíčka.) 
$$ \bullet = \displaystyle \int_{\R} \dd t f(t) \displaystyle \int_{\R} \dd \tau g(\tau) \underbrace{\phi(t+\tau)}_{\psi(t,\tau)} = \bullet$$
Zkoumejme nyní nosič funkce $\psi(t,\tau)$. Vzhledem k její definici se jedná o \uv{pás} v rovině $(t,\tau)$ protínající osu $t$ v $\nf \phi$ a osu $\tau$ rovněž v těchto bodech. 
Vzhledem k tomu, že funkce $f(t)$ je nulová dle definice alespoň na  $\R^-$ a funkce $g(\tau)$ stejně tak, lze nosič funkce $\psi(t,\tau)$ omezit a tím umožnit výpočet integrálu. 
 
Zde bude taky jednoho krásného dne obrázek. Doufám...
 
Budeme se jej snažit převést do tvaru definice působení regulární zobecněné funkce. Proto použijeme substituci:
 
$$\bullet= \left\{ \begin{array} c \\ \mbox{\scriptsize Substituce} \\ z = t + \tau \\ t =t \end{array}\right\} = \displaystyle \int_{\R} \dd t \. f(t) \displaystyle \int_{\R} \dd z\. g(z-t) \phi(z)  = 
\displaystyle \int_{\R} \dd z \, \phi(z) \left( \displaystyle \int_{\R} f(t) g(z-t) \dd t \right) $$
 
Tímto jsme zjistili, že výsledek konvoluce regulárních zobecněných funkcí je regulární zobecněná funkce, jejíž klasický generátor je klasická konvoluce generátorů zobecněných funkcí.
Tento výsledek by neměl být překvapivý. 
 
Mají-li tedy funkce $f,g$ nosič na kladné polopřímce, lze je zapsat jako $f(t) = \Theta(t)f(t) $  a $g(z-t) = \Theta(z-t) g(z-t)$. Vidíme, že 
$\Theta(t) \Theta(z-t) \neq 0 \Leftrightarrow t \in (0,z), z>0$. Pak 
$$ \displaystyle \int _{\R} \dd t f(t) g(z-t) = \Theta(z) \displaystyle \int_{0}^{z} f(t)g(z-t) \dd t.$$
Naše funkce $\tilde{f}(t)$ a $\epsilon(t)$ splňují z definice předpoklady výše zmíněné, a proto můžeme spočíst jejich konvoluci. 
 
$$\epsilon(t) \ast \tilde{f}(t) = \Theta(t)Z(t) \ast \Theta(t)f(t) = \Theta(t)\displaystyle \int_{0}^{t} Z(\tau) f(t-\tau) \dd \tau  
=  \Theta(t)\displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})3(t-\tau)e^{t-\tau} \dd \tau =$$
$$ = \Theta(t) 3e^{t} \left[t \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})e^{-\tau}\dd \tau - \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})\tau e^{-\tau}\dd \tau \right] = (1)$$
 
Tímto jsme spočetli i poslední člen konvoluce a opět vidíme, že je napsatelný ve tvaru součinu Heavisideovy funkce a nějaké klasické funkce. 
Tedy nyní již víme, že $$\tilde{y}(t) = (1)+ (2) + (3) = $$
$$= \Theta(t) \underbrace{\left[ 7 \left( e^{-t}-e^{-2t} \right) + 2 \left( 2e^{-2t} -e^{-t}\right) +
3e^{t} \left[t \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})e^{-\tau}\dd \tau - \displaystyle \int_{0}^{t} (e^{-\tau} - e^{-2\tau})\tau e^{-\tau}\dd \tau \right] \right]}_{= y(t)}$$
 
O funkci $y(t)$ bychom mohli tvrdit, že je řešením klasické úlohy. Z našeho postupu to ale nevyplývá. Ve skutečnosti tomu tak ale je a přesvědčí nás o tom následující věta. 
\begin{theorem}
Nechť $u=u(t)$ pro $t \geq 0$ je klasické řešení lineární diferenciální rovnice s konstantními koeficienty tvaru 
$$L u = u^{(n)}+ a_1 u^{(n-1)}+ \dots + a_{n-1}u' +a_n u  = \displaystyle \sum_{k=0}^{n}a_{n-k}u^{(k)} = f(t),$$
kde $a_k = konst.$ pro všechna $k\in \{0,1, \dots, n-1 \}$ a $a_0 = 1$, které splňuje počáteční podmínky $u^{(k)}(0) = u_k$ pro všechna $k\in \hat{n}$ a nechť $f(t)\in L^1_{loc}(\R^+)$ je po částech spojitá funkce. 
 
Definujeme-li $\tilde{u}(t) = \Theta(t)u(t)$ a $\tilde{f}(t) = \Theta(t) f(t)$, tak potom:
\begin{enumerate}
\item 
Zobecněná funkce $\tilde{u}$ vyhovuje rovnici v $\D'$: 
$$ L\tilde{u} =\displaystyle \sum_{k=0}^{n}a_{n-k}\tilde{u}^{(k)} = \tilde{f} + \displaystyle \sum_{r =0}^{n-1}c_r \delta^{(r)} = F,$$
kde $c_r = \displaystyle \sum_{k=1}^{n-r} a_{n-k-r}u_{k-1}$. 
 
\item Pro řešení klasické úlohy platí 
$$ u(t) = \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau)\dd \tau + \displaystyle \sum_{k=0}^{n-1}c_k Z^{(k)},$$
kde $Z(t)$ je funkce z fundamentálního řešení operátoru $L$, tj. $LZ =0$ a $Z^{(k)}(0) = 0 \ \forall k \in \{0,1,\dots,n-2\}$ a $Z^{(n-1)}(0) =1$.
 
\begin{proof}
První tvrzení se ověří přímým výpočtem, stejně, jako u ilustračního příkladu.
 
Druhá část tvrzení se dokáže taky přímo. Potřebujeme znát fundamentální řešení. Buď tedy $\tilde{u} = \epsilon \ast F$, kde  $\epsilon(t) = \Theta(t) Z(t)$. Pak 
$$\tilde{u} = \epsilon \ast F = \epsilon \ast \tilde{f} + \epsilon \ast \left(\displaystyle \sum_{r =0}^{n-1}c_r \delta^{(r)}\right) = $$
$$ = \epsilon \ast \tilde{f} + \displaystyle \sum_{r =0}^{n-1}c_r \epsilon \ast  \delta^{(r)}  = \epsilon \ast \tilde{f} + \displaystyle \sum_{r =0}^{n-1}c_r \epsilon^{(r)} \ast  \delta = \epsilon \ast \tilde{f} + \displaystyle \sum_{r =0}^{n-1}c_r \epsilon^{(r)}.$$
Díky počátečním podmínkám na funkci $Z(t)$ je tato vždy spojitou funkcí a pro její derivace (za použití věty pro derivování po částech spojité funkce) platí $\epsilon^{(r)}  =\Theta(t)Z^{(r)}$.
Z předešlého výpočtu taky mj. víme, že  $(\epsilon \ast \tilde{f})(t) = \Theta(t) \displaystyle \int_{0}^{t} Z(t-\tau)f(\tau) \dd \tau$. 
 
Pokud toto dosadíme do vztahu pro $\tilde{u}(t)$, dostaneme:
$$ \tilde{u}(t) = \Theta(t) \left[\underbrace{\displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau}_{(I)} + \underbrace{\displaystyle \sum_{r =0}^{n-1}c_r Z^{(r)}}_{(II)}\right]$$
Tedy skutečně získáváme $\tilde{u}(t) = \Theta(t)u(t)$
Nyní ověříme, že $u(t)$ je řešením klasické úlohy. U členů $(I)$ a $(II)$ ověříme, že jsou $n$-krát diferencovatelné a že řeší $L$. 
 
