01MAA3:Kapitola8: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
m (Borel – přidána poznámka. mírné doplnění důkazu.)
 
(Není zobrazeno 47 mezilehlých verzí od 3 dalších uživatelů.)
Řádka 30: Řádka 30:
 
\index{kompaktní množina}
 
\index{kompaktní množina}
 
\setlength{\itemsep}{4pt}
 
\setlength{\itemsep}{4pt}
\item Každá konečná množina je kompaktní. ($\S_1=\{x\} \cup X$ a pak použiji poznámku 7.2.5)
 
\item V~metrickém prostoru je každá kompaktní množina omezená. ($\S_1= \bigcap_n B(x,n)$, kde $n \in \N$)
 
\item $\R $ není kompakt (viz 7.2.2, vezmeme libovolnou metriku), ale $\RR$ už kompakt je. (Pokryji ho okolími nekonečen a uzavřeným intervalem z $\R^n$, který je podle \ref{kompaktInterval} kompaktní)
 
\item Kompaktnost není metrický pojem (tj. nezávisí na metrice).
 
 
\item Konečné sjednocení kompaktních množin je kompaktní. (Pokryjeme je sjednocením jejich konečných pokrytí.)
 
\item Konečné sjednocení kompaktních množin je kompaktní. (Pokryjeme je sjednocením jejich konečných pokrytí.)
 +
\item Každá konečná množina je kompaktní. (Pokryjeme ji konečným počtem okolí bodů této množiny.)
 +
\item \label{kompaktVMetr}
 +
V~metrickém prostoru je každá kompaktní množina omezená. ($\S_1 = \bigcup_{n \in \N} B(x,n)$ pokrývá celý prostor, tedy pro pokrytí kompaktní množiny stačí jedna koule.)
 +
\item $\R$ není kompakt ($\S=\{(-n,n)|n \in \N\}$ nemá konečné podpokrytí), ale $\RR$ už kompakt je. (Pokryji ho okolími nekonečen a uzavřeným intervalem z $\R$, který je podle \ref{kompaktInterval} kompaktní)
 +
\item Kompaktnost není metrický pojem (tj. nezávisí na metrice).
 
\end{enumerate}
 
\end{enumerate}
 
\end{remark}
 
\end{remark}
Řádka 79: Řádka 80:
 
\end{remark}
 
\end{remark}
 
\begin{proof}
 
\begin{proof}
(Sporem) Neexistuje konečný podsystém tak, aby pokryl $\I$. Nyní budu mnohokrátkrát půlit $\I$ a vždy zbude nějaká část nepokrytá.
+
Kontrola!!!!!(nejsem si jistý správností/pochopením tohoto důkazu)
Takto se postupně dostanu až na úroveň 1 bodu $x$. Ten je však hromadným bodem a dosáhl jsem sporu, protože se musí existovat nějaká množina z $\S$ tak, že obsahuje jak $x$, tak i jeho okolí, tj. pokrývá celý interválek.  
+
(Sporem) \[(\exists V\in \S)(\I \subset \bigcup_{V \in \S} V)(V \in \tau)\] tak, že neexistuje konečné podpokrytí $\S_1$. Nyní budu $\I=\left[a,b\right]$ opakovaně půlit, tj. tvořit posloupnost uzavřených intervalů
 +
$\left[a_n,b_n\right]_{n=1}^\infty$ tak, že \[(b_n-a_n<\frac{a-b}{2^n}).\]Vždy bude existovat část, která zůstává nepokrytá konečným podpokrytím. Z věty o půlení intervalu plyne, že existuje limitní bod, který si označíme $x$. $x$ je hromadným bodem posloupností $(a_n)$ a $(b_n)$ a zároveň \[(\exists V \in \S)(x \in V).\] Protože je toto $V$ otevřené, musí pokrývat okolí $x$ jímž, je jeden z intervalů $\left[a_n,b_n\right]$, což je spor s nepokrytím konečným podsystémem (interval $\left[a,b\right]$ pokryjeme konečným množstvím intervalů $\left[a_n,b_n\right]$).
 
\end{proof}
 
\end{proof}
 
\end{theorem}
 
\end{theorem}
  
 
\begin{theorem}
 
\begin{theorem}
 +
\label{kompakt_podmnozina}
 
Buď $A$ kompaktní podmnožina Hausdorffova topologického prostoru $X$. Potom $A$ je uzavřená.
 
Buď $A$ kompaktní podmnožina Hausdorffova topologického prostoru $X$. Potom $A$ je uzavřená.
 
\begin{proof}
 
\begin{proof}
Řádka 109: Řádka 112:
 
\begin{proof}
 
\begin{proof}
 
Pro libovolnou uzavřenou množinu $M$ nalezneme její pokrytí $\{G_\alpha \}$ a doplníme ho otevřenou množinou $G:= X\sm M$ na pokrytí celého prostoru $X$.
 
