01MAA3:Kapitola11

Z WikiSkripta FJFI ČVUT v Praze
Verze z 1. 8. 2010, 09:49, kterou vytvořil Admin (diskuse | příspěvky) (Založena nová stránka: %\wikiskriptum{01MAA3} \section{Afinní prostor} \index{afinní prostor} \begin{define} Buď $X\not=\emptyset$ množina, $\vec X$ lineární prostor nad $T$. Buď definov...)

(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Přejít na: navigace, hledání
PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01MAA3

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01MAA3Nguyebin 24. 1. 201413:09
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201513:46
Header editovatHlavičkový souborNguyebin 24. 1. 201412:36 header.tex
Kapitola0 editovatZnačeníKlinkjak 9. 9. 201508:50 preamble.tex
Kapitola1 editovatFunkční posloupnostiKubuondr 21. 1. 201716:45 kapitola1.tex
Kapitola2 editovatFunkční řadyDedicma2 21. 2. 201623:42 kapitola2.tex
Kapitola4 editovatTrigonometrické řadyPeckaja1 11. 2. 201613:14 kapitola4.tex
Kapitola5 editovatMetrikaKubuondr 22. 1. 201717:32 kapitola5.tex
Kapitola6 editovatTopologieKubuondr 3. 2. 201721:08 kapitola6.tex
Kapitola7 editovatSpojitostKubuondr 22. 1. 201718:14 kapitola7.tex
Kapitola8 editovatKompaktní prostoryKubuondr 8. 2. 201721:51 kapitola8.tex
Kapitola9 editovatSouvislé prostoryKubuondr 23. 1. 201710:28 kapitola9.tex
Kapitola10 editovatÚplné prostoryKubuondr 23. 1. 201711:08 kapitola10.tex
Kapitola11 editovatAfinní prostoryKubuondr 23. 1. 201712:43 kapitola11.tex
Kapitola12 editovatTotální derivaceKubuondr 7. 10. 201717:50 kapitola12.tex
Kapitola13 editovatDerivace vyšších řádůKubuondr 20. 1. 201709:50 kapitola13.tex
Kapitola14 editovatLokální extrémyKlinkjak 9. 9. 201513:31 kapitola14.tex

Zdrojový kód

%\wikiskriptum{01MAA3}
\section{Afinní prostor}
 
\index{afinní prostor}
\begin{define}
Buď $X\not=\emptyset$ množina, $\vec X$ lineární prostor nad $T$. Buď
definováno zobrazení $X\times X\mapsto\vec X$ takové, že platí:
\begin{enumerate}[(i)]
\item $\forall x,y,z\in X\ \vec{xy}+\vec{yz}+\vec{zx}=\theta$. (Schwartzova rovnost)
\item Pro každé pevné $x\in X$ je zobrazení $h:y\mapsto\vec{xy}$
bijekce.
\end{enumerate}
Potom uspořádanou dvojici $(X,\vec X)$ nazveme {\bf afinním prostorem
nad $T$}.
 
\index{přidružený lineární prostor}
\index{volný vektor}
Prvky (body) afinního prostoru se myslí prvky $X$. $\vec X$ se nazývá
{\bf přidruženým lineárním prostorem}. Jeho prvky se nazývají {\bf volné
vektory}.
\end{define}
 
\begin{remark}
\begin{enumerate}
\item Formálně označíme $(x,y)\mapsto\vec{xy}=y-x=\vec h$.
\item Při pevné volbě $x$ pro každé $y$ existuje právě jedno $\vec h$
takové, že $y-x=\vec h$. Lze tedy zavést jednoznačně $y=x+\vec h$
\item Z~vlastnosti (i) při volbě $y=z=x$ vyplývá:
\[\theta=\vec{xx}+\vec{xx}+\vec{xx}=3\vec{xx}\implies x-x=\theta\]
\item Při volbě $z=x$ dostáváme:
\[\theta=\vec{xy}+\vec{yx}+\vec{xx}=\vec{xy}+\vec{yx}\implies
\vec{xy}=-\vec{yx}\implies -(y-x)=x-y\]
\item $y=x+\vec h$, právě když $x=y-\vec h$.
\item
\[\underbrace{(x+\vec h)}_y+\vec k=
\underbrace{x+(\vec h+\vec k)}_z\]
\[
\begin{split}
0 & =(x+\vec h)-x+(z-y)+x-(x+\vec h+\vec k)=
\vec h+(z-y)+(-(\vec h+\vec k)) \\
&=\vec h+(z-y)-\vec h-\vec k=(z-y)-\vec k,
\end{split}
\]
tedy
\[
(z-y)=\vec k,
\]
takže rovnost platí.
\end{enumerate}
\end{remark}
 