\textit{(II):} Jelikož je $Z \in \Ci$ je
 $$\left( \displaystyle \sum_{r =0}^{n-1}c_r Z^{(r)}\right)^{(k)} = \displaystyle \sum_{r =0}^{n-1}c_r Z^{(r+k)} \in \Ci \ \forall k. $$
Navíc díky linearitě $L$ a konstantnosti koeficientů $a_k$ platí: 
$$ L\left( \displaystyle \sum_{r =0}^{n-1}c_r Z^{(r)} \right) = \displaystyle \sum_{r =0}^{n-1}c_r L Z^{(r)} = \displaystyle \sum_{r =0}^{n-1}c_r (LZ)^{(r)} = 0$$
Tedy toto je homogenní řešení operátoru $L$.
 
\textit{(I): }Nejprve ověříme, že je výraz $n$-krát diferencovatelný.
    \begin{remark}
    Z MAA4 (MAB4) si jistě pamatujete vztah $\frac{\dd}{\dd t}\left( \displaystyle \int_{0}^{t} g(t,\tau)\dd \tau \right) = g(t,t) + \displaystyle \int_{0}^{t} \frac{\partial}{\partial t}g(t,\tau) \dd \tau$. Pokud ne, je vhodné si jej dokázat. 
    \end{remark}
Díky této poznámce můžeme psát:
\begin{eqnarray*}
\frac{\dd}{\dd t} \left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right) & = & \underbrace{Z(t-t)}_{Z(0) = 0}f(t) + \displaystyle \int_{0}^{t}\dot{Z}(t-\tau)f(\tau) \dd \tau =  \displaystyle \int_{0}^{t}\dot{Z}(t-\tau)f(\tau) \dd \tau \\
\frac{\dd^2}{\dd t^2} \left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right) & = & \underbrace{\dot{Z}(t-t)}_{\dot{Z}(0) = 0}f(t) + \displaystyle \int_{0}^{t}\ddot{Z}(t-\tau)f(\tau) \dd \tau = \displaystyle \int_{0}^{t}\ddot{Z}(t-\tau)f(\tau) \dd \tau \\
 & \vdots & \\
\frac{\dd^{n-1}}{\dd t^{n-1}} \left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right) & = & \underbrace{Z^{(n-2)}(t-t)}_{Z^{(n-2)}(0) = 0}f(t) + \displaystyle \int_{0}^{t}Z^{(n-1)}(t-\tau)f(\tau) \dd \tau = \displaystyle \int_{0}^{t}Z^{(n-1)}(t-\tau)f(\tau) \dd \tau \\
\frac{\dd^{n}}{\dd t^{n}} \left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right) & = & \underbrace{Z^{(n-1)}(t-t)}_{Z^{(n-1)}(0) = 1}f(t) + \displaystyle \int_{0}^{t}Z^{(n)}(t-\tau)f(\tau) \dd \tau = f(t)+  \displaystyle \int_{0}^{t}Z^{(n)}(t-\tau)f(\tau) \dd \tau
\end{eqnarray*}
Vidíme, že všechny derivace existují. To, že je toto řešením dané úlohy, plyne z aplikace operátoru  $L$. Je zřejmé, že toto řešení je partikulárním řešením (díky členu $f(t)$ v $n$-té derivaci) 
$$ L\left( \displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau  \right)  =  \displaystyle \sum_ {k=0}^{n} a_{n-k} \left(\displaystyle \int_{0}^{t}Z(t-\tau)f(\tau) \dd \tau \right)^{(k)} = $$
$$ = f(t) + \displaystyle \int_{0}^{t} \left(\displaystyle \sum_ {k=0}^{n} a_{n-k} Z^{(k)}(t-\tau)f(\tau) \right) \dd \tau = f(t) + \displaystyle \int_{0}^{t} LZ \cdot f(t) \dd \tau = f(t)$$
Tímto jsme ukázali, že $u(t)$ řeší rovnici $Lu = f$. 
Že toto řešení splňuje i počáteční podmínky je taky jednoduché ukázat. Pro $k \in \{0,1, \dots, n-1\}$ plyne z nulovosti integrálu $(I)^{(k)}(0) = 0$ a tedy nepřispívají do počátečních podmínek.
Proto použijeme člen $(II)$ a aplikujeme podmínky na $Z^{(r)}$ a definici koeficientů $c_r$. Odtud  po dosazení nejvyšší derivace vyjádřené z (derivací) rovnice $LZ = 0$ vyplývá, že $u^{(r)}(0) = u_r$. Dosazovat v plné obecnosti lze, jedná se však o zbytečně dlouhý technický výpočet. Čtenář si jej může provést sám doma, jako cvičení. Důležité je jej umět aplikovat konkrétně. 
Tímto jsme rovněž ukázali, že splňujeme počáteční podmínky a větu jsme zcela dokázali. 
\end{proof}
\end{theorem}
 
\section{Parciální diferenciální rovnice}
\begin{remark}
Pro parciální diferenciální rovnice nemáme k dispozici nic jako fundamentální systém řešení, který známe z lineárních obyčejných diferenciálních rovnic. Prakticky to znamená, že zabývat se problémem nalezení
\uv{obecného řešení PDR} nedává příliš smysl. Zabýváme se tedy vždy úlohou řešit PDR doplněnou o počáteční, eventuálně okrajové podmínky. 
\end{remark}
 
Uveďme pro ilustraci této poznámky následující příklady:
\begin{enumerate}
\item Rovnici $\pd{}{t}u + a\pd{}{x}u =0$ splní jakákoliv funkce $u(x,t) = f(x-at)$ pro libovolnou $f \in \mathcal{C}^1$.
\item Rovnici $\mathrm{div} u =0$ řeší v $\R^3$ libovolná funkce tvaru $ u = \mathrm{rot} F $, kde $F$ je libovolné vektorové pole. 
\end{enumerate}
 
\subsection{PDR 1. řádu a metoda charakteristik}
Uvažujme lineární PDR 1. řádu se 2 neznámými proměnnými ve tvaru \footnote{Značení: $u_x = \pd{u}{x}$, $u_t = \pd{u}{t}$ atp. }
\begin{equation*}
\tilde{a}(x,t) u + \tilde{b}(x,t) u_t + \tilde{c}(x,t) u_x = \tilde{g}(x,t).
\end{equation*}
Je-li $\tilde{b}(x,t)$ nenulová funkce, lze tímto členem vydělit celou rovnici a převést ji na tvar 
 
\begin{equation}
\label{metoda_charakteristik}
a(x,t)u + u_t + c(x,t)u_x = g(x,t) \ \mbox{s počáteční podmínkou } u(x,0) = u_0(x).
\end{equation}
 
\begin{remark}
Následující sled poznámek poslouží jako popis metody charakteristik. 
\begin{enumerate}
\item $u_t + c(x,t)u_x$ lze chápat jako směrovou derivaci funkce $u$ ve směru $(c(x,t),1)$ v rovině $(x,t)$;
\item Vektory $(c(x,t),1)$ tvoří vektorové pole v rovině $(x,t)$. Křivky $x=X(t)$ podél vektorového pole jsou dány obyčejnou diferenciální rovnicí $X'(t) = c(X(t),t)$. 
Tyto křivky zveme {\it charakteristiky}.
\item Charakteristika procházející bodem $(x_0,0)$ vyhovuje počátečním podmínkám $X(0) = x_0$.
\item Nechť $u(x,t)$ je řešením úlohy (\ref{metoda_charakteristik}) a $x=X(t)$ s $X(0) = x_0$ je charakteristika. Zúžení řešení $u(x,t)$ na charakteristiku je dáno
$$v(t) = u(X(t),t),$$
kde $v'(t) = u_x(X(t),t)\cdot X'(t) + u_t(X(t),t) = u_x(X(t),t)\cdot c(X(t),t) + u_t(X(t),t)$. Touto úpravou jsme úlohu (\ref{metoda_charakteristik}) převedli na úlohu řešení 
systému ODR. 
\end{enumerate}
\end{remark}
 
\begin{remark}
V literatuře je metoda charakteristik obvykle zapisována jen ve velmi stručném tvaru:
$$ \tilde{a}(x,t) u + \tilde{b}(x,t) u_t + \tilde{c}(x,t) u_x = \tilde{g}(x,t)$$
$$ \frac{\dd t}{\dd s} = \tilde{b}(x(s),t(s));$$
$$ \frac{\dd x}{\dd s} = \tilde{c}(x(s),t(s));$$
$$ \frac{\dd u}{\dd s} +\tilde{a}(x(s),t(s))u = \tilde{g}(x(s),t(s)).$$
Parametr $s$ slouží k parametrizaci charakteristiky. 
\end{remark}
 
