01ZTGA:Kapitola1 3: Porovnání verzí
Z WikiSkripta FJFI ČVUT v Praze
(Založena nová stránka: %\wikiskriptum{01ZTGA}) |
|||
Řádka 1: | Řádka 1: | ||
%\wikiskriptum{01ZTGA} | %\wikiskriptum{01ZTGA} | ||
+ | |||
+ | \section{Bipartitní grafy} | ||
+ | |||
+ | \begin{defn} | ||
+ | Řekneme, že graf $G=(V,E)$ je \textbf{bipartitní} (angl. \emph{bipartite}), | ||
+ | existuje-li rozklad množiny $V$ na dvě disjunktní neprázdné množiny | ||
+ | $V_{1},V_{2}$ takový, že $E\cap\binom{V_{1}}{2}=\emptyset$, $E\cap\binom{V_{2}}{2}=\emptyset$, | ||
+ | tj. takový, že mezi žádnými dvěma vrcholy z $V_{1}$ ani mezi žádnými | ||
+ | dvěma vrcholy z $V_{2}$ nevede hrana. | ||
+ | \end{defn} | ||
+ | \begin{rem} | ||
+ | Jestliže je $G$ bipartitní, lze očíslovat vrcholy tak, že prvních | ||
+ | $k$ vrcholů leží ve $V_{1}$ a zbylých $n-k$ vrcholů ve $V_{2}$. | ||
+ | Adjacenční matice má potom tvar\[ | ||
+ | \vec{A}_{G}=\left(\begin{array}{cc} | ||
+ | \vec{0} & \vec{B}\\ | ||
+ | \vec{B}^{\T} & \vec{0}\end{array}\right).\] | ||
+ | Naopak: $G$ je bipartitní, existuje-li permutace vrcholů (a tedy | ||
+ | zároveň řádků i sloupců matice $\vec{A}_{G}$) taková, že $\vec{A}_{G}$ | ||
+ | má uvedený tvar. | ||
+ | \end{rem} | ||
+ | \begin{defn} | ||
+ | Bipartitní graf $G=(V_{1}\cup V_{2},E)$ se nazývá \textbf{úplný}, | ||
+ | jestliže $\left(\forall u\in V_{1}\right)\left(\forall v\in V_{2}\right)\left(\{ u,v\}\in E\right)$. | ||
+ | \end{defn} | ||
+ | \begin{thm} | ||
+ | Buď $G=(V,E)$ graf, $\# V\geq2$. Potom $G$ je bipartitní právě | ||
+ | tehdy, když neobsahuje kružnici liché délky. | ||
+ | \end{thm} | ||
+ | \begin{proof} | ||
+ | $\boxed{{\Rightarrow:}}$ | ||
+ | |||
+ | Libovolná kružnice prochází střídavě vrcholy z $V_{1}$ a $V_{2}$. | ||
+ | Zvolíme-li nějaký vrchol za počáteční a půjdeme po kružnici, nakonec | ||
+ | se do tohoto vrcholu vrátíme. Jdeme tedy několikrát z $V_{1}$ do | ||
+ | $V_{2}$ a zpět, takže kružnice nemůže mít lichou délku. | ||
+ | |||
+ | $\boxed{{\Leftarrow:}}$ | ||
+ | |||
+ | Nejprve předpokládejme, že $G$ je souvislý. Nechť tedy v $G$ neexistuje | ||
+ | kružnice liché délky. Zvolme libovolně $u\in V$ a definujme nejkrat\v{s}í cesta z u do v má sudou délku | ||
+ | \[ | ||
+ | V_{1}=\left\{ \left.v\in V\right|\textrm{ nejkrat\v{s}í cesta z }u\textrm{ do }v\textrm{ má sudou délku}\right\} ,\] | ||
+ | \[ | ||
+ | V_{2}=V\backslash V_{1}.\] | ||
+ | Protože $G$ je souvislý, tak vrcholy z $V_{2}$ mají nejkratší cestu | ||
+ | do $u$ liché délky. | ||
+ | |||
+ | Platí zřejmě $u\in V_{1},V_{1}\cap V_{2}=\emptyset$ a navíc z $u$ | ||
+ | určitě vede nějaká hrana, třeba do vrcholu $z$, což znamená, že $z\in V_{2}$ | ||
+ | (nejkratší cesta z $u$ do $z$ je po jediné hraně, tj. má délku $1$, | ||