Pro libovolnou uzavřenou množinu $M$ nalezneme její pokrytí $\{G_\alpha \}$ a doplníme ho otevřenou množinou $G:= X\sm M$ na pokrytí celého prostoru $X$.
Nalezneme konečné podpokrytí $X$, označíme ho $\{G_i ~|~ i\in \hat{n} \}$. Toto pokrytí musí obsahovat  $G$, proto mu dáme první index. Potom $\{G_i \mid i \in \{2, \ldots ,n\} \}$ je konečným pokrytím $M$.
+
Nalezneme konečné podpokrytí $X$, označíme ho $\{G_i ~|~ i\in \hat{n} \}$. Toto pokrytí musí obsahovat  $G$, proto mu dáme první index (kdyby ho neobsahovalo, tak ho tam přidám, stále to bude konečné podpokrytí). Potom $\{G_i \mid i \in \{2, \ldots ,n\} \}$ je konečným pokrytím $M$.
 
\end{proof}
 
\end{proof}
 
\end{theorem}
 
\end{theorem}
Řádka 118: Řádka 121:
 
\begin{proof}
 
\begin{proof}
 
\begin{enumerate}[a)]
 
\begin{enumerate}[a)]
\item Implikace $\Rightarrow$ je triviální.
+
\item Implikace $\Rightarrow$ je triviální. (Plyne z \ref{kompaktVMetr} a \ref{kompakt_podmnozina})
 
\item $\Leftarrow$: Buď $A$ omezená a uzavřená.
 
\item $\Leftarrow$: Buď $A$ omezená a uzavřená.
 
\begin{enumerate}[1)]
 
\begin{enumerate}[1)]
Řádka 132: Řádka 135:
 
\[\vec x=\sum_{i=1}^n x^i\vec{e_i}.\]
 
\[\vec x=\sum_{i=1}^n x^i\vec{e_i}.\]
 
Buď $f: \vec x \mapsto (x^1,\dots,x^n)$. Zobrazení $f$ je homeomorfismus $V^n \to \R^n$, tudíž $(V^n,\norm{\ }_\infty)$ a
 
Buď $f: \vec x \mapsto (x^1,\dots,x^n)$. Zobrazení $f$ je homeomorfismus $V^n \to \R^n$, tudíž $(V^n,\norm{\ }_\infty)$ a
$(R^n,\norm{\ }_\infty)$ jsou homeomorfní.
+
$(R^n,\norm{\ }_\infty)$ jsou homeomorfní. (V případě $\VEC X=V^n$ nad komplexními čísly musíme vzít $V^n \to \R^{2n}$ tak, že bereme zvlášť reálnou a komplexní část $x^i$)
  
 
\item $\VEC X=V^n$, $\norm{\cdot}$ libovolná.
 
\item $\VEC X=V^n$, $\norm{\cdot}$ libovolná.
Řádka 195: Řádka 198:
 
\index{hromadná hodnota}
 
\index{hromadná hodnota}
 
\begin{define}
 
\begin{define}
Buď $\posl{x_n}\subset X$. Pak $a$ je hromadnou hodnotou posloupnosti,
+
Buď $\posl{x_n}\subset X$. Pak $a$ je {\bf hromadnou hodnotou posloupnosti},
 
právě když v~libovolném okolí $\H_a$ bodu $a$ leží nekonečně mnoho
 
právě když v~libovolném okolí $\H_a$ bodu $a$ leží nekonečně mnoho
 
členů posloupnosti.
 
členů posloupnosti.
 
\end{define}
 
\end{define}
 
\begin{remark}
 
\begin{remark}
Jestliže $x_n\to a$, pak $a$ je hromadnou hodnotou $\posl{x_n}$.
+
\begin{enumerate}
 +
\item (\textit{alternativní definice pro metrický prostor}) Nechť $(X,\rho)$ je metrický prostor. Pak $a$ je hromadnou hodnotou posloupnosti $(x_n) \Leftrightarrow$
 +
existuje vybraná posloupnost $(x_{k_n})$ tak, že $(x_{k_n}) \to a$. (Tuto posloupnost sestavujeme tak, že bereme $x_{k_n} \in B(a,\frac{1}{n})$, takže potřebujeme metriku a nelze to udělat v topologii)
 +
\item Jestliže $x_n\to a$, pak $a$ je hromadnou hodnotou $\posl{x_n}$.  
 +
\end{enumerate}
 
\end{remark}
 
\end{remark}
  
Řádka 221: Řádka 228:
 
\begin{proof}
 
\begin{proof}
 
Implikace konverguje $\implies\exists_1$ je zřejmá. Opačnou implikaci
 
Implikace konverguje $\implies\exists_1$ je zřejmá. Opačnou implikaci
dokážeme sporem. Nechť posloupnost nekonverguje, tj. existuje okolí
+
dokážeme sporem. Nechť posloupnost nekonverguje, tj. existuje \textbf{otevřené} okolí
 
hromadné hodnoty $\H_a$ takové, že v~$X\sm\H_a$ leží ještě nekonečně
 
hromadné hodnoty $\H_a$ takové, že v~$X\sm\H_a$ leží ještě nekonečně
 
mnoho členů posloupnosti. Platí, že $X\sm\H_a=\uz{X\sm\H_a}$, tedy
 
mnoho členů posloupnosti. Platí, že $X\sm\H_a=\uz{X\sm\H_a}$, tedy
Řádka 247: Řádka 254:
 