\paragraph{Postup metody charakteristik pro nalezení řešení úlohy (\ref{metoda_charakteristik})}
\begin{enumerate}
\item Nalezneme charakteristiky, tj. řešíme rovnici  $X'(t) = c(X(t),t)$ s počáteční podmínkou $X(0) = x_0$. Řešení označme $X_{x_0}(t)$. 
\item Nalezneme $x_0$ počátek charakteristiky pro daný bod $(x,t)$, kterým charakteristika prochází, tj. řešíme rovnici $X_{x_0}(t) = x$ pro $x_0$.
Její řešení označme $x_0 = p(x,t)$. 
\item Vyřešíme ODR na charakteristikách z bodu 1, tj. řešíme rovnici $v'(t) + a(X(t),t)v(t) = g(X(t),t)$ s počáteční podmínkou $v(0) = u_0(x_0)$. Řešení označme $v_{x_0}(t)$. 
\item Vybereme, resp. dosadíme správnou charakteristiku, tj:
$$ u(x,t) = \left. v_{x_0}(t)\right|_{x_0 = p(x,t)}
\end{enumerate}
 
Ilustrujme tuto metodu na konkrétním případě:
 
$$ u + u_t +xu_x = 3x \ \mbox{ s počáteční podmínkou } u(x,0) = \arctan (x)$$
Postupujme dle naznačeného postupu:
\begin{enumerate}
$$X'(t) = X(t) \ \mbox{ s počáteční podmínkou } X(0) = x_0$$
Řešením této rovnice je očividně $X_{x_0}(t) = x_0 e^{t}$.
\item
$$X_{x_0}(t) = x = x_0 e^{t} \Rightarrow p(x,t) = x_0 = xe^{-t}$$
\item
$$v'(t) + 1v(t) = 3X(t) = 3x_0 e^{t}   \ \mbox{ s počáteční podmínkou } v(0) = \arctan (x_0)$$
Tuto rovnici řešíme pohledem:
$$v(t) = Ke^{-t}+Ae^{t}$$
$$v'(t) = -Ke^{-t} + Ae^t$$
Po dosazení do předpisu máme:
$$2Ae^t = 3x_0 e^t \Rightarrow  A = \frac{3}{2}x_0 $$
 
Aplikací počáteční podmínky navíc získáváme:
$$v(0) = K + A = K + \frac{3}{2}x_0 = \arctan (x_0)$$
Tedy řešení je tvaru:
$$v(t) = (\arctan (x_0) - \frac{3}{2}x_0)e^{-t} + \frac{3}{2}x_0 e^t $$
\item 
Nyní již můžeme vyřešit naši úlohu dosazením za $x_0$:
$$u(x,t) = (\arctan (xe^{-t}) - \frac{3}{2}xe^{-t})e^{-t} + \frac{3}{2}x $$
\end{enumerate}
 
\paragraph{Obecnost metody}
V tomto odstavci budeme opět jen v poznámkách a bodech diskutovat, co je důležité pro tuto metodu a kam až ji je možné rozšířit. 
\begin{enumerate}
\item Potřebujeme, aby existovala charakteristika z daného bodu $(x_1,t_1)$ vedoucí zpět do $t=0$. Toto požadujeme kvůli tomu, abychom mohli nalézt $x_0 = p(x,t)$. Toto totiž obecně  není vždy možné. 
\item Limitujícím faktorem jen rovněž hladkost funkcí.
\item Metodu lze přímočaře rozšířit na nelineární případ, tj. úlohu
$$u_t + c(x,t)u_x = f(x,t,u), \ u(x,0) = u_0(x).$$
Pak v  3 stačí řešit rovnici 
$$ v'(t) = f(t,X(t),v(t)), \ v(0) = u_0(x_0).$$
\item Obdobně lze metodu rozšířit pro kvazidiagonální PDR, tj. pro úlohu tvaru
$$u_t + c(x,t,u)u_x = f(x,t,u), \ u(x,0) = u_0(x).$$
Opět lze zúžit řešení na charakteristiky $V(t)= u(X(t),t)$ splňující
$$X'(t) = c(X(t),t,v(t)), \ X(0) = x_0.$$
Pak řešíme rovnici 
$$v'(t) = f(X(t),t,v(t)), \ v(0) = u_0(x_0).$$
\end{enumerate}
 
\subsection{Klasifikace PDR 2. řádu a převod na normální tvar}
V této kapitole se budeme zabývat PDR 2. řádu, tj. rovnicí tvaru
$$f=Lu = \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u + \displaystyle \sum_{i=1}^{n}b_i(x) \pd{}{x_i} u +c(x)u.$$
Budeme hledat její klasické řešení $u\in \mathcal{C}^2(G)$, $a_{ij}(x)\in \mathcal{C}(G)$,  $b_i(x)\in \mathcal{C}(G)$,  $c\in \mathcal{C}(G)$, kde $G\subset \R^n$.
 
\begin{define}
Řekneme, že lineární parciální diferenciální rovnice 2. řádu je {\bf eliptická}, resp. {\bf hyperbolická}, resp. {\bf parabolická} na $M\subset G$, právě když je eliptická, resp. hyperbolická, resp. parabolická její přidružená kvadratická forma $q(y,x) = y^T\A(x)y$, kde $\A_{ij} = a_{ij}(x)$ a $\A$ je symetrická. 
 
Řekneme, že parciální diferenciální rovnice je v {\bf normálním tvaru}, právě když je matice $\A$ diagonální s 0, -1 a 1 na diagonále. Typicky se tak děje po transformaci.  
\end{define}
 
\begin{remark}
Připomeňme, že o kvadratické formě řekneme, že je eliptická, pokud má její matice veškerá vlastní čísla nezáporná nenulová, resp. nekladná nenulová. 
Řekneme, že je hyperbolická, pokud jsou veškerá její vlastní čísla nenulová a~není eliptická, tj. má jak kladná, tak záporná vlastní čísla, která jsou nenulová.  
Řekneme, že je parabolická, pokud je alespoň jedno její vlastní číslo nulové a alespoň jedno nenulové.
\end{remark}
Nyní uveďme  několik příkladů operátorů a jejich klasifikaci:
\begin{itemize}
\item Laplaceův operátor $\Delta = \displaystyle \sum_{j=1}^{n}\ppd{}{x_j}$ je eliptický operátor v normálním tvaru
\item Operátor vedení tepla $\pd{}{t} - a^2 \Delta$ je parabolický operátor
\item Operátor vlnění $\ppd{}{t} - a^2\Delta$ je hyperbolický operátor
\end{itemize}
 
