Zdrojový kód
%\wikiskriptum{01RMF}
\chapter{Integrální rovnice}
V celé kapitole budeme množinou $G$ rozumět omezenou oblast v $\R^n$.
Budeme obecně zkoumat dva případy funkcí, a to
\begin{enumerate}
\item funkce $L^2(G)$ s normou $\Vert f\Vert_2 = \displaystyle \int_G f \bar{f} \dd x$;
\item funkce $\C(\bar{G})$ s normou $\Vert f \Vert_{\C} = \mathrm{max}_{x\in \bar{G}} |f(x)|$.
\end{enumerate}
\section{Fredholmovy integrální rovnice}
Definujme integrální operátor
$$ \Kb \phi(x) = \displaystyle \int_{G} \K(x,y) \phi(y) \dd y, $$
přičemž $\K$ nazýváme integrální jádro a budeme předpokládat, že $\K\in C(\bar{G} \times \bar{G})$.
Označme $M = \mathrm{max}_{\bar{G}\times \bar{G}} |\K(x,y)|$, tzv. mez jádra. Dále označme $V = \displaystyle \int_{G} 1 \dd x < +\infty$
\begin{define}
Fredholmovou integrální rovnicí pro funkci $f$ rozumíme rovnici tvaru
$$ f= \lambda \Kb f + g ,$$
kde $\lambda \in \mathbb{C}$, funkce $g$ se tradičně nazývá pravá strana a $\Kb$ je integrální operátor se spojitým jádrem.
\end{define}
Tuto úlohu můžeme přepsat do ekvivalentní podoby $(\mathbf{I} - \lambda \Kb)f =g$ a hledáme řešení buď v $L^2(G)$ (pak $g \in L^2(G)$, nebo v $\C(\bar{G})$ (pak $g\in \C(\bar{G})$).
Speciálně pro nulovou pravou stranu dostáváme úlohu na vlastní čísla operátoru $\Kb$.
\subsection{Degenerované jádro}
\begin{define}
Řekneme, že integrální jádro $\K(x,y)$ je degenerované, jestliže je separovatelné, tj. je možné jej zapsat ve tvaru $\K(x,y) = \displaystyle \sum_{j=1}^{p}u_j(x)v_j(y)$,
kde $u_j(x), v_j(y) \in \C(\bar{G})$.
\end{define}
Přepišme nyní Fredholmovu integrální rovnici pro degenerované jádro:
$$f(x) = \lambda \Kb f(x) + g(x) = \lambda \displaystyle \int_{G} \displaystyle \sum_{j=1}^{p}u_j(x)v_j(y) f(y) \dd y + g(x)= $$
$$ = \lambda \displaystyle \sum_{j=1}^{p}u_j(x) \underbrace{\displaystyle \int_{G} v_j(y) f(y) \dd y}_{c_j\in \mathbb{C}} + g(x)$$
Tímto jsme získali tvar řešení
$$ f(x) = \lambda \displaystyle \sum_{j=1}^{p}u_j(x)c_j + g(x).$$
Nyní je možné dosazením do původní rovnice určit koeficienty. My tyto koeficienty určíme jinou metodou.
Uvažujme tedy řešení
$$ f(x) = \lambda \displaystyle \sum_{j=1}^{p}u_j(x)c_j + g(x).$$
Pronásobme celou rovnost výrazem $v_j(x)$ a zintegrujme ji přes $G$ podle $x$.
Máme pak
$$c_j = \displaystyle \int_G v_j(x)f(x) \dd x = \lambda \displaystyle \sum_{k=1}^{p} c_k \displaystyle \int_{G} u_k(x)v_j(x) \dd x + \displaystyle \int_{G} v_j(x)g(x) \dd x.$$
Pokud tuto úpravu provedeme pro veškerá $j$, získáme soustavu lineárních algebraických rovnic pro koeficienty $c_j$.
Označme $z_i = \displaystyle \int_{G}v_i(x)f(x) \dd x$ a dosaďme za $f(x)$ z Fredholmovy rovnice:
$$z_i = \displaystyle \int_{G} (v_i(x)(\lambda \Kb f(x) + g(x) ) \dd x =
\lambda \displaystyle \int_{G} v_i(x) \displaystyle \sum_{j=1}^{p}u_j(x) \left( \displaystyle \int_{G}v_j(y)f(y) \dd y \right) \dd x + \displaystyle \int_{G} v_i(x)g(x) \dd x = $$
$$ = \lambda \displaystyle \sum_{j=1}^{p} \underbrace{\left( \displaystyle \int_{G}v_i(x)u_j(x)\dd x \right)}_{A_{ij}} \underbrace{\left( \displaystyle \int_{G}v_j(y)f(y)\dd y \right)}_{z_j} +
\underbrace{ \displaystyle \int_{G}v_i(x)g(x)\dd x }_{b_i}$$
Tedy jsme získali rovnici
$$z = \lambda\Az + b.$$