\end{proof}
 
\end{proof}
 
\end{lemma}
 
\end{lemma}
 +
 +
\index{$\epsilon$ síť}
 +
\begin{define}
 +
{\bf $\epsilon$-sítí} v metrickém prostoru $(X,\rho)$ rozumíme množinu koulí o~poloměru $\epsilon$ pokrývající $X$.
 +
\end{define}
 +
\begin{remark}
 +
Definice $\epsilon$-sítě není jednotná. Někdy se výše uvedený pojem nazývá $\epsilon$-pokrytím a v definici $\epsilon$-sítě se navíc požaduje minimální vzdálenost středů koulí o $\epsilon$.
 +
\end{remark}
  
 
\begin{lemma}[Borel]
 
\begin{lemma}[Borel]
 
\label{borel}
 
\label{borel}
 
Buď $(X,\rho)$ metrický prostor, v němž každá posloupnost má alespoň
 
Buď $(X,\rho)$ metrický prostor, v němž každá posloupnost má alespoň
jednu hromadnou hodnotu. Potom pro každé $\epsilon$ existuje konečná
+
jednu hromadnou hodnotu. Potom pro každé $\epsilon$ existuje \textbf{konečná}
\index{$\epsilon$ síť}
+
$\epsilon$-síť (se středy koulí vzdálenými od sebe minimálně o $\epsilon$).
$\epsilon$-síť (konečný počet koulí o~poloměru $\epsilon$ se středy
+
\begin{remark}
vzdálenými od sebe minimálně $\epsilon$, které pokrývají $X$).
+
Podle Vrány není nutné, aby byly středy koulí vzdálené alespoň o $\epsilon$. (Pouze to vyplyne z důkazu.)
 +
\end{remark}
 
\begin{proof}
 
\begin{proof}
 
+
Vezměme libovolné $\epsilon$ a dokažme, že pro něj existuje konečná $\epsilon$-síť. Vezměme bod $x_1$, vytvořme kouli $B_{1}(x_{1},\epsilon)$. Leží v kouli celý prostor? Pokud ano máme konečnou $\epsilon$-síť, pokud ne, vezměme bod $x_2$ z $X\sm B_{1}$ a vyrobme další kouli se středem v tomto bodě $B_{2}(x_{2},\epsilon)$. Leží v těchto dvou koulích celý prostor? Pokud ano, máme konečnou $\epsilon$-síť, pokud ne, pokračujeme dále s vytvářením koulí se středy v doplňcích. Prostor musí být pokryt konečným počtem koulí, protože pokud by nebyl, dostáváme posloupnost středů koulí $\posl{x_n}$, které jsou vzdáleny alespoň o $\epsilon$ a nemá nemá tudíž hromadnou hodnotu, což je spor s předpokladem.  
Pro spor předpokládejme existenci takového $\epsilon>0$, pro něž nebude existovat konečná $\epsilon$-síť.
+
Vezměme si pro takové $\epsilon$ libovolný systém koulí $\{B_\alpha(x_\alpha,\epsilon)\}_{\alpha\in I}$ pokrývající prostor $X$ a splňující $(\forall\alpha,\beta\in I)(\alpha \not= \beta)(\rho(x_\alpha,x_\beta)\geq\epsilon)$.
+
 
+
Takové pokrytí nemůže být podle předpokladů sporu konečné, bude tedy spočetné, nebo dokonce nespočetné.
+
Vyberme z něj libovolnou posloupnost koulí, označme ji $\posl{B(x_n,\epsilon)}$. Posloupnost $\posl{x_n}\subset X$ musí mít dle předpokladů věty hromadnou hodnotu, existuje tedy konvergentní vybraná posloupnost, což je spor s minimální vzdáleností $\epsilon$.
+
 
\end{proof}
 
\end{proof}
 
\end{lemma}
 
\end{lemma}
Řádka 270: Řádka 281:
 
\begin{proof}
 
\begin{proof}
 
\begin{enumerate}[a)]
 
\begin{enumerate}[a)]
\item Implikace $\Rightarrow$ je dokázaná.
+
\item Implikace $\Rightarrow$ je dokázaná (\ref{kompakt_hromadna_hodnota_existence}).
 
\item $(\Leftarrow)$: Buď $A_\alpha$ libovolné pokrytí prostoru
 
\item $(\Leftarrow)$: Buď $A_\alpha$ libovolné pokrytí prostoru
 
$X$. Potom podle \ref{lebesgue} existuje $\epsilon$ tak, že každá
 
$X$. Potom podle \ref{lebesgue} existuje $\epsilon$ tak, že každá
Řádka 299: Řádka 310:
 
nabývá na $A$ svého infima a suprema.
 
nabývá na $A$ svého infima a suprema.
 
\begin{proof}
 
\begin{proof}
$f(A)$ je kompaktní, tudíž uzavřená, takže infimum a supremum v~ní leží.
+
$f(A)$ je kompaktní, tudíž uzavřená, takže infimum a supremum v~ní leží. (Uzavřená množina obsahuje všechny svoje hromadné body a supremum i infimum jimi jsou)
 