\paragraph{Převod lineární PDR 2. řádu se dvěma nezávislými proměnnými do normálního tvaru}
Uvažujme rovnici tvaru:
\begin{equation}
\label{pdr}
a(x,y) \ppd{u}{x} + b(x,y) \spd{u}{x}{y} + c(x,y) \ppd{u}{y} + F(\nabla u, u,x,y) = 0 
\end{equation}
Hledáme transformaci souřadnic $(x,y) \leftrightarrow (\xi,\eta)$, kde $\xi = \xi(x,y)$ a $\eta = \eta(x,y)$, takovou, aby původní rovnice byla v normálním tvaru. 
Proto je třeba nejdříve spočítat derivace vyjádřené pomocí nových souřadnic:
$$\pd{u}{x} = \pd{u}{\xi}\pd{\xi}{x}+ \pd{u}{\eta}\pd{\eta}{x} $$
$$\pd{u}{y} = \pd{u}{\xi}\pd{\xi}{y}+ \pd{u}{\eta}\pd{\eta}{y} $$
$$ \ppd{u}{x} = \ppd{u}{\xi} \left( \pd{\xi}{x}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{x} + \pd{u}{\xi} \ppd{\xi}{x} + \ppd{u}{\eta} \left( \pd{\eta}{x}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{x} + \pd{u}{\eta} \ppd{\eta}{x} $$
$$ \ppd{u}{y} = \ppd{u}{\xi} \left( \pd{\xi}{y}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{y} \pd{\eta}{y} + \pd{u}{\xi} \ppd{\xi}{y} + \ppd{u}{\eta} \left( \pd{\eta}{y}\right)^2 + \spd{u}{\xi}{\eta} \pd{\xi}{y} \pd{\eta}{y} + \pd{u}{\eta} \ppd{\eta}{y} $$
$$\spd{u}{x}{y} = \ppd{u}{\xi}\pd{\xi}{x}\pd{\xi}{y} + \spd{u}{\xi}{\eta} \pd{\eta}{x} \pd{\xi}{y} + \pd{u}{\xi} \spd{\xi}{x}{y} + \ppd{u}{\eta} \pd{\eta}{x} \pd{\eta}{y} + \spd{u}{\xi}{\eta} \pd{\xi}{x} \pd{\eta}{y} + \pd{u}{\eta} \spd{\eta}{x}{y}$$
Nyní tyto členy dosadíme do původní rovnice a rovnici upravíme. Při úpravě nás budou zajímat pouze členy vyjadřující druhou derivaci $u$ podle nových proměnných. 
Zbylé členy můžeme vnořit do nové funkce $ \tilde{F}$. Proto rovnice po transformaci souřadnic přejde do tvaru
$$\ppd{u}{\xi} \underbrace{\left(a\left(\pd{\xi}{x}\right)^2 + c\left(\pd{\xi}{y}\right)^2 + b\left(\pd{\xi}{x} \pd{\xi}{y}\right) \right)}_{I} 
 + \ppd{u}{\eta} \underbrace{\left(a\left(\pd{\eta}{x}\right)^2 + c\left(\pd{\eta}{y}\right)^2 + b\left(\pd{\eta}{x} \pd{\eta}{y}\right) \right)}_{II} +$$
  $$ + \spd{u}{\xi}{\eta} \underbrace{\left( 2a\left(\pd{\xi}{x}\pd{\eta}{x}\right) + 2c\left(\pd{\xi}{y}\pd{\eta}{y}\right) + 
b\left(\pd{\eta}{x} \pd{\xi}{y} + \pd{\xi}{x} \pd{\eta}{y} \right) \right)}_{III} + \tilde{F}(\nabla u,u,\xi,\eta).$$
Zabývejme se nyní členem $I$; ten lze totiž přepsat do následující podoby:
$$ (I) = \left(\ppd{\xi}{x}\right) \left( a+ b\left(\frac{\pd{\xi}{y}}{\pd{\xi}{x}}\right) +c \left(\frac{\pd{\xi}{y}}{\pd{\xi}{x}}\right)^2 \right)$$
Vidíme, že jsme v závorce obdrželi kvadratický výraz $a + b\lambda + c \lambda^2 =0 $ pro $\lambda(x,y) = \frac{\pd{\xi}{y}}{\pd{\xi}{x}}$.
Stejný kvadratický výraz bychom obdrželi, kdybychom vytkli člen $\left( \pd{\eta}{x}\right)^2$ ve členu $II$. Proto pokud má ona určující kvadratická rovnice právě jeden dvojnásobný kořen, jsme schopni 
pomocí této volby vynulovat buď člen $I$, nebo $II$. Pokud bychom ovšem získali dva různé kořeny, pak pomocí jednoho kořene vynulujeme člen $I$ a pomocí druhého člen $II$. 
Toto nyní podrobně rozebereme\footnote{Velmi často se zde nyní budou používat fakty týkající se vlastních čísel, matic atp. Není od věci si některá tvrzení připomenout (LAA2, ev. LAB2).}:
Uvažujeme tedy PDR tvaru (\ref{pdr}) a k ní získanou rovnici pro $\lambda(x,y)$. Rozepíšeme-li nyní přidruženou kvadratickou formu naší PDR, získáme 
$$\A = \left( 
\begin{array}{cc}
a & \frac{b}{2} \\
\frac{b}{2} & c
\end{array} 
\right).$$
Pak rovnice \ref{pdr} je 
\begin{enumerate}
\item {\it Parabolická}
 
Dle definice, právě když má přidružená kvadratická forma $\A$ alespoň jedno vlastní číslo rovno nule. Toto je ekvivalentní tomu, že $\mathrm{det}\A = 0 = ac - \frac{b^2}{4}$. Toto ale znamená totéž co fakt, že
diskriminant $d(x,y)$ kvadratické rovnice je nulový a to je ekvivalentní s tvrzením, že kvadratická rovnice má právě jeden dvojnásobný kořen. 
 
\item{\it Eliptická}
 
Aby rovnice byla eliptická, je potřeba, aby její přidružená kvadratická forma měla dvě vlastní čísla $\lambda_{\pm}$ stejného znaménka, tj. buď $\lambda_{\pm} > 0$, nebo $\lambda_{\pm}<0$. 
Pro vlastní čísla matice 2$\times$2 platí vztah 
$$\lambda_{\pm} = \frac{\mathrm{tr}\A}{2}\pm \frac{1}{2}\sqrt{(\mathrm{tr}\A)^2 - \mathrm{det}\A}.$$
Aby byl navíc splněn požadavek na stejné znaménko obou vlastních čísel, musí být pro $\lambda_{\pm}>0$ splněno $\mathrm{tr}\A >0$ a zároveň $\mathrm{det}\A >0$. 
Pro  $\lambda_{\pm}<0$ zase $\mathrm{tr}\A <0$ a zároveň $\mathrm{det}\A >0$. Z těchto dvou podmínek plyne jediná, která říká, že pro to, aby byla rovnice eliptická, je potřeba, aby její přidružená
kvadratická forma měla pozitivní determinant. To ale znamená, že výraz $ac - \frac{b^2}{4} > 0 $. Toto je ale ekvivalentní tomu, že $d(x,y)<0$, tedy faktu, že kvadratická rovnice  $a + b\lambda + c \lambda^2 =0 $
 má dva komplexně sdružené kořeny. 
 
\item{\it Hyperbolická}
 
Aby byla rovnice hyperbolická, je třeba, aby její přidružená kvadratická forma měla dvě nenulová vlastní čísla s opačnými znaménky. Stejnou úvahou jako byla provedena výše dostáváme, 
že tato podmínka je přepsatelná do tvaru (resp. z ní lze vyvodit) $\mathrm{det}\A < 0$, což je ekvivalentní s tvrzením, že $d(x,y) >0 $ a tedy kvadratická rovnice má dva různé reálné kořeny.
 
