01NUM1:Kapitola4: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
m (gramatika)
m (Specifičnost)
Řádka 32: Řádka 32:
 
\[ \det \matice A_1 = \det \matice L_1 \det \matice U_1 = \prod_{i = 1}^n \matice A_{ii}^{( i + 1 )} \neq 0 \]
 
\[ \det \matice A_1 = \det \matice L_1 \det \matice U_1 = \prod_{i = 1}^n \matice A_{ii}^{( i + 1 )} \neq 0 \]
 
Protože velikost bloků můžeme volit libovolně, je matice \( \matice A \) silně regulární.
 
Protože velikost bloků můžeme volit libovolně, je matice \( \matice A \) silně regulární.
\item[( \( \Leftarrow \) )] \todo{Důkaz 4.5}
+
\item[( \( \Leftarrow \) )] \todo{Důkaz 4.5 - zpětná implikace}
 
\end{enumerate}
 
\end{enumerate}
 
\end{proof}
 
\end{proof}

Verze z 6. 1. 2016, 18:21

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01NUM1

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01NUM1Dedicma2 3. 6. 202419:49
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůDedicma2 3. 6. 202419:48
Header editovatHlavičkový souborDedicma2 17. 1. 201616:20 header.tex
Kapitola0 editovatZnačeníDedicma2 23. 5. 201721:32 znaceni.tex
Kapitola2 editovatOpakování a doplnění znalostí z lineární algebryDedicma2 3. 6. 202415:41 prezentace2.tex
Kapitola3 editovatÚvod do numerické matematikyDedicma2 3. 6. 202415:51 prezentace3.tex
Kapitola4 editovatPřímé metody pro lineární soustavyDedicma2 3. 6. 202416:47 prezentace4.tex
Kapitola5 editovatIterativní metodyDedicma2 3. 6. 202416:59 prezentace5.tex
Kapitola6 editovatVlastní čísla a vektory maticDedicma2 3. 6. 202417:07 prezentace6.tex
Kapitola7 editovatNelineární rovniceKubuondr 31. 1. 201714:27 prezentace7.tex
Kapitola8 editovatInterpolaceKubuondr 31. 1. 201715:43 prezentace8.tex
Kapitola9 editovatDerivace a integraceKubuondr 31. 1. 201717:33 prezentace9.tex

Zdrojový kód

%\wikiskriptum{01NUM1}
\section{Přímé metody pro lineární soustavy}
 
\subsection{Gaussova eliminační metoda - numerická analýza}
 
\setcounter{define}{4}
\begin{theorem}
\label{GEMRegularni}
Základní Gaussovu eliminační metodu lze provést právě tehdy, když je matice soustavy silně regulární.
\begin{proof}
\begin{enumerate}
\item[( \( \Rightarrow \) )] Protože lze provést Gaussovu eliminační metodu, má matice \( \matice A \) nenulové pivoty, tj.
\[ \matice A_{ii}^{( i + 1 )} \neq 0, \; \forall i \in \hat n \]
a existuje rozklad \( \matice A = \matice M^{-1} \matice U \). Označíme \( \matice L = \matice M^{-1} \) a víme, že
\[ \matice L_{ii} = \matice A_{ii}^{( i + 1 )}, \; \forall i \in \hat n \]
Dále víme, že na diagonále matice \( \matice U \) jsou jedničky, tedy \( \det U = 1 \). Blokově rozepíšeme (velikosti bloků jsou stejné):
\[ \matice A = \matice{L U} =
\begin{pmatrix}
\matice A_1 & \matice A_2 \\
\matice A_3 & \matice A_4 \\
\end{pmatrix} = 
\begin{pmatrix}
\matice L_1 & \Theta \\
\matice L_2 & \matice L_3 \\
\end{pmatrix}
\begin{pmatrix}
\matice U_1 & \matice U_2 \\
\Theta & \matice U_3 \\
\end{pmatrix}
\]
a tedy 
\[ \det \matice A_1 = \det \matice L_1 \det \matice U_1 = \prod_{i = 1}^n \matice A_{ii}^{( i + 1 )} \neq 0 \]
Protože velikost bloků můžeme volit libovolně, je matice \( \matice A \) silně regulární.
\item[( \( \Leftarrow \) )] \todo{Důkaz 4.5 - zpětná implikace}
\end{enumerate}
\end{proof}
\end{theorem}
 
\subsection{Kompaktní schéma pro LU faktorizaci}
 
\setcounter{define}{8}
\begin{theorem}
\label{LUSpojity}
Nechť \( \matice A \in \mathbbm C^{n, n} \) a její LU rozklad \( \matice A = \matice{L U} \). Potom funkce \( \matice L_{ij} ( \matice A_{kl} ) \) a \( \matice U_{ij} ( \matice A_{kl} ) \) jsou spojité.
\begin{proof}
Ze vztahů
\[ \matice L_{ij} = \matice A_{ij} -\sum_{k = 1}^{j - 1} \matice L_{ik} \matice U_{kj}, \; \forall j \leq i \]
\[ \matice U_{ij} = \frac{\matice A_{ij} -\sum_{k = 1}^{i - 1} \matice L_{ik} \matice U_{kj}}{\matice L_{ii}}, \; \forall i < j \]
je vidět, že funkce jsou nejvýše kvadratické, a tedy spojité.
\end{proof}
\end{theorem}
 
\subsection{LU rozklad pro symetrické matice - Choleského dekompozice}
 
\setcounter{define}{10}
\begin{theorem}[Choleského rozklad]
\label{CholeskehoRozklad}
Nechť je matice \( \matice A \) hermitovská a regulární. Pak existuje horní trojúhelníková matice \( \matice S \) taková, že platí
\[ \matice A = \matice S^* \matice S \]
Tomuto rozkladu se říká Choleského rozklad (dekompozice).
\begin{proof}
Díky \ref{LDR} platí \( \matice A = \matice{L D R} \) a \( \matice A^* = \matice R^* \matice D^* \matice L^* \). Protože je matice \( \matice A \) hermitovská, platí díky jednoznačnosti rozkladu \ref{LDR} \( \matice L = \matice R^* \) a \( \matice D = \matice D^* \). Označíme \( \matice S = \sqrt \matice D \matice R \) a pak platí
\[ \matice S^* \matice S = \matice R^* \sqrt{\matice D^*} \sqrt \matice D \matice R = \matice{L D R} = \matice A \]
\end{proof}
\end{theorem}