+ | a to je liché číslo). $V_{1}$i $V_{2}$ jsou tedy neprázdné. Ukážeme | ||
+ | sporem, že ve $V_{1}$ nevede hrana: | ||
+ | |||
+ | Nechť $\left(\exists x,y\in V_{1}\right)\left(\{ x,y\}\in E\right)$. | ||
+ | Buď $P_{x}$ nejkratší cesta z $u$ do $x$, podobně $P_{y}$ nejkratší | ||
+ | cesta z $u$ do $y$. $P_{x}$ i $P_{y}$ jsou sudé délky. Označmě | ||
+ | $z$ nejbližší bod od bodů $x,y$ na cestách $P_{x}$ a $P_{y}$, | ||
+ | který je pro obě cesty stejný (v krajním případě může být tímto bodem | ||
+ | i $u$), viz obrázek \ref{cap:bipart_dukaz}. Potom úsek cesty $P_{x}$ | ||
+ | mezi $z$ a $u$ je stejně dlouhý jako tentýž úsek po cestě $P_{y}$. | ||
+ | Kdyby tomu tak nebylo, mohli bychom ten kratší z nich (nechť je to | ||
+ | třeba úsek $P_{x}$) použít pro vytvoření kratší cesty z $y$ do $u$, | ||
+ | což je spor s volbou $P_{y}$ jako nejkratší cesty.% | ||
+ | \begin{figure} | ||
+ | \begin{center} | ||
+ | %Title: bipart_dukaz.fig | ||
+ | %%Created by: ..\UTILS\FIG2DEV.EXE Version 3.2 Patchlevel 5-alpha7 | ||
+ | %%CreationDate: Thu Feb 12 22:14:16 1970 | ||
+ | %%User: Pavel Strachota@DIGITHELL (DIGITHELL) | ||
+ | \font\thinlinefont=cmr5 | ||
+ | % | ||
+ | \begingroup\makeatletter\ifx\SetFigFont\undefined% | ||
+ | \gdef\SetFigFont#1#2#3#4#5{% | ||
+ | \reset@font\fontsize{#1}{#2pt}% | ||
+ | \fontfamily{#3}\fontseries{#4}\fontshape{#5}% | ||
+ | \selectfont}% | ||
+ | \fi\endgroup% | ||
+ | \mbox{\beginpicture | ||
+ | \setcoordinatesystem units <1.00000cm,1.00000cm> | ||
+ | \unitlength=1.00000cm | ||
+ | \linethickness=1pt | ||
+ | \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) | ||
+ | \setshadesymbol ({\thinlinefont .}) | ||
+ | \setlinear | ||
+ | % | ||
+ | % Fig ELLIPSE | ||
+ | % | ||
+ | \linethickness= 0.500pt | ||
+ | \setplotsymbol ({\thinlinefont .}) | ||
+ | {\color[rgb]{0,0,0}\put{\makebox(0,0)[l]{\circle*{ 0.339}}} at 1.090 25.991 | ||
+ | }% | ||
+ | % | ||
+ | % Fig ELLIPSE | ||
+ | % | ||
+ | \linethickness= 0.500pt | ||
+ | \setplotsymbol ({\thinlinefont .}) | ||
+ | {\color[rgb]{0,0,0}\put{\makebox(0,0)[l]{\circle*{ 0.339}}} at 1.090 23.271 | ||
+ | }% | ||
+ | % | ||
+ | % Fig ELLIPSE | ||
+ | % | ||
+ | \linethickness= 0.500pt | ||
+ | \setplotsymbol ({\thinlinefont .}) | ||
+ | {\color[rgb]{0,0,0}\put{\makebox(0,0)[l]{\circle*{ 0.339}}} at 4.489 24.630 | ||
+ | }% | ||
+ | % | ||
+ | % Fig ELLIPSE | ||
+ | % | ||
+ | \linethickness= 0.500pt | ||
+ | \setplotsymbol ({\thinlinefont .}) | ||
+ | {\color[rgb]{0,0,0}\put{\makebox(0,0)[l]{\circle*{ 0.339}}} at 6.530 24.630 | ||
+ | }% | ||
+ | % | ||
+ | % Fig POLYLINE object | ||
+ | % | ||
+ | \linethickness=1pt | ||
+ | \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) | ||
+ | {\color[rgb]{0,0,0}\plot 1.090 25.991 1.092 25.984 / | ||