\end{enuemrate}
 
Nyní provedeme krátké shrnutí toho, co jsme získali a tyto poznatky aplikujeme na rovnici $\ref{pdr}$.
\paragraph{Parabolická rovnice}
Ukázali jsme, že aby byla rovnice parabolická, musí mít rovnice  $a + b\lambda + c \lambda^2 =0 $ právě jeden kořen. Ten použijeme na vynulování členu $I$ a ukážeme, že zajistí rovněž vynulování členu $III$. 
Pokud není $\xi(x,y) =x$, volme BÚNO $\eta(x,y) = x$. Pak můžeme upravovat člen $III$ do tvaru:
$$III = 2a\pd{\xi}{x}\underbrace{\pd{\eta}{x}}_{1} + b \left(\pd{\xi}{x}\underbrace{\pd{\eta}{y}}_{0}+\pd{\xi}{y}\underbrace{\pd{\eta}{x}}_{1} \right) + 2c \pd{\xi}{y}\underbrace{\pd{\eta}{y}}_{0} = 
2a\pd{\xi}{x} + b \pd{\xi}{y} = \pd{\xi}{x}\left(2a+b\lambda\right) = 0$$
Poslední rovnost je důsledkem Vi\`{e}tových vztahů pro naši rovnici\footnote{Jestliže má rovnice  $a + b\lambda + c \lambda^2 =0 $ kořeny $\lambda_+ $ a $\lambda_-$, pak platí
\begin{enumerate}\item $\lambda_+ + \lambda_- = - \frac{b}{c}$\\ \item $\lambda_+ \lambda_- = \frac{a}{c}$ \end{enumerate}} }, která má jeden dvojnásobný kořen. 
%V této části je něco špatně... Opravit! 
Tedy rovnici \ref{pdr} jsme převedli do očekávaného normálního tvaru
$$\ppd{u}{\eta} + \frac{\tilde{F}(\nabla u,u,\xi,\eta)}{II} = 0$$
 
\paragraph{Eliptická a hyperbolická rovnice}
Ukázali jsme, že aby byla rovnice eliptická nebo hyperbolická, musí mít rovnice  $a + b\lambda + c \lambda^2 =0 $ dva různé kořeny. Díky nim můžeme zvolit souřadnice $\xi, \eta$ tak, že  
vynulují členy $I$ a $II$. Pak dostáváme rovnici tvaru:
$$\spd{u}{\eta}{\xi} + \frac{\tilde{F}(\nabla u,u,\xi,\eta)}{III} = 0$$
Tato rovnice není v normálním tvaru. pro převod budeme muset ještě jednou provést transformaci souřadnic. Jelikož u eliptické rovnice existují dva komplexně sdružené kořeny, funkce $\xi,\eta$ transformují do komplexních proměnných, což musíme touto transformací změnit. V hyperbolickém případě, kdy jsou řešení kvadratické rovnice reálná, jsou nové souřadnice $\xi,\eta$ rovněž reálné, ale tvar rovnice zatím neukazuje přímo na to, že by byla hyperbolická, což se právě novou transformací budeme snažit změnit. 
 
\subparagraph{Hyperbolický případ} 
Pro tento případ uvažujme transformaci $r= \xi + \eta, s=  \xi - \eta$. 
Pak 
$$ \spd{u}{\xi}{\eta} = \pd{}{\xi}\left(\pd{u}{\eta}\right)=  \pd{}{\xi}\left(\pd{u}{r} - \pd{u}{s}\right) = \ppd{u}{r} + \spd{u}{r}{s} - \left(\spd{u}{r}{s} + \ppd{u}{s}\right) = \ppd{u}{r} - \ppd{u}{s}$$
Touto transformací jsme tedy dostali rovnici v normálním tvaru.
 
\subparagraph{Eliptický případ}
Je vhodné si uvědomit, že díky komplexnímu sdružení kořenů kvadratické rovnice budou komplexně sdruženy i funkce $\xi,\eta$. Tohoto využijeme a pomocí transformace
$r = \xi + \eta = 2\Re \xi, s= \im(\xi - \eta) = - 2\mathrm{Im}\xi$ z nich vytvoříme reálné souřadnice. Potom již můžeme psát
$$ \spd{u}{\xi}{\eta} = \pd{}{\xi}\left(\pd{u}{\eta}\right)=  \pd{}{\xi}\left(\pd{u}{r} - \im \pd{u}{s}\right) = \ppd{u}{r} + \im \spd{u}{r}{s} - \im \left(\spd{u}{r}{s} + \im \ppd{u}{s}\right) = \ppd{u}{r} + \ppd{u}{s},$$
což je už rovnice v požadovaném normálním tvaru.
 
Nyní zbývá vyřešit otázku, jak nalézt ony nové souřadnice $\xi(x,y)$ a $\eta(x,y)$. Víme, že jsme získali koeficient $\lambda(x,y)$ jakožto řešení rovnice $a + b\lambda + c \lambda^2 =0 $ . 
Víme také, že $\lambda(x,y) = \frac{\pd{\xi}{y}}{\pd{\xi}{x}}$. Toto ale nápadně připomíná derivaci implicitně zadané funkce $x(y)$, která je zadána funkcí $\xi(x(y),y) = K$, kde $K$ je konstanta. 
Zderivujeme-li tento výraz dle $y$, obdržíme $\pd{\xi}{x}x' +\pd{\xi}{y}$. Odtud ale již 
$$ x'(y) = - \frac{\pd{\xi}{y}}{\pd{\xi}{x}} = - \lambda(x,y)$$
Tedy v konkrétních případech stačí nalézt $x$ a řešení zapsat ve tvaru implicitní funkce. 
Toto si ukážeme na konkrétním příkladě. Budeme chtít nalézt souřadnice, ve kterých rovnice
$$x^3\ppd{u}{x} - xy^2 \ppd{u}{y} - 3x^2 \pd{u}{x} + 3xy\pd{u}{y} + 8x^4y^5 =0 $$
přejde do normálního tvaru.
 
\noindent Nejprve napíšeme určující kvadratickou rovnici: $$x^3 -xy^2 \lambda^2 = 0.$$ 
Její diskriminant  je $$d(x,y) = 4x^4y^2 > 0 \ s.v. $$
Odtud plyne, že rovnice je skoro všude hyperbolická, kromě bodů $x=0$, $y=0$. Zde přechází v parabolickou. 
Kořeny určující rovnice jsou $\lambda_{\pm} = \pm \frac{x}{y}$ a tedy odtud máme řešení například \footnote{Řešení bude vícero, mohu to různě pronásobit konstantami atp.} $\ln x = \mp \ln y +C$,
odkud $\xi_1(x,y) = \ln \frac{x}{y}$ a $\eta_1(x,y) = \ln xy$. Pokud rovnici odlogaritmujeme, dostaneme implicitní rovnici $yx^{\pm 1} = \tilde{C}$, 
odkud máme nové souřadnice určené v elegantnější podobě $\xi(x,y) = xy$ a $\eta(x,y) = \frac{x}{y}$. 
 