\end{proof}
 
\end{proof}
 
\end{theorem}
 
\end{theorem}

Aktuální verze z 8. 2. 2017, 21:51

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01MAA3

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01MAA3Nguyebin 24. 1. 201413:09
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201513:46
Header editovatHlavičkový souborNguyebin 24. 1. 201412:36 header.tex
Kapitola0 editovatZnačeníKlinkjak 9. 9. 201508:50 preamble.tex
Kapitola1 editovatFunkční posloupnostiKubuondr 21. 1. 201716:45 kapitola1.tex
Kapitola2 editovatFunkční řadyDedicma2 21. 2. 201623:42 kapitola2.tex
Kapitola4 editovatTrigonometrické řadyPeckaja1 11. 2. 201613:14 kapitola4.tex
Kapitola5 editovatMetrikaKubuondr 22. 1. 201717:32 kapitola5.tex
Kapitola6 editovatTopologieKubuondr 3. 2. 201721:08 kapitola6.tex
Kapitola7 editovatSpojitostKubuondr 22. 1. 201718:14 kapitola7.tex
Kapitola8 editovatKompaktní prostoryKubuondr 8. 2. 201721:51 kapitola8.tex
Kapitola9 editovatSouvislé prostoryKubuondr 23. 1. 201710:28 kapitola9.tex
Kapitola10 editovatÚplné prostoryKubuondr 23. 1. 201711:08 kapitola10.tex
Kapitola11 editovatAfinní prostoryKubuondr 23. 1. 201712:43 kapitola11.tex
Kapitola12 editovatTotální derivaceKubuondr 7. 10. 201717:50 kapitola12.tex
Kapitola13 editovatDerivace vyšších řádůKubuondr 20. 1. 201709:50 kapitola13.tex
Kapitola14 editovatLokální extrémyKlinkjak 9. 9. 201513:31 kapitola14.tex

Zdrojový kód

%\wikiskriptum{01MAA3}
\section{Kompaktní prostory}
 
\index{pokrytí}
\index{podpokrytí}
\begin{define}
Buď $X$ topologický prostor, $\S \subset \P(X)$ systém množin
$\{V\}_{V\in\S}$. Řekneme, že $\S$ {\bf pokrývá} $X$, právě když $(\forall x\in X)(\exists V\in\S)(x\in V)$.
 
Řekneme, že systém $\S_1$ je {\bf podpokrytím systému} $\S$, právě když:
\begin{enumerate}[(I)]
\item $\S_1\subset\S$,
\item $\S_1$ je pokrytím $X$.
\end{enumerate}
\end{define}
 
\begin{remark}
Je-li  $\S \subset \tau$, nazýváme pokrytí {\bf otevřeným pokrytím}. Někdy zavádíme i uzavřené pokrytí $\S \subset c\tau \subset \P(x)$. Otevřené pokrytí se využije při integraci na varietách (MAA4).
\end{remark}
 
\index{kompaktní prostor}
\begin{define}
Topologický prostor nazveme {\bf kompaktním}, právě když každé jeho otevřené
pokrytí má konečné podpokrytí. Množinu $A\subset X$ nazveme kompaktní, právě když $A$ jako
topologický podprostor $X$ je kompaktní.
\end{define}
 
\begin{remark}
\begin{enumerate}
\index{kompaktní množina}
\setlength{\itemsep}{4pt}
\item Konečné sjednocení kompaktních množin je kompaktní. (Pokryjeme je sjednocením jejich konečných pokrytí.)
\item Každá konečná množina je kompaktní. (Pokryjeme ji konečným počtem okolí bodů této množiny.)
\item \label{kompaktVMetr}
V~metrickém prostoru je každá kompaktní množina omezená. ($\S_1 = \bigcup_{n \in \N} B(x,n)$ pokrývá celý prostor, tedy pro pokrytí kompaktní množiny stačí jedna koule.)
\item $\R$ není kompakt ($\S=\{(-n,n)|n \in \N\}$ nemá konečné podpokrytí), ale $\RR$ už kompakt je. (Pokryji ho okolími nekonečen a uzavřeným intervalem z $\R$, který je podle \ref{kompaktInterval} kompaktní)
\item Kompaktnost není metrický pojem (tj. nezávisí na metrice).
\end{enumerate}
\end{remark}
 
\begin{theorem}
Prostor $X$ je kompaktní, právě když každý systém uzavřených množin
s~prázdným průnikem obsahuje konečný podsystém s~prázdným průnikem.
\begin{proof}
Množina $A_\alpha$ je uzavřená, právě když ji lze vyjádřit jako
$A_\alpha=X\sm B_\alpha$, kde $B_\alpha$ je otevřená množina. Dále
platí, pomocí de Morganových zákonů:
\[
\emptyset=\bigcap_{\alpha\in\I}A_\alpha=
\bigcap_{\alpha\in\I}(X\sm B_\alpha)=
X\sm\bigcup_{\alpha\in\I}B_\alpha
\iff
X\subset\bigcup_{\alpha\in\I}B_\alpha
\]
a existuje konečné podpokrytí.
\end{proof}
\end{theorem}
 
\begin{remark}
\begin{enumerate}
\item Buď $A_n=\uz{A_n}$, $A_n\supset A_{n+1}$ klesající (ve smyslu
inkluze) posloupnost uzavřených množin v kompaktním prostoru a nechť platí
\[\bigcap_{n=1}^{\infty}A_n=\emptyset.\]
Pak nutně existuje $n\in\N$ takové, že $A_n=\emptyset$.
\item \emph{(o existenci)} Pro klesající posloupnost uzavřených neprázdných množin v kompaktním prostoru musí
platit:
\[\bigcap_{n=1}^{\infty}A_n\not=\emptyset.\]
\item \emph{(o jednoznačnosti)} Buď $(X,\rho)$ kompaktní metrický prostor, $A_n=\uz{A_n}$,
$A_n\supset A_{n+1}$, $d(A_n)\to 0$, $ A_n \neq \emptyset$. Pak existuje právě jedno $x$
takové, že platí
\[x\in\bigcap_{n=1}^{\infty}A_n.\]
\end{enumerate}
\end{remark}
 