+ | \plot 1.092 25.984 1.099 25.974 / | ||
+ | \plot 1.099 25.974 1.107 25.950 / | ||
+ | \plot 1.107 25.950 1.124 25.916 / | ||
+ | \plot 1.124 25.916 1.145 25.868 / | ||
+ | \plot 1.145 25.868 1.175 25.802 / | ||
+ | \plot 1.175 25.802 1.211 25.724 / | ||
+ | \plot 1.211 25.724 1.251 25.633 / | ||
+ | \plot 1.251 25.633 1.300 25.527 / | ||
+ | \plot 1.300 25.527 1.353 25.411 / | ||
+ | \plot 1.353 25.411 1.410 25.288 / | ||
+ | \plot 1.410 25.288 1.469 25.159 / | ||
+ | \plot 1.469 25.159 1.530 25.025 / | ||
+ | \plot 1.530 25.025 1.594 24.894 / | ||
+ | \plot 1.594 24.894 1.657 24.763 / | ||
+ | \plot 1.657 24.763 1.719 24.634 / | ||
+ | \plot 1.719 24.634 1.778 24.511 / | ||
+ | \plot 1.778 24.511 1.835 24.397 / | ||
+ | \plot 1.835 24.397 1.890 24.287 / | ||
+ | \plot 1.890 24.287 1.943 24.185 / | ||
+ | \plot 1.943 24.185 1.992 24.092 / | ||
+ | \plot 1.992 24.092 2.038 24.007 / | ||
+ | \plot 2.038 24.007 2.083 23.931 / | ||
+ | \plot 2.083 23.931 2.123 23.863 / | ||
+ | \plot 2.123 23.863 2.161 23.802 / | ||
+ | \plot 2.161 23.802 2.197 23.751 / | ||
+ | \plot 2.197 23.751 2.231 23.705 / | ||
+ | \plot 2.231 23.705 2.263 23.669 / | ||
+ | \plot 2.263 23.669 2.292 23.637 / | ||
+ | \plot 2.292 23.637 2.320 23.614 / | ||
+ | \plot 2.320 23.614 2.345 23.597 / | ||
+ | \plot 2.345 23.597 2.371 23.586 / | ||
+ | \plot 2.371 23.586 2.394 23.582 / | ||
+ | \plot 2.394 23.582 2.424 23.584 / | ||
+ | \plot 2.424 23.584 2.451 23.592 / | ||
+ | \plot 2.451 23.592 2.477 23.611 / | ||
+ | \plot 2.477 23.611 2.502 23.639 / | ||
+ | \plot 2.502 23.639 2.525 23.673 / | ||
+ | \plot 2.525 23.673 2.548 23.713 / | ||
+ | \plot 2.548 23.713 2.572 23.762 / | ||
+ | \plot 2.572 23.762 2.595 23.817 / | ||
+ | \plot 2.595 23.817 2.616 23.876 / | ||
+ | \plot 2.616 23.876 2.637 23.942 / | ||
+ | \plot 2.637 23.942 2.656 24.009 / | ||
+ | \plot 2.656 24.009 2.678 24.081 / | ||
+ | \plot 2.678 24.081 2.697 24.155 / | ||
+ | \plot 2.697 24.155 2.718 24.229 / | ||
+ | \plot 2.718 24.229 2.737 24.306 / | ||
+ | \plot 2.737 24.306 2.756 24.380 / | ||
+ | \plot 2.756 24.380 2.775 24.452 / | ||
+ | \plot 2.775 24.452 2.794 24.522 / | ||
+ | \plot 2.794 24.522 2.813 24.589 / | ||
+ | \plot 2.813 24.589 2.832 24.653 / | ||
+ | \plot 2.832 24.653 2.851 24.710 / | ||
+ | \plot 2.851 24.710 2.872 24.763 / | ||
+ | \plot 2.872 24.763 2.893 24.809 / | ||
+ | \plot 2.893 24.809 2.915 24.852 / | ||
+ | \plot 2.915 24.852 2.936 24.886 / | ||
+ | \plot 2.936 24.886 2.959 24.913 / | ||
+ | \plot 2.959 24.913 2.989 24.936 / | ||
+ | \plot 2.989 24.936 3.020 24.951 / | ||
+ | \plot 3.020 24.951 3.054 24.955 / | ||
+ | \plot 3.054 24.955 3.090 24.953 / | ||
+ | \plot 3.090 24.953 3.128 24.941 / | ||
+ | \plot 3.128 24.941 3.167 24.924 / | ||
+ | \plot 3.167 24.924 3.209 24.898 / | ||