\begin{define}
Řekneme, že afinní prostor $X$ je normovaný, konečnědimenzionální,
eukleidovský, unitární atd., právě když to platí o~jeho přidruženém
lineárním prostoru.
\end{define}
 
\index{afinní zobrazení}
\index{přidružené lineární zobrazení}
\begin{define}
Zobrazení $a:X\mapsto Y$ nazveme {\bf afinním}, právě když existuje
zobrazení $L\in\L(\vec X,\vec Y)$ takové, že
\[(\forall x,y\in X)(a(x)-a(y)=L(x-y)).\]
$L$ se nazývá {\bf přidružené lineární zobrazení} zobrazení $a$.
\end{define}
 
\begin{remark}
\begin{enumerate}
\item Přidružené lineární zobrazení je jiné než to pytlíčkovské. LEPŠÍ! (dle Vrány). $$a(x)=a(x)+L(x-0)=q + L(\vec x)=k \vec x +q$$
\item Normovaný a úplný afinní prostor se nazývá {\bf Banachův}.
\item Úplný afinní prostor se skalárním součinem se nazývá {\bf
Hilbertův}.
\end{enumerate}
\end{remark}
 
\begin{define}
Buď $\phi:T\mapsto X$ zobrazení z~tělesa do afinního prostoru,
$t_0$ vnitřní bod definičního oboru $\phi$. Existuje-li 
\[\lim_{t\to t_0}\frac{1}{t-t_0}(\phi(t)-\phi(t_0)),\] nazveme ji {\bf derivací zobrazení } $\phi$ v bodě $t_0$ a označíme ji 
$\phi'(t_0)$, resp. $\frac{\d\phi}{\d t}(t_0)$
\end{define}
 
\begin{remark}
\begin{enumerate}
\item Derivace zobrazení z $T$ do prostoru $X$ v bodě je tedy vektor z přidruženého lineárního prostoru $\vec{X}$
\end{enumerate}
\end{remark}
 
\index{směr}
\begin{define}
Směrem v~afinním prostoru nazýváme každý jednotkový volný vektor:
$\vec v\in\vec X$, $\norm{\vec v}=1$.
\end{define}
 
\index{derivace ve směru}
\begin{define}
Buď $f:X\mapsto Y$, $x_0\in\vn{(\df f)}$, $\vec v$ směr v~$X$. Položme
$\phi(t)=f(x_0+t\vec v)$. Existuje-li $\phi'(0)$, řekneme, že $f$ {\bf
má derivaci v~bodě $x_0$ ve směru $\vec v$}. Derivaci ve směru $\vec
v$ v~bodě $x_0$ značíme $f_{\vec v}(x_0)$.
\end{define}
 
\begin{example}
\[f(x,y)=
\begin{cases}
\displaystyle\frac{2xy}{x^2+y^2} & (x,y)\not=(0,0) \\
1 & (x,y)=(0,0)
\end{cases}
\]
\[
\vec v=(\cos\vartheta,\sin\vartheta)\quad\vartheta\in(-\pi,\pi\ra
\]
\[
\phi(t)=f((0,0)+t(\cos\vartheta,\sin\vartheta))=
f(t\cos\vartheta,t\sin\vartheta)=
\sin2\vartheta=\text{konst. pro }t\not=0
\]
\[
\phi(0)=1
\]
$\phi$ má derivaci ve směru $\vec v$, právě když $\sin2\vartheta=1$,
tedy $\vartheta=\frac14\pi\vee\vartheta=-\frac34\pi$.
\end{example}
 