\begin{theorem}
\label{kompaktInterval}
Každý omezený uzavřený interval $\I$ v $\R^n$ je kompaktní.
\begin{remark}
Intervalem v $\R^n$ se myslí kartézský součin intervalů z $\R$.
\end{remark}
\begin{proof}
Kontrola!!!!!(nejsem si jistý správností/pochopením tohoto důkazu)
(Sporem) \[(\exists V\in \S)(\I \subset \bigcup_{V \in \S} V)(V \in \tau)\] tak, že neexistuje konečné podpokrytí $\S_1$. Nyní budu $\I=\left[a,b\right]$ opakovaně půlit, tj. tvořit posloupnost uzavřených intervalů
$\left[a_n,b_n\right]_{n=1}^\infty$ tak, že \[(b_n-a_n<\frac{a-b}{2^n}).\]Vždy bude existovat část, která zůstává nepokrytá konečným podpokrytím. Z věty o půlení intervalu plyne, že existuje limitní bod, který si označíme $x$. $x$ je hromadným bodem posloupností $(a_n)$ a $(b_n)$ a zároveň \[(\exists V \in \S)(x \in V).\] Protože je toto $V$ otevřené, musí pokrývat okolí $x$ jímž, je jeden z intervalů $\left[a_n,b_n\right]$, což je spor s nepokrytím konečným podsystémem (interval $\left[a,b\right]$ pokryjeme konečným množstvím intervalů $\left[a_n,b_n\right]$).
\end{proof}
\end{theorem}
 
\begin{theorem}
\label{kompakt_podmnozina}
Buď $A$ kompaktní podmnožina Hausdorffova topologického prostoru $X$. Potom $A$ je uzavřená.
\begin{proof}
Buď $x\in X\sm A$ bod z~doplňku množiny $A$. Pak platí:
\[(\forall y\in A)(\exists\H_x,\H_y)(\H_x\cap\H_y=\emptyset).\]
Dále platí:
\[A=\bigcup_{y\in A}(A\cap\H_y)\subset\bigcup_{y\in A}\H_y,\]
tedy systém okolí $\H_{y_\alpha}$ pokrývá množinu $A$. Protože $A$ je
kompaktní, existuje její konečné podpokrytí, tedy
\[A=\bigcup_{i=1}^n(A\cap\H_{y_i})\subset\bigcup_{i=1}^n\H_{y_i}.\]
Jelikož pro okolí bodů $y$ a pro odpovídající okolí bodu $x$ platí
$\H_{x_i}\cap\H_{y_i}=\emptyset$, pro průnik všech okolí bodu $x$
platí:
\[
\H_x\cap A=\left(\bigcap_{i=1}^n\H_{x_i}\right)\cap A=\emptyset,
\]
tedy existuje okolí bodu $x$ disjunktní s~množinou $A$, takže $x \in \vn{(X \sm A)}$.
Bod $x \in X \sm A$ jsme volili libovolně, proto je doplněk množiny $A$ otevřený, tudíž $A$ je uzavřená.
\end{proof}
\end{theorem}
 
\begin{theorem}
V~kompaktním prostoru jsou všechny uzavřené množiny kompaktní.
\begin{proof}
Pro libovolnou uzavřenou množinu $M$ nalezneme její pokrytí $\{G_\alpha \}$ a doplníme ho otevřenou množinou $G:= X\sm M$ na pokrytí celého prostoru $X$.
Nalezneme konečné podpokrytí $X$, označíme ho $\{G_i ~|~ i\in \hat{n} \}$. Toto pokrytí musí obsahovat  $G$, proto mu dáme první index (kdyby ho neobsahovalo, tak ho tam přidám, stále to bude konečné podpokrytí). Potom $\{G_i \mid i \in \{2, \ldots ,n\} \}$ je konečným pokrytím $M$.
\end{proof}
\end{theorem}
 
\begin{theorem}
Buď $\VEC X$ lineární prostor konečné dimenze. Potom $A\subset \VEC X$ je kompaktní,
právě když je uzavřená a omezená.
\begin{proof}
\begin{enumerate}[a)]
\item Implikace $\Rightarrow$ je triviální. (Plyne z \ref{kompaktVMetr} a \ref{kompakt_podmnozina})
\item $\Leftarrow$: Buď $A$ omezená a uzavřená.
\begin{enumerate}[1)]
\item $\VEC X=\R^n$, $\norm{\cdot}=\norm{\cdot}_\infty$ (maximová norma, $\forall \vec x \in \VEC X \; \norm{x} = \max_{i\in\n}\abs{x_i}$).
 
$A$ je omezená, tudíž $A\subset B(0,R)\subset\uz{B}(0,R)$.
$\uz{B}(0,R)$ je interval, který je v~$\R^n$ kompaktní.
$A$ je uzavřená v~kompaktním prostoru, tedy $A$ je kompaktní.
 