+ | \plot 3.209 24.898 3.253 24.867 / | ||
+ | \plot 3.253 24.867 3.298 24.829 / | ||
+ | \plot 3.298 24.829 3.344 24.786 / | ||
+ | \plot 3.344 24.786 3.393 24.742 / | ||
+ | \plot 3.393 24.742 3.440 24.693 / | ||
+ | \plot 3.440 24.693 3.488 24.642 / | ||
+ | \plot 3.488 24.642 3.535 24.591 / | ||
+ | \plot 3.535 24.591 3.581 24.541 / | ||
+ | \plot 3.581 24.541 3.626 24.492 / | ||
+ | \plot 3.626 24.492 3.670 24.443 / | ||
+ | \plot 3.670 24.443 3.713 24.399 / | ||
+ | \plot 3.713 24.399 3.753 24.359 / | ||
+ | \plot 3.753 24.359 3.793 24.323 / | ||
+ | \plot 3.793 24.323 3.829 24.289 / | ||
+ | \plot 3.829 24.289 3.867 24.261 / | ||
+ | \plot 3.867 24.261 3.901 24.240 / | ||
+ | \plot 3.901 24.240 3.935 24.223 / | ||
+ | \plot 3.935 24.223 3.967 24.213 / | ||
+ | \plot 3.967 24.213 4.000 24.208 / | ||
+ | \plot 4.000 24.208 4.032 24.210 / | ||
+ | \plot 4.032 24.210 4.066 24.217 / | ||
+ | \plot 4.066 24.217 4.100 24.232 / | ||
+ | \plot 4.100 24.232 4.136 24.251 / | ||
+ | \plot 4.136 24.251 4.172 24.276 / | ||
+ | \plot 4.172 24.276 4.210 24.308 / | ||
+ | \plot 4.210 24.308 4.248 24.342 / | ||
+ | \plot 4.248 24.342 4.286 24.382 / | ||
+ | \plot 4.286 24.382 4.324 24.424 / | ||
+ | \plot 4.324 24.424 4.362 24.467 / | ||
+ | \plot 4.362 24.467 4.396 24.507 / | ||
+ | \plot 4.396 24.507 4.426 24.545 / | ||
+ | \plot 4.426 24.545 4.449 24.575 / | ||
+ | \plot 4.449 24.575 4.468 24.600 / | ||
+ | \plot 4.468 24.600 4.479 24.617 / | ||
+ | \plot 4.479 24.617 4.487 24.625 / | ||
+ | \plot 4.487 24.625 4.489 24.630 / | ||
+ | }% | ||
+ | % | ||
+ | % Fig POLYLINE object | ||
+ | % | ||
+ | \linethickness=1pt | ||
+ | \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) | ||
+ | {\color[rgb]{0,0,0}\plot 4.489 24.630 4.494 24.634 / | ||
+ | \plot 4.494 24.634 4.502 24.646 / | ||
+ | \plot 4.502 24.646 4.517 24.666 / | ||
+ | \plot 4.517 24.666 4.542 24.695 / | ||
+ | \plot 4.542 24.695 4.572 24.733 / | ||
+ | \plot 4.572 24.733 4.612 24.780 / | ||
+ | \plot 4.612 24.780 4.655 24.831 / | ||
+ | \plot 4.655 24.831 4.703 24.884 / | ||
+ | \plot 4.703 24.884 4.752 24.936 / | ||
+ | \plot 4.752 24.936 4.801 24.987 / | ||
+ | \plot 4.801 24.987 4.849 25.032 / | ||
+ | \plot 4.849 25.032 4.896 25.072 / | ||
+ | \plot 4.896 25.072 4.942 25.106 / | ||
+ | \plot 4.942 25.106 4.985 25.133 / | ||
+ | \plot 4.985 25.133 5.027 25.154 / | ||
+ | \plot 5.027 25.154 5.065 25.169 / | ||
+ | \plot 5.065 25.169 5.103 25.176 / | ||
+ | \putrule from 5.103 25.176 to 5.141 25.176 | ||
+ | \plot 5.141 25.176 5.179 25.169 / | ||
+ | \plot 5.179 25.169 5.218 25.159 / | ||
+ | \plot 5.218 25.159 5.256 25.140 / | ||
+ | \plot 5.256 25.140 5.292 25.118 / | ||
+ | \plot 5.292 25.118 5.330 25.091 / | ||
+ | \plot 5.330 25.091 5.368 25.061 / | ||