 
\paragraph{Lineární PDR 2. řádu s konstantními koeficienty a $n$ proměnnými}
Díky konstantnosti koeficientů jsme schopni provést převod na normální tvar pro obecně $n$ proměnných, neboť se jedná o úlohu ekvivalentní s převodem matice do polární báze.  
Vystačíme si jen s lineární transformací. 
Mějme rovnici tvaru
$$ \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij} \spd{u}{x_i}{x_j} + F(\nabla u, u) = (\nabla ^T \A \nabla )u + F(\nabla u, u)$$ 
Označme $(b_1, b_2, \dots , b_n)$ polární bázi matice a dále označme $\mathbb{B}$ matici \footnote{Jedná o matici složenou z vektorů polární báze, což jsou vlastní 
vektory pronásobené odmocninou příslušeného vlastního čísla. }, která spňuje $\mathbb{B}^T \A \mathbb{B} = \mathbb{D}$, kde $\mathbb{D}$ je diagonální matice s plus mínus jedničkami a nulami na diagonále. Pak můžeme rovnici upravit do podoby
$$ \displaystyle \sum_{i=1}^{n} \displaystyle \sum_{j=1}^{n} a_{ij} \spd{u}{x_i}{x_j} + F(\nabla u, u) = (\nabla^T \mathbb{B}\mathbb{B}^T \A \mathbb{B}\mathbb{B}^T \nabla)u + F(\nabla u, u) = 
\left( (\mathbb{B}^T\nabla)^T \mathbb{B}^T \A \mathbb{B} (\mathbb{B}^T \nabla) \right)u + F(\nabla u, u) =$$
$$ = \nabla_y^T \mathbb{D} \nabla_y + F(\nabla_y u ,u) = \displaystyle \sum_{j=1}^{n} D_{jj} \ppd{u}{y_j}  + F(\dots)$$
Nyní chceme přejít od $x\to y$ tak, aby $\mathbb{B}^T \nabla_x = \nabla_y$. 
Tato podmínka je ekvivalentní $$ \pd{}{y_k} = \displaystyle \sum_{j=1}^{n} \mathbb{B}^T_{kj} \pd{}{x_j} = \displaystyle \sum_{j=1}^{n} \mathbb{B}_{jk} \pd{}{x_j}$$
Zároveň víme, že se jedná o lineární transformaci, tj. transformaci $x=Jy$, z čehož za použití řetězového pravidla plyne
$$ \pd{}{y_k} =  \displaystyle \sum_{j=1}^{n} \pd{x_j}{y_k} \pd{}{x_j} =  \displaystyle \sum_{j=1}^{n} J_{jk} \pd{}{x_j}. $$
Tedy $J= \mathbb{B}$. 
 
\subsection{Řešení počátečních úloh lineárních PDR 2. řádu}
V této kapitole se budeme soustředit na nalezení řešení dvou typických zástupců parabolických a hyperbolických rovnic. Díky transformacím budeme schopni společně s touto znalostí řešit značnou část PDR.
Postup bude analogický jako u ODR, jen s tím rozdílem, že nebude tak rigorózní. V podstatě nebudeme schopni obecně ověřit existenci konvoluce a stejně tak nebudeme schopni ověřit souvislost řešení zobecněné a klasické úlohy. 
 
\begin{enumerate}
\item Klasickou počáteční (Cauchyho) úlohu převedeme na zobecněnou úlohu vytvořením nespojitosti v $t=0$: Toto budeme ilustrovat na rovnici vedení tepla v $\R^{1+1}$.
$$Lu = \left(\pd{}{t} - \lambda \ppd{}{x} \right) u = f(t,x) \ \mbox{s počátečními podmínkami } \ u(0,x) = u_0(x)$$
$\lambda$ je koeficient vedení tepla a $\lambda >0$. Hledáme tedy klasické řešení, tj. $u(\ ,x) \in \mathcal{C}^1(\R^+)$, $u(t, \ )\in\mathcal{C}^2(\R)$ pro $f\in \mathcal{C}^1({\R^{1+1}})$.
Nyní již budeme postupovat stejně jako u ODR, tj. hledáme řešení tvaru $\tilde{u}(x,t) = \Theta(t)u(x,t)$. \footnote{Zjistil jsem, že volně zaměňuji výrazy typu f(x,t) a f(t,x). Jedná se o jedno a totéž. } 
Určíme potřebné derivace
$$\ppd{}{x} \tilde{u}(x,t) = \Theta(t)\ppd{}{x} u(x,t)$$
$$ \pd{}{t} \tilde{u}(x,t) = \Theta(t)\pd{}{t} u(x,t) + u_0(x) \ts \delta(t)$$
Pak po dosazení do počáteční úlohy máme 
$$L\tilde{u} = \Theta(t) \left( \pd{}{t}u - \lambda \ppd{}{x} u\right) +  u_0(x) \ts \delta(t) = \Theta(t) f(t) + u_0(x) \ts \delta(t) = \tilde{f} + u_0(x) \ts \delta(t)$$
Toto je {\it zobecněná formulace počáteční úlohy rovnice vedení tepla}. Známe-li fundamentální řešení operátoru $L$, známe řešení zobecněné úlohy, protože
 
$$\tilde{u}(x,t) = \epsilon(x,t) \ast \left(\tilde{f}(x,t) + u_0(x) \ts \delta(t) \right) $$
Později bude ukázáno, že pro fundamentální řešení operátoru vedení tepla v $\R^{1+1}$ má tvar:
 
$$\epsilon(x,t) = \frac{\Theta(t)}{2\sqrt{\lambda \pi t}}e^{-\frac{x^2}{4\lambda t}} $$
\item Nyní se vraťme k řešení zobecněné úlohy. Druhý sčítanec nyní upravíme:
$$\left(\epsilon(x,t) \ast ( u_0(x) \ts \delta(t)), \phi(x,t) \right) = (\epsilon(x,t), ( (u_0(\xi) \ts \delta(\tau),\phi(x+\xi,t+\tau)))  =$$
$$= (\epsilon(x,t), ( u_0(\xi) ,\phi(x+\xi,t)))  = (\epsilon(x,t)\ast u_0(x),\phi(x,t)) $$
Zde je nutno poznamenat, že vůbec nevíme, jestli má vůbec celá tato úprava smysl. 
Pro náš konkrétní případ dostáváme 
$$ \epsilon(x,t)\ast u_0(x) = \displaystyle \int_{\R} \dd \xi \frac{\Theta(t)}{2\sqrt{\lambda \pi t}} e^{-\frac{\xi^2}{4\lambda t}} u_0 (x-\xi) = \Theta(t) \displaystyle \int_{\R} \dots $$
To, že zde zobecněnou konvoluci najednou chápeme jako klasickou je prostě fakt, který je třeba přijmout. Stejnou úpravu použijeme i pro první sčítanec:
$$ \epsilon(x,t) \ast (\Theta(t)f(t,x)) = \displaystyle \int_{\R}\dd \tau \displaystyle \int_{\R}\dd \xi \frac{\Theta(\tau)}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}} \Theta(t-\tau)f(t-\tau,x-\xi) =$$
$$= \Theta(t) \displaystyle \int_{0}^{t}\dd \tau \displaystyle \int_{\R} \frac{1}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}}f(t-\tau,x-\xi) $$
Tímto jsme nalezli řešení zobecněné úlohy rovnice vedení tepla v $\R^{1+1}$, které je tvaru $\tilde{u}(x,t) = \Theta(t) u(x,t)$. Vyjádřeme řešení této úlohy v úplném tvaru
$$\tilde{u}(t,x) = \Theta(t) \underbrace{\left[  \displaystyle \int_{0}^{t}\dd \tau \displaystyle \int_{\R} \frac{1}{2\sqrt{\lambda \pi \tau}} e^{-\frac{\xi^2}{4\lambda \tau}}f(t-\tau,x-\xi)\dd \xi + 
\frac{1}{2\sqrt{\pi \lambda t}} \displaystyle \int_{\R} \dd \xi u_0(x-\xi) e^{-\frac{\xi^2}{4\lambda t}} \dd \xi\right]}_{= u(t), \ \mbox{\scriptsize což je řešením klasické úlohy.}}$$
Že je toto řešení klasické úlohy si čtenář může zkusit sám ověřit na konkrétním příkladě. Například volbou  $f(t,x) = e^{-t}\cos x$ a počáteční podmínkou $u_0(x) = \cos x$. 
\end{enumerate}
 
Jako zástupce hyperbolických operátorů, budeme řešit počáteční úlohu vlnové rovnice v 1 dimensi, s pravou stranou $f(t,x)$ a počátečními podmínkami $u_0=u(0,x)$, $u_1=\dot{u}(0,x)$.
 
$$L_W\tilde{u} = \bigg(\ppd{}{t} - a^2 \Delta\bigg)\tilde{u} = \dot{\delta}(t)\ts u(0,x) + \delta(t)\ts \dot{u}(0,x) +  \Theta(t)\ddot{u}(t,x) - \Theta(t)\ppd{}{x} u(x,t)=$$
 
$$=\Theta(t)f(t,x) + \dot{\delta}(t)\ts u(0,x) + \delta(t)\ts \dot{u}(0,x)$$.
 