\item $\VEC X=V^n$, $\norm{\cdot}=\norm{\cdot}_\infty$.
 
Každý vektor $\vec x\in V^n$ lze vyjádřit jako kombinaci bazických vektorů:
\[\vec x=\sum_{i=1}^n x^i\vec{e_i}.\]
Buď $f: \vec x \mapsto (x^1,\dots,x^n)$. Zobrazení $f$ je homeomorfismus $V^n \to \R^n$, tudíž $(V^n,\norm{\ }_\infty)$ a
$(R^n,\norm{\ }_\infty)$ jsou homeomorfní. (V případě $\VEC X=V^n$ nad komplexními čísly musíme vzít $V^n \to \R^{2n}$ tak, že bereme zvlášť reálnou a komplexní část $x^i$)
 
\item $\VEC X=V^n$, $\norm{\cdot}$ libovolná.
 
Pro libovolný vektor $\vec x$ platí:
\[\norm{\vec x}\le\sum_{i=1}^n\abs{x^i}\norm{\vec{e_i}}\le
\sum_{i=1}^n\norm{\vec{e_i}}\norm{\vec x}_\infty=
K\norm{\vec x}_\infty,\]
což je jedna část nerovnosti z~věty \ref{hom_lin}. Kromě toho z~tohoto
vztahu vyplývá spojitost identity
$(\VEC X,\norm{\cdot}_\infty) \to (\VEC X,\norm{\cdot})$.
 
Libovolná koule $\uz{B}(\vec 0,R)\subset (\VEC X,\norm{\cdot})$ je uzavřená, díky
spojitosti je uzavřená i~v~$(\VEC X,\norm{\cdot}_\infty)$.
$A=\{\vec x\in \VEC X \mid \norm{\vec x}_\infty=1\}$ je uzavřená a omezená
v~$(\VEC X,\norm{\cdot}_\infty)$.
 
Dále platí:
\[
\bigcap_{R>0}\left(\uz{B}(\vec 0,R)\cap A\right)=\emptyset,
\]
neboť v~průniku koulí leží pouze $\vec 0$, ten ale neleží v~$A$ a platí tedy
$(\exists\rho>0)(\uz{B}(\vec 0,\rho)\cap A=\emptyset)$.
 
Pak $(\forall\vec x)(\norm{\vec x}\le\rho\implies
\norm{\vec x}_\infty\not=1)$.
 
Dokážeme, že v~takovém případě $\norm{\vec x}_\infty<1$. Nechť platí,
že $\norm{\vec{x_0}}\le\rho\wedge \norm{\vec{x_0}}_\infty>1$. Pak
\[
\norm{\frac{\vec{x_0}}{\norm{\vec{x_0}}_\infty}}=
\frac{1}{\norm{\vec{x_0}}_\infty}\norm{\vec{x_0}}<
\norm{\vec{x_0}}\le\rho,
\]
ale
\[
\norm{\frac{\vec{x_0}}{\norm{\vec{x_0}}_\infty}}_\infty=
\frac{1}{\norm{\vec{x_0}}_\infty}\norm{\vec{x_0}}_\infty=1,
\]
což je spor. Tedy $(\forall\vec x)(\norm{\vec x}\le\rho\implies
\norm{\vec x}_\infty<1)$.
 
Pro všechny $\vec x\not=\vec 0$ pak platí:
\[
\norm{\frac{\vec x}{\norm{\vec x}}\rho}=\rho,
\]
tedy
\[
\norm{\frac{\vec x}{\norm{\vec x}}\rho}_\infty<1,
\]
z~čehož vyplývá
\[
\norm{\vec x}_\infty<\frac1\rho\norm{\vec x}.
\]
Pro $\vec x=\vec 0$ ve vztahu nastává rovnost. Dokázali jsme tedy druhou
část nerovnosti.
\end{enumerate}
\end{enumerate}
\end{proof}
\end{theorem}
 
\index{hromadná hodnota}
\begin{define}
Buď $\posl{x_n}\subset X$. Pak $a$ je {\bf hromadnou hodnotou posloupnosti},
právě když v~libovolném okolí $\H_a$ bodu $a$ leží nekonečně mnoho
členů posloupnosti.
\end{define}
\begin{remark}
\begin{enumerate}
\item (\textit{alternativní definice pro metrický prostor}) Nechť $(X,\rho)$ je metrický prostor. Pak $a$ je hromadnou hodnotou posloupnosti $(x_n) \Leftrightarrow$
existuje vybraná posloupnost $(x_{k_n})$ tak, že $(x_{k_n}) \to a$. (Tuto posloupnost sestavujeme tak, že bereme $x_{k_n} \in B(a,\frac{1}{n})$, takže potřebujeme metriku a nelze to udělat v topologii)
\item Jestliže $x_n\to a$, pak $a$ je hromadnou hodnotou $\posl{x_n}$. 
\end{enumerate}
\end{remark}
 