+ | \plot 5.368 25.061 5.406 25.025 / | ||
+ | \plot 5.406 25.025 5.448 24.985 / | ||
+ | \plot 5.448 24.985 5.489 24.943 / | ||
+ | \plot 5.489 24.943 5.531 24.896 / | ||
+ | \plot 5.531 24.896 5.575 24.848 / | ||
+ | \plot 5.575 24.848 5.620 24.795 / | ||
+ | \plot 5.620 24.795 5.664 24.742 / | ||
+ | \plot 5.664 24.742 5.709 24.685 / | ||
+ | \plot 5.709 24.685 5.753 24.630 / | ||
+ | \plot 5.753 24.630 5.798 24.575 / | ||
+ | \plot 5.798 24.575 5.842 24.517 / | ||
+ | \plot 5.842 24.517 5.884 24.464 / | ||
+ | \plot 5.884 24.464 5.925 24.412 / | ||
+ | \plot 5.925 24.412 5.965 24.363 / | ||
+ | \plot 5.965 24.363 6.003 24.316 / | ||
+ | \plot 6.003 24.316 6.039 24.274 / | ||
+ | \plot 6.039 24.274 6.073 24.234 / | ||
+ | \plot 6.073 24.234 6.104 24.198 / | ||
+ | \plot 6.104 24.198 6.136 24.168 / | ||
+ | \plot 6.136 24.168 6.164 24.141 / | ||
+ | \plot 6.164 24.141 6.191 24.119 / | ||
+ | \plot 6.191 24.119 6.221 24.100 / | ||
+ | \plot 6.221 24.100 6.248 24.088 / | ||
+ | \plot 6.248 24.088 6.274 24.081 / | ||
+ | \plot 6.274 24.081 6.299 24.086 / | ||
+ | \plot 6.299 24.086 6.320 24.096 / | ||
+ | \plot 6.320 24.096 6.344 24.115 / | ||
+ | \plot 6.344 24.115 6.365 24.143 / | ||
+ | \plot 6.365 24.143 6.386 24.179 / | ||
+ | \plot 6.386 24.179 6.407 24.223 / | ||
+ | \plot 6.407 24.223 6.426 24.272 / | ||
+ | \plot 6.426 24.272 6.447 24.329 / | ||
+ | \plot 6.447 24.329 6.464 24.386 / | ||
+ | \plot 6.464 24.386 6.483 24.443 / | ||
+ | \plot 6.483 24.443 6.498 24.498 / | ||
+ | \plot 6.498 24.498 6.509 24.545 / | ||
+ | \plot 6.509 24.545 6.519 24.583 / | ||
+ | \plot 6.519 24.583 6.526 24.608 / | ||
+ | \plot 6.526 24.608 6.528 24.623 / | ||
+ | \plot 6.528 24.623 6.530 24.630 / | ||
+ | }% | ||
+ | % | ||
+ | % Fig POLYLINE object | ||
+ | % | ||
+ | \linethickness=1pt | ||
+ | \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) | ||
+ | \setdots < 0.3048cm> | ||
+ | {\color[rgb]{0,0,0}\plot 4.489 24.630 4.494 24.623 / | ||
+ | \plot 4.494 24.623 4.502 24.613 / | ||
+ | \plot 4.502 24.613 4.519 24.591 / | ||
+ | \plot 4.519 24.591 4.542 24.560 / | ||
+ | \plot 4.542 24.560 4.574 24.519 / | ||
+ | \plot 4.574 24.519 4.612 24.471 / | ||
+ | \plot 4.612 24.471 4.657 24.416 / | ||
+ | \plot 4.657 24.416 4.705 24.359 / | ||
+ | \plot 4.705 24.359 4.756 24.299 / | ||
+ | \plot 4.756 24.299 4.807 24.244 / | ||
+ | \plot 4.807 24.244 4.856 24.191 / | ||
+ | \plot 4.856 24.191 4.904 24.143 / | ||
+ | \plot 4.904 24.143 4.951 24.098 / | ||
+ | \plot 4.951 24.098 4.995 24.062 / | ||
+ | \plot 4.995 24.062 5.038 24.031 / | ||
+ | \plot 5.038 24.031 5.080 24.005 / | ||
+ | \plot 5.080 24.005 5.120 23.984 / | ||
+ | \plot 5.120 23.984 5.160 23.969 / | ||
+ | \plot 5.160 23.969 5.201 23.956 / | ||
+ | \plot 5.201 23.956 5.243 23.952 / | ||