Dále upravme konvoluci tohoto výrazu s fundamentálním řešením
 
$$\E(t,x)\ast\bigg(\tilde{f}(t,x) + \dot{\delta}(t)\ts u(0,x) + \delta(t)\ts \dot{u}(0,x)\bigg)=\E(t,x)\ast\tilde{f}(t,x) + \pd{}{t}(\E(t,x)\ast u_0) + \E(t,x)\ast u_1$$
 
Dosazením $\E(t,x) = \dfrac{\Theta(t)}{2a}\Theta(at-|x|)$ získáme zobecněné řešení, vzorec je ale ještě třeba řádně upravit
 
$$\E_1\ast\tilde{f}=\displaystyle \int_{\R} \displaystyle \int_{\R} \dfrac{\Theta(t-\tau)}{2a}\Theta(a(t-\tau)-|x-\xi|)\Theta(\tau)f(\tau,\xi) \displaystyle \dd \xi \dd \tau=\displaystyle \dfrac{\Theta(t)}{2a} \int_{0}^{t} \displaystyle \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\tau,\xi) \displaystyle \dd \xi \dd \tau$$
 
$$\dot{\E_1}\ast u_0=\pd{}{t}\int_{\R}  \dfrac{\Theta(at-|x-\xi|)}{2a} \Theta(t)u_0 (\xi)\dd\xi =\dfrac{\Theta(t)}{2a}(au_0(x-at)+au_0(x+at))$$
 
$$\E_1\ast u_1= \ \int_{\R}  \dfrac{\Theta(t)}{2a}\Theta(at-|x-\xi|) u_1 (\xi)\dd \xi = \dfrac{\Theta(t)}{2a}\int_{x-at}^{x+at}u_1 (\xi)\dd \xi$$
 
Sečteme-li předchozí výrazy a vytkneme z nich Heavisidovu funkci získáme klasické řešení
 
$$u(t,x)=\displaystyle \dfrac{1}{2a} \bigg( \int_{0}^{t} \displaystyle \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\tau,\xi) \displaystyle \dd \xi \dd \tau + \int_{x-at}^{x+at} u_1 (\xi)\dd \xi\bigg) + \dfrac{u_0 (x-at)+u_0 (x+at)}{2} $$
 
 
\subsection{Hledání fundamentálních řešení $\E$ některých operátorů}
Při hledání fundamentálních řešení základních operátorů budeme hojně využívat integrální transformace. 
\paragraph{Rovnice vedení tepla}
Připomeňme operátor vedení tepla v $\R^{1+n}$ \footnote{Touto notací rozumíme operátor v $n$ prostorových souřadnicích a jedné časové proměnné.}
$$L_{H} = \pd{}{t} - \lambda \Delta, \ \mbox{kde } \ \lambda >0 $$
Tento operátor zde vyřešíme pro $n=1$. Pro obecné $n$ bude vyřešen na cvičeních. 
Hledejme tedy fundamentální řešení $\E(t,x)$
$$L_{H}\E(t,x) = \left(\pd{}{t} - \lambda\ppd{}{x} \right)\E(t,x) = \delta(t,x) = \delta(t) \ts \delta(x)$$
Aplikujme na celou rovnici částečnou Fourierovu transformaci v proměnné $x$:
$$\F_x\left[ \left(\pd{}{t} - \lambda\ppd{}{x} \right)\E(t,x)\right](t,\xi) = \F_x \left[ \delta(t) \ts \delta(x) \right](t,\xi) = \delta(t) \ts \F_x \left[ \delta(x) \right](\xi) = \delta(t) \ts 1$$
Vidíme tedy, že funkce na pravé straně rovnice je nezávislá na $\xi$. Upravme ještě levou stranu a tu porovnejme s pravou stranou:
$$ F_x\left[ \left(\pd{}{t} - \lambda\ppd{}{x} \right)\E(t,x)\right](t,\xi) = \pd{}{t} \F_x \left[ \E(t,x) \right](t,\xi) - \lambda (-\im \xi)^2 \F_x \left[ \E(t,x) \right](t,\xi) = \delta(t) \ts 1$$
Označme  $\hat{\E}^x (t,\xi)$. Pokud zafixujeme proměnnou $\xi$ a nahlížíme-li na ni jako na parametr, můžeme označit $\hat{\E}^x_{\xi}(t):=\hat{\E}^x (t,\xi) $. Pak dostáváme obyčejnou diferenciální 
rovnici 
$$\frac{\dd}{\dd t} \hat{\E}^x_{\xi}(t) + \lambda \xi^2 \hat{\E}^x_{\xi}(t) = \delta(t) $$
Je tedy zřejmé, že funkce $\hat{\E}^x_{\xi}(t)$ je fundamentálním řešením operátoru $L = \frac{\dd}{\dd t} + a$ pro $a>0$. Toto řešení již známe\footnote{Opět se jedná o řešení tvaru $\epsilon(t) = \Theta(t)Z(t)$, kde $Z(t)$ splňuje rovnici $LZ = 0$ s počáteční podmínkou $Z(0) = 1$}, tedy $\hat{\E}^x_{\xi}(t)  = \hat{\E}^x (t,\xi) = \Theta(t)e^{-\lambda \xi^2 t}$. 
Abychom nalezli řešení $\E(t,x)$, zbývá provést inverzní Fourierovu transformaci 
$$ \E(t,x) = \F^{-1}_x \left[ \hat{\E}^x (t,\xi) \right] (t,x) = \Theta(t) \F^{-1}_x \left[ e^{-\lambda \xi^2 t} \right](t,x) = \frac{\Theta(t)}{2\pi} \F_x \left[ e^{-\lambda \xi^2 t} \right](t,x)
= \frac{\Theta(t)}{2 \sqrt{\lambda  t\pi}} e^{-\frac{x^2}{4\lambda t}}$$
Tímto jsme našli řešení operátoru vedení tepla v jedné prostorové a jedné časové dimenzi.
 
Obecné řešení operátoru vedení tepla má tvar
$$ \E(t,x) = \frac{\Theta(t)}{(2\sqrt{\pi \lambda t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4\lambda t }}$$
 
kde $\Vert x \Vert^2=\sum_{1}^{n} x_k^2$. Určit fundamentální řešení některých operátorů je snadné. U jiných je to značně obtížné. Následující věta popíše metodu, pomocí které určíme např. fundamentální řešení Laplaceovy rovnice.
 