\begin{theorem}
\label{kompakt_hromadna_hodnota_existence}
V~kompaktním prostoru má každá posloupnost alespoň jednu
hromadnou hodnotu.
\begin{proof}
Nechť $A_n=\{x_k\}_{k\ge n}$. Pak $\uz{A_n}\not=\emptyset$,
$\uz{A_n}\supset\uz{A_{n+1}}$, takže platí:
\[a\in\bigcap_{n=1}^\infty\uz{A_n}\not=\emptyset,\]
kde $a \in \bigcap_{n=1}^\infty\uz{A_n}$. Dokážeme nyní, že $a$ je hromadným bodem, tj. že v každém jeho okolí leží nekonečně mnoho členů posloupnosti. $(Sporem)$: předpokládejme opak, tedy $\exists\H_a$ tak, že
$\posl{x_n}\bigcap\H_a$ je konečná. Potom $\exists m$, tak, že pro $\forall n>m$ je $A_n\bigcap\H_a=\emptyset \wedge a \in\uz{A_n}$, což je spor (viz definice bodu v uzávěru).
\end{proof}
\end{theorem}
 
\begin{theorem}
V~kompaktním Hausdorffově prostoru posloupnost konverguje, právě když má
právě jednu hromadnou hodnotu.
\begin{proof}
Implikace konverguje $\implies\exists_1$ je zřejmá. Opačnou implikaci
dokážeme sporem. Nechť posloupnost nekonverguje, tj. existuje \textbf{otevřené} okolí
hromadné hodnoty $\H_a$ takové, že v~$X\sm\H_a$ leží ještě nekonečně
mnoho členů posloupnosti. Platí, že $X\sm\H_a=\uz{X\sm\H_a}$, tedy
$X\sm\H_a$ je kompaktní. Podle \ref{kompakt_hromadna_hodnota_existence}
tam ale posloupnost musí mít další hromadnou hodnotu, což je spor.
\end{proof}
\end{theorem}
 
\begin{lemma}[Lebesgue]
\label{lebesgue}
Buď $(X,\rho)$ metrický prostor, kde každá posloupnost má alespoň
jednu hromadnou hodnotu, $\S = \{V\}_{V\in\S}$ otevřené pokrytí tohoto
prostoru. Potom existuje $\epsilon$ tak, že každá koule o~poloměru
$\epsilon$ leží alespoň v~jedné z~pokrývajících množin.
\begin{proof}
Pro spor předpokládejme existenci takového otevřeného pokrytí $\S$, že pro každé $\epsilon$ existuje koule o poloměru $\epsilon$ taková, jenž není podmnožinou žádné z pokrývajících množin z $\S$.
 
Vezměme tedy takové pokrytí $\S = \{V\}_{V\in\S}$ a uvažujme posloupnost $\posl{\epsilon_n}=1/n$. Pro ni existuje posloupnost koulí $\posl{B_n(x_n,\epsilon_n)}$, které nejsou podmnožinou žádné z pokrývajících množin $V \in \S$.
 
Dle předpokladu věty existuje pro posloupnost středů $\posl{x_n}$ vybraná posloupnost $x_{k_n}\to a$. Nalezněme $V \in \S$ tak, aby $a \in \vn{V}$; potom určitě $\exists B(a,r)\subset V$.
 
Z definice limity najděme $n_1$ tak, aby $(\forall n > n_1)(\rho(x_{k_n},a)<\frac{r}{2})$, a $n_2$ tak, aby $(\forall n > n_2)(\frac{1}{k_n}<\frac{r}{2})$.
 
Po volbě $n_0 = \max\{n_1,n_2\}$ platí $(\forall n > n_0)(\posl{B_{k_n}} \subset V)$, což je spor s volbou posloupnosti $\posl{B_n}$.
\end{proof}
\end{lemma}
 
\index{$\epsilon$ síť}
\begin{define}
{\bf $\epsilon$-sítí} v metrickém prostoru $(X,\rho)$ rozumíme množinu koulí o~poloměru $\epsilon$ pokrývající $X$.
\end{define}
\begin{remark}
Definice $\epsilon$-sítě není jednotná. Někdy se výše uvedený pojem nazývá $\epsilon$-pokrytím a v definici $\epsilon$-sítě se navíc požaduje minimální vzdálenost středů koulí o $\epsilon$.
\end{remark}
 
\begin{lemma}[Borel]
\label{borel}
Buď $(X,\rho)$ metrický prostor, v němž každá posloupnost má alespoň
jednu hromadnou hodnotu. Potom pro každé $\epsilon$ existuje \textbf{konečná}
$\epsilon$-síť (se středy koulí vzdálenými od sebe minimálně o $\epsilon$).
\begin{remark}
Podle Vrány není nutné, aby byly středy koulí vzdálené alespoň o $\epsilon$. (Pouze to vyplyne z důkazu.)
\end{remark}
\begin{proof}
Vezměme libovolné $\epsilon$ a dokažme, že pro něj existuje konečná $\epsilon$-síť. Vezměme bod $x_1$, vytvořme kouli $B_{1}(x_{1},\epsilon)$. Leží v kouli celý prostor? Pokud ano máme konečnou $\epsilon$-síť, pokud ne, vezměme bod $x_2$ z $X\sm B_{1}$ a vyrobme další kouli se středem v tomto bodě $B_{2}(x_{2},\epsilon)$. Leží v těchto dvou koulích celý prostor? Pokud ano, máme konečnou $\epsilon$-síť, pokud ne, pokračujeme dále s vytvářením koulí se středy v doplňcích. Prostor musí být pokryt konečným počtem koulí, protože pokud by nebyl, dostáváme posloupnost středů koulí $\posl{x_n}$, které jsou vzdáleny alespoň o $\epsilon$ a nemá nemá tudíž hromadnou hodnotu, což je spor s předpokladem. 
\end{proof}
\end{lemma}
 