+ | \plot 5.243 23.952 5.283 23.950 / | ||
+ | \plot 5.283 23.950 5.323 23.950 / | ||
+ | \plot 5.323 23.950 5.364 23.956 / | ||
+ | \plot 5.364 23.956 5.408 23.965 / | ||
+ | \plot 5.408 23.965 5.453 23.978 / | ||
+ | \plot 5.453 23.978 5.501 23.995 / | ||
+ | \plot 5.501 23.995 5.552 24.016 / | ||
+ | \plot 5.552 24.016 5.609 24.043 / | ||
+ | \plot 5.609 24.043 5.668 24.073 / | ||
+ | \plot 5.668 24.073 5.734 24.109 / | ||
+ | \plot 5.734 24.109 5.804 24.149 / | ||
+ | \plot 5.804 24.149 5.878 24.196 / | ||
+ | \plot 5.878 24.196 5.956 24.244 / | ||
+ | \plot 5.956 24.244 6.039 24.295 / | ||
+ | \plot 6.039 24.295 6.119 24.348 / | ||
+ | \plot 6.119 24.348 6.200 24.401 / | ||
+ | \plot 6.200 24.401 6.276 24.454 / | ||
+ | \plot 6.276 24.454 6.344 24.500 / | ||
+ | \plot 6.344 24.500 6.403 24.541 / | ||
+ | \plot 6.403 24.541 6.452 24.575 / | ||
+ | \plot 6.452 24.575 6.488 24.600 / | ||
+ | \plot 6.488 24.600 6.511 24.617 / | ||
+ | \plot 6.511 24.617 6.524 24.625 / | ||
+ | \plot 6.524 24.625 6.530 24.630 / | ||
+ | }% | ||
+ | % | ||
+ | % Fig POLYLINE object | ||
+ | % | ||
+ | \linethickness=1pt | ||
+ | \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) | ||
+ | {\color[rgb]{0,0,0}\plot 1.090 23.271 1.092 23.275 / | ||
+ | \plot 1.092 23.275 1.096 23.288 / | ||
+ | \plot 1.096 23.288 1.107 23.309 / | ||
+ | \plot 1.107 23.309 1.122 23.343 / | ||
+ | \plot 1.122 23.343 1.143 23.389 / | ||
+ | \plot 1.143 23.389 1.168 23.448 / | ||
+ | \plot 1.168 23.448 1.202 23.523 / | ||
+ | \plot 1.202 23.523 1.240 23.609 / | ||
+ | \plot 1.240 23.609 1.285 23.705 / | ||
+ | \plot 1.285 23.705 1.334 23.810 / | ||
+ | \plot 1.334 23.810 1.384 23.920 / | ||
+ | \plot 1.384 23.920 1.439 24.035 / | ||
+ | \plot 1.439 24.035 1.494 24.149 / | ||
+ | \plot 1.494 24.149 1.549 24.263 / | ||
+ | \plot 1.549 24.263 1.604 24.373 / | ||
+ | \plot 1.604 24.373 1.657 24.479 / | ||
+ | \plot 1.657 24.479 1.710 24.581 / | ||
+ | \plot 1.710 24.581 1.759 24.674 / | ||
+ | \plot 1.759 24.674 1.808 24.761 / | ||
+ | \plot 1.808 24.761 1.854 24.839 / | ||
+ | \plot 1.854 24.839 1.897 24.911 / | ||
+ | \plot 1.897 24.911 1.939 24.977 / | ||
+ | \plot 1.939 24.977 1.979 25.034 / | ||
+ | \plot 1.979 25.034 2.017 25.083 / | ||
+ | \plot 2.017 25.083 2.053 25.127 / | ||
+ | \plot 2.053 25.127 2.087 25.163 / | ||
+ | \plot 2.087 25.163 2.123 25.193 / | ||
+ | \plot 2.123 25.193 2.155 25.216 / | ||
+ | \plot 2.155 25.216 2.189 25.233 / | ||
+ | \plot 2.189 25.233 2.220 25.245 / | ||
+ | \plot 2.220 25.245 2.252 25.254 / | ||
+ | \plot 2.252 25.254 2.294 25.256 / | ||
+ | \plot 2.294 25.256 2.335 25.250 / | ||
+ | \plot 2.335 25.250 2.379 25.237 / | ||
+ | \plot 2.379 25.237 2.421 25.216 / | ||
+ | \plot 2.421 25.216 2.464 25.188 / | ||