\begin{theorem}[Metoda sestupu]
Nechť $u(t,x) \in \D'(\R^{1+n})$ je zobecněná funkce s omezeným nosičem v $t$, tj. $\exists R>0$ takové, že $\forall x$ je $\nf u(t,x) \subset B_R(0)$, která je řešením diferenciální rovnice 
$\left( \displaystyle \sum_{k=1}^{n} \frac{\partial^k}{\partial t^k} L_k + L_0\right) u(t,x) = \delta(t) \ts f(x)$, kde $L_k, L_0$ jsou lineární diferenciální operátory působící v $x\in \R^n$ s
koeficienty třídy $\Ci$. Potom $u_0$ definované 
$$ (u_0(x),\phi(x) ):= (u(t,x),\phi(x)\eta(t)),$$
kde $\eta \in \D(\R)$ taková, že $u(t,x) = \eta(t)u(t,x)$ v $\D'(\R^{1+n})$ a $\eta(0) = 1$, je řešením rovnice L_0 u_0 = f. 
\begin{proof}
$$(L_0u_0(x), \phi(x)) := (u_0(x),\tilde{L}_0\phi(x))$$
Operátor $\tilde{L}_0$ působí na testovací funkci tak jako operátor $L_0$, jen navíc zahrnuje změnu znaménka vyplývající z definice derivace v $\D$ a před provedením derivace je testovací funkce napřed 
vynásobena příslušným koeficientem (z tohoto důvodu byla požadována hladkost v předpokladech). Uveďme konkrétní příklad. Máme-li operátor $L_0= a(x)\frac{\dd^3}{\dd x^3}$, tak operátor 
$\tilde{L}_0 = (-1)^3 \frac{\dd^3}{\dd x^3} (a(x) \cdot )$. Nyní již v této notaci dokazujme tvrzení.
$$(u_0(x),\tilde{L}_0\phi(x)) = (u(t,x),\tilde{L}_0\phi(x)\eta(t)) + \underbrace{\displaystyle \sum_{k=1}^{n}\left(u(t,x), \left(\frac{\partial^k}{\partial t^k} \tilde{L}_k\right) 
(\phi(x)\eta(t)) \right) }_{=0, \ \eta(t) \ \mbox{ \scriptsize je rovno 1}} = $$
$$= \left(  u(t,x), \left( \sum_{k=1}^{n}\frac{\partial^k}{\partial t^k} \tilde{L}_k + \tilde{L}_0\right)(\phi(x)\eta(t)) \right) = \left(\left(\displaystyle \sum_{k=1}^{n} \frac{\partial^k}{\partial t^k} L_k + L_0\right) u(t,x), \phi(x)\eta(t)\right) =$$
$$ = (\delta(t) \ts f(x),\phi(x)\eta(t) ) = (f(x),\phi(x))$$
\end{proof}
\end{theorem}
 
\begin{remark}
Je-li funkce $u(t,x) \in \D'_{reg}$ a  $\displaystyle \int_{\R}u(t,x) \dd t\in L^1_{loc}(\R^n)$, tak i pro tento případ jsme schopni určit $u_0(x)$. 
$$(u_0(x),\phi(x)):= (u(t,x),\phi(x)\eta(t) ) = \displaystyle \int_{\R^{1+n}}  \ u(t,x) \phi(x) \eta(t) \dd(t,x) =
\displaystyle \int_{\R^n} \phi(x) \left(\displaystyle \int_{\R} \dd t u(t,x) \right)$$
Jelikož tato úprava platí pro všechny testovací funkce, je  $\displaystyle \int_{\R} \dd t \ u(t,x) = u_0(x)$
 
Je-li $u(t,x) = \delta(t) \ts v(x)$, pak $u_0(x) = v(x)$. 
\end{remark}
 
\paragraph{Laplaceova rovnice}
Laplaceův operátor je tvaru $$\Delta = \displaystyle \sum_{k=1}^{n} \ppd{}{x_k}$$
Jednodimenzionální případ je triviálně vyřešitelný (co se fundamentálního řešení týče) a dvoudimenzionální fundamentální řešení je na druhou stranu velice složitě odvoditelné. 
Má tvar
$$\E_2(x) = \frac{1}{2\pi} \ln \Vert x \Vert $$
Pro $n\geq3 $ budeme demonstrovat určení fundamentální řešení z fundamentálního řešení rovnice vedení tepla metodou sestupu v proměnné $t$. Využijeme přitom první poznámky, která zajišťuje funkčnost metody. 
$$u_0(x) = \displaystyle \int_{\R} \frac{\Theta(t)}{(2\sqrt{\pi  t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4 t }} \dd t
= \displaystyle \int_{0}^{+\infty} \frac{1}{(2\sqrt{\pi  t})^n} \displaystyle e^{-\frac{\left\Vert x \right\Vert ^2}{4 t }} \dd t$$ 
Provedeme substituci v $t$: 
$$\begin{array}{c}
\frac{\left\Vert x \right\Vert ^2}{4 t } = u\\
 - \frac{\left\Vert x \right\Vert ^2}{4 t^2 } \dd t = \dd u \Rightarrow \dd t = -\frac{4 t^2 }{\left\Vert x \right\Vert ^2}\dd u = -\frac{\Vert x\Vert ^2}{4u^2}\dd u 
\end{array}$$
Poté přejde po několika drobných úpravách ve tvar
$$\frac{1}{(2\sqrt{\pi})^n} \frac{4^{n/2}}{4}\Vert x\Vert ^{-n+2} \displaystyle \int_{0}^{+\infty} u^{\frac{n}{2}-2}e^{-u} \dd u = \frac{\Gamma(\frac{n}{2}-1)}{4\pi ^{\frac{n}{2}} \Vert x\Vert^{n-2}} = \E_n(x) $$
 
Vyjádříme-li toto speciálně pro dimenzi 3, dostáváme 
 $$\E_3(x) = \frac{1}{4\pi \Vert x\Vert}$$
 
\paragraph{Vlnová rovnice}
Opět připomeneme tvar vlnové rovnice v $\R^3$
$$\ppd{}{t} - a^2 \Delta_{x,y,z}$$
na cvičeních bude ukázáno, že pro dimenzi 3 platí
$$\E_3(t,x) = \frac{\Theta(t)}{4\pi a^2 t} \delta_{S_{at}}(x)$$
 
My nyní pomocí metody sestupu  (v $x_3$) ukážeme, jak lze získat fundamentální řešení $\E_2(t,x)$ vlnové rovnice v dimenzi 2. 
$$(\E_2(x_1,x_2,t), \phi(x_1,x_2,t))  = (\E_3 (x_1,x_2,x_3,t),\phi(x_1,x_2,t)\eta(x_3)) = 
\frac{1}{2\pi a^2}\displaystyle \int_{0}^{+\infty} \dd t\displaystyle \int_{S_{at}} \frac{\phi(x_1,x_2,t)}{t} \underbrace{\eta(x_3)}_{=1} \dd S =$$
Jedná se o plošný integrál prvního druhu, proto zvolme následující parametrizaci
$$\begin{array}{c}
x_3 = \pm \sqrt{a^2t^2 - x_1^2 - x_2^2}\\
(at)^2 \geq x_1^2 + x_2^2 \\
\left\Vert \frac{\dd x_3}{\dd x_1} \times \frac{\dd x_3}{\dd x_2} \right\Vert = \frac{at}{\sqrt{a^2t^2 - x_1^2 - x_2^2}}
\end{array}$$
Po ní zkoumaný integrál přejde do tvaru (2 před integrálem vzejde díky parametrizaci přes dvě polokoule)
$$\frac{2}{4\pi a^2} \displaystyle \int_{0}^{+\infty} \dd t \displaystyle \int_{(at)^2 \geq x_1^2 + x_2^2 } \! \dd (x_1,x_2) \frac{at}{\sqrt{a^2t^2 - x_1^2 - x_2^2}} \frac{\phi(x_1,x_2,t)}{t} =$$
$$= \frac{1}{2\pi a} \displaystyle \int_{\R} \dd t \displaystyle \int_{\R^2} \dd (x_1,x_2) \frac{\Theta(t) \Theta(a^2t^2 - x_1^2 - x_2^2) }{\sqrt{a^2t^2 - x_1^2 - x_2^2}} \phi(x_1,x_2,t)$$
Odtud již plyne řešení (díky první části poznámky). Abychom dostali řešení v elegantním tvaru, přepíšeme ještě podmínku $(at)^2 \geq x_1^2 + x_2^2 = (at)^2 \geq \Vert x \Vert ^2$, tu odmocníme, a máme  
$ at \geq \Vert x \Vert $. Pak tuto množinu, přes kterou integrujeme, můžeme vnořit do integrálu pomocí Heavisideovy funkce, jako tomu bylo v předešlém postupu. Tímto získáme finální podobu fundamentálního řešení: 
$$ \E_2(x_1,x_2,t) = \frac{1}{2\pi a} \frac{\Theta(t) \Theta(at - \Vert x \Vert)}{\sqrt{a^2t^2 - \Vert x \Vert^2}} $$
 
Tímto jsme dokončili celou kapitolu a zároveň jsme se tímto vymanili ze sevření zobecněných funkcí.