\index{souřadný systém}
\begin{define}
Buď E prostor konečné dimenze. Pak n+1-tici $(\0,\vec{e_1},\dots,\vec{e_n})$ nazveme {\bf souřadný systém} na E právě když $\0 \in E$ a soubor $(\vec{e_1},\dots,\vec{e_n})$ je báze $E$.
\end{define}
 
\index{parciální derivace}
\begin{define}
Buď $f:X\mapsto Y$, $(\0,\vec{e_1},\dots,\vec{e_n})$ souřadný systém na
$X$. Potom existuje-li $f_{\vec{e_i}}(x_0)$, říkáme, že $f$ má v~bodě
$x_0$ {\bf parciální derivaci} podle $i$-té proměnné.
\end{define}
 
\begin{remark}
\begin{enumerate}
\item 
\[\frac{\pd}{\pd w}\left(
\frac{\pd f}{\pd v}
\right)(x_0)=
f_{\vec v\vec w}(x_0)=
\left(f_{\vec v}\right)_{\vec w}(x_0)
\]
\item
\[
f(x,y)=
\begin{cases}
\displaystyle\frac{xy^2}{x^2+y^4} & (x,y)\not=(0,0)\\
0 & (x,y)=(0,0)
\end{cases}
\]
Tato funkce není spojitá v~$(0,0)$ --- např. při volbě
$(x,y)=(\frac1{n^2},\frac1n)$ dostaneme limitu $\frac12$, zatímco při
volbě $(x,y)=(0,\frac1n)$ dostaneme $0$. Všechny směrové derivace
v~$(0,0)$ ale existují:
\[
\phi(t)=f(x_0+t\vec v)=\frac{t\cos\vartheta\sin^2\vartheta}
{\cos^2\vartheta+t^2\sin^4\vartheta}\text{ pro }t\not=0
\]
\[
\phi(0)=0
\]
\[
\phi'(0)=\lim_{t\to 0}
\frac{\phi(t)-\phi(0)}{t}=
\begin{cases}
0 & \displaystyle \vartheta=\frac\pi2 \\
\displaystyle\frac{\sin^2\vartheta}{\cos\vartheta} & \text{jinak}
\end{cases}
\]
\end{enumerate}
\end{remark}
 
\begin{theorem}[\uv{o přírůstku funkce}]
Buď $X$ Euklidův ($\text{dim} X < \infty$) afinní prostor, $f:X\mapsto R$ definované na kouli
$B(x_0,R)$, buď $(\0,\vec{e_1},\dots,\vec{e_n})$ ortonormální souřadný
systém na $X$, nechť $f$ má na celé kouli $B(x_0,R)$ všechny parciální
derivace 1. řádu. Pak $\forall x\in B(x_0,R)$ existuje $x_1,\dots,x_n\in
B(x_0,R)$ tak, že
\[f(x)-f(x_0)=\sum_{i=1}^{n}f_i(x_i)(x^i-x_0^i).\]
kde
\[
x_i = (x^1,\dots,x^{i-1}, \xi^i,x_0^{i+1},\dots,x_0^n)
\]
\begin{proof}
Nejdříve předpokládejme \[
\begin{split}
y_i&=(x^1,...,x^{i},x_0^{i+1},...,x_0^{n})\\
y_0&=x_0\\
y_n&=x\\
\end{split}
\]
pak
\[
\begin{split}
f(x)-f(x_0) & =
f(y_n)-f(y_0)= \sum_{i=1}^n (f(y_i)-f(y_{i-1}))=\\
& =\sum_{i=1}^n\left(
f(x^1,\dots,x^{i-1},\ ,x_0^{i+1},\dots,x_0^n)(x^i)-
f(x^1,\dots,x^{i-1},\ ,x_0^{i+1},\dots,x_0^n)(x_0^i)\right)=\\
&=\sum_{i=1}^n\frac{\d}{\d e_i}
f(x^1,\dots,x^{i-1},\ ,x_0^{i+1},\dots,x_0^n)(\xi^i)(x^i-x_0^i).
\end{split}
\]
\end{proof}
\end{theorem}