+ | \plot 2.464 25.188 2.508 25.154 / | ||
+ | \plot 2.508 25.154 2.553 25.116 / | ||
+ | \plot 2.553 25.116 2.597 25.072 / | ||
+ | \plot 2.597 25.072 2.642 25.021 / | ||
+ | \plot 2.642 25.021 2.688 24.968 / | ||
+ | \plot 2.688 24.968 2.733 24.911 / | ||
+ | \plot 2.733 24.911 2.777 24.854 / | ||
+ | \plot 2.777 24.854 2.822 24.793 / | ||
+ | \plot 2.822 24.793 2.866 24.733 / | ||
+ | \plot 2.866 24.733 2.908 24.674 / | ||
+ | \plot 2.908 24.674 2.951 24.615 / | ||
+ | \plot 2.951 24.615 2.993 24.560 / | ||
+ | \plot 2.993 24.560 3.031 24.507 / | ||
+ | \plot 3.031 24.507 3.069 24.458 / | ||
+ | \plot 3.069 24.458 3.107 24.414 / | ||
+ | \plot 3.107 24.414 3.143 24.376 / | ||
+ | \plot 3.143 24.376 3.177 24.340 / | ||
+ | \plot 3.177 24.340 3.211 24.312 / | ||
+ | \plot 3.211 24.312 3.243 24.289 / | ||
+ | \plot 3.243 24.289 3.279 24.272 / | ||
+ | \plot 3.279 24.272 3.313 24.261 / | ||
+ | \plot 3.313 24.261 3.349 24.257 / | ||
+ | \plot 3.349 24.257 3.382 24.259 / | ||
+ | \plot 3.382 24.259 3.418 24.268 / | ||
+ | \plot 3.418 24.268 3.452 24.282 / | ||
+ | \plot 3.452 24.282 3.488 24.301 / | ||
+ | \plot 3.488 24.301 3.522 24.327 / | ||
+ | \plot 3.522 24.327 3.558 24.354 / | ||
+ | \plot 3.558 24.354 3.594 24.386 / | ||
+ | \plot 3.594 24.386 3.628 24.422 / | ||
+ | \plot 3.628 24.422 3.662 24.458 / | ||
+ | \plot 3.662 24.458 3.696 24.498 / | ||
+ | \plot 3.696 24.498 3.727 24.536 / | ||
+ | \plot 3.727 24.536 3.759 24.577 / | ||
+ | \plot 3.759 24.577 3.789 24.615 / | ||
+ | \plot 3.789 24.615 3.818 24.653 / | ||
+ | \plot 3.818 24.653 3.846 24.687 / | ||
+ | \plot 3.846 24.687 3.873 24.721 / | ||
+ | \plot 3.873 24.721 3.901 24.750 / | ||
+ | \plot 3.901 24.750 3.926 24.776 / | ||
+ | \plot 3.926 24.776 3.952 24.799 / | ||
+ | \plot 3.952 24.799 3.981 24.822 / | ||
+ | \plot 3.981 24.822 4.011 24.839 / | ||
+ | \plot 4.011 24.839 4.041 24.850 / | ||
+ | \plot 4.041 24.850 4.072 24.856 / | ||
+ | \plot 4.072 24.856 4.106 24.854 / | ||
+ | \plot 4.106 24.854 4.142 24.848 / | ||
+ | \plot 4.142 24.848 4.178 24.835 / | ||
+ | \plot 4.178 24.835 4.221 24.816 / | ||
+ | \plot 4.221 24.816 4.263 24.793 / | ||
+ | \plot 4.263 24.793 4.305 24.767 / | ||
+ | \plot 4.305 24.767 4.350 24.737 / | ||
+ | \plot 4.350 24.737 4.390 24.708 / | ||
+ | \plot 4.390 24.708 4.426 24.680 / | ||
+ | \plot 4.426 24.680 4.453 24.659 / | ||
+ | \plot 4.453 24.659 4.473 24.644 / | ||
+ | \plot 4.473 24.644 4.485 24.634 / | ||
+ | \plot 4.485 24.634 4.489 24.630 / | ||
+ | }% | ||
+ | % | ||
+ | % Fig TEXT object | ||
+ | % | ||
+ | \put{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}x}% | ||
+ | } [lB] at 0.239 25.819 | ||
+ | % | ||
+ | % Fig TEXT object | ||
+ | % | ||
+ | \put{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}y}% | ||