\begin{theorem}[Weierstrass]
Buď $(X,\rho)$ metrický prostor. Potom $X$ je kompaktní, právě když každá
posloupnost má konvergentní podposloupnost.
\begin{proof}
\begin{enumerate}[a)]
\item Implikace $\Rightarrow$ je dokázaná (\ref{kompakt_hromadna_hodnota_existence}).
\item $(\Leftarrow)$: Buď $A_\alpha$ libovolné pokrytí prostoru
$X$. Potom podle \ref{lebesgue} existuje $\epsilon$ tak, že každá
koule o~poloměru $\epsilon$ leží v~některé z~pokrývajících
množin. Podle \ref{borel} stačí k~pokrytí $X$ konečný počet těchto
koulí. Hledaným konečným podpokrytím je množina nadmnožin koulí
$B(x_i,\epsilon)$.
\end{enumerate}
\end{proof}
\end{theorem}
 
\subsection{Kompaktnost a spojitost}
 
\begin{theorem}
Buďte $(X,\tau_X)$, $(Y,\tau_Y)$ topologické prostory, $f: X \to Y$ spojité zobrazení. Potom
je-li $X$ kompaktní, je i $f(X)$ kompaktní.
\begin{proof}
Buď $\S$ otevřené pokrytí $f(X)$. Potom vzor $\S$ je otevřené pokrytí $X$, neboť
otevřenost se přenáší z~$Y$ do $X$. $X$ je kompaktní, takže $f^{-1}(\S)$ má
konečné podpokrytí. Konečným podpokrytím $f(X)$ je pak
konečná množina obrazů množin pokrývajících $X$.
\end{proof}
\end{theorem}
 
\begin{theorem}
\label{max-kompakt}
Buď $f:A\to\R$ zobrazení spojité na kompaktní množině $A$. Potom $f$
nabývá na $A$ svého infima a suprema.
\begin{proof}
$f(A)$ je kompaktní, tudíž uzavřená, takže infimum a supremum v~ní leží. (Uzavřená množina obsahuje všechny svoje hromadné body a supremum i infimum jimi jsou)
\end{proof}
\end{theorem}
 
\begin{remark}
Ale nikoliv všeho mezi nimi. K tomu je potřeba předpoklad souvislosti, který bude probrán v následující kapitole.
\end{remark}
 
\index{stejnoměrná spojitost}
\begin{define}
Buďte $(X,\rho)$, $(Y,\sigma)$ metrické prostory. Řekneme, že
zobrazení $f: X \to Y$ je {\bf stejnoměrně spojité}, právě když
\[(\forall\epsilon>0)(\exists\delta>0)(\forall x,y \in X)(\rho(x,y)<\delta\implies\sigma(f(x),f(y))<\epsilon).\]
\end{define}
 
\begin{remark}
Uvědomme si, že na metrických prostorech je definice \ref{def_spojitost} ekvivalentní s naší \uv{starou} definicí spojitosti:
zobrazení $f: (X,\rho) \to (Y,\sigma)$ je spojité, právě když
\[
(\forall x \in X)(\forall \epsilon > 0)(\exists \delta > 0)(\forall y \in X)(\rho(x,y) < \delta \implies \sigma(f(x),f(y)) < \epsilon).
\]
\end{remark}
 
\begin{theorem}[Cantor]
Zobrazení $f$ spojité na kompaktní množině $X$ je spojité stejnoměrně.
\begin{proof}
Důkaz provedeme sporem. Nechť platí
\[(\exists\epsilon>0)(\forall\delta>0)(\exists x,y \in X)
(\rho(x,y)<\delta\wedge\sigma(f(x),f(y))\ge\epsilon).\]
Buď $\posl{x_n}$,$\posl{y_n}$ posloupnosti takové, že platí
\[\rho(x_n,y_n)<\frac1n,\quad \sigma(f(x_n),f(y_n))\ge\epsilon.\]
Protože množina je kompaktní, existuje vybraná konvergentní
podposloupnost $x_{k_n}\to x$. Dále platí
\[\rho(y_{k_n},x)\le\rho(x_{k_n},y_{k_n})+\rho(x_{k_n},x),\]
tedy i $y_{k_n}$ konverguje k~$x$.
 
Ze spojitosti $f$ vyplývá existence $\delta>0$ takového, že pro
všechna $x'$ taková, že $\rho(x',x)<\delta$ je
$\sigma(f(x'),f(x))<\frac\epsilon2$. Protože $x_{k_n}$ a $y_{k_n}$
konvergují, existuje $m$ takové, že $\rho(x_{k_m},x)<\delta$ a
$\rho(y_{k_m},x)<\delta$, takže
\[
\sigma(f(x_{k_m}),f(x))<\frac\epsilon2\text{ a }
\sigma(f(y_{k_m}),f(x))<\frac\epsilon2,
\]
z~čehož vyplývá
\[
\sigma(f(x_{k_m}),f(y_{k_m}))\le
\sigma(f(x_{k_m}),f(x))+\sigma(f(y_{k_m}),f(x))<
\epsilon,
\]
což je spor.
\end{proof}
\end{theorem}