+ | } [lB] at 0.239 23.099 | ||
+ | % | ||
+ | % Fig TEXT object | ||
+ | % | ||
+ | \put{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}z}% | ||
+ | } [lB] at 4.489 25.309 | ||
+ | % | ||
+ | % Fig TEXT object | ||
+ | % | ||
+ | \put{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}u}% | ||
+ | } [lB] at 7.211 24.460 | ||
+ | \linethickness=0pt | ||
+ | \putrectangle corners at 0.207 26.416 and 7.243 22.900 | ||
+ | \endpicture} | ||
+ | |||
+ | \end{center} | ||
+ | |||
+ | |||
+ | \caption{\label{cap:bipart_dukaz}Cesty $P_{x}$ a $P_{y}$} | ||
+ | \end{figure} | ||
+ | |||
+ | |||
+ | Z toho ale plyne, že sled složený z úseků | ||
+ | \begin{enumerate} | ||
+ | \item $x$ do $z$ po $P_{x}$, | ||
+ | \item $z$ do $y$ po $P_{y}$, | ||
+ | \item $y$ do $x$ po hraně $\{ x,y\}$ | ||
+ | \end{enumerate} | ||
+ | je kružnice liché délky, což je spor. Je to proto, že cesta $x\to z\to u\to z\to y$ | ||
+ | je sudé délky, její úsek $z\to u\to z$, po kterém nejdeme, je však | ||
+ | také sudé délky, a tak i cesta $x\to z\to y$ musí být sudé délky. | ||
+ | Hrana $\{ x,y\}$ ji pak uzavírá na kružnici liché délky. | ||
+ | |||
+ | Zcela stejně ukážeme, že ani mezi vrcholy z $V_{2}$ nevede hrana. | ||
+ | |||
+ | Jestliže $G$ není souvislý, provedeme důkaz pro jeho komponenty $G^{(1)},...,G^{(m)}$ | ||
+ | a získáme tak množiny $V_{1}^{(1)},...,V_{1}^{(m)}$ a $V_{2}^{(1)},...,V_{2}^{(m)}$. | ||
+ | Potom definujeme\begin{eqnarray*} | ||
+ | V_{1} & = & \bigcup_{j=1}^{m}V_{1}^{(j)}\\ | ||
+ | V_{2} & = & \bigcup_{j=1}^{m}V_{2}^{(j)}.\end{eqnarray*} | ||
+ | |||
+ | \end{proof} | ||
+ | \begin{rem*} | ||
+ | Nechť $G=(V,E)$ je souvislý. Potom zobrazení $d:V\times V\mapsto\N_{0}$ | ||
+ | definované jako $d(u,v)=$délka nejkatšího sledu z $u$ do $v$ je | ||
+ | metrika na množině vrcholů $v$. Číslo $d(u,v)$ nazýváme \textbf{vzdáleností} | ||
+ | vrcholů $u,v$ v grafu $G$. | ||
+ | \end{rem*} |
Aktuální verze z 15. 1. 2012, 12:50
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu 01ZTGA
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu 01ZTGA | Karel.brinda | 15. 1. 2012 | 23:45 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Admin | 7. 9. 2015 | 13:51 | ||
Header | editovat | Hlavičkový soubor | Karel.brinda | 15. 1. 2012 | 12:34 | header.tex | |
Kapitola0 | editovat | Úvod | Karel.brinda | 15. 1. 2012 | 12:36 | cast0.tex | |
Kapitola1_1 | editovat | Základní pojmy | Karel.brinda | 15. 1. 2012 | 12:46 | cast1_kapitola1.tex | |
Kapitola1_2 | editovat | Souvislost | Karel.brinda | 15. 1. 2012 | 12:49 | cast1_kapitola2.tex | |
Kapitola1_3 | editovat | Bipartitní grafy | Karel.brinda | 15. 1. 2012 | 12:50 | cast1_kapitola3.tex | |
Kapitola1_4 | editovat | Stromy | Kubuondr | 5. 1. 2019 | 09:06 | cast1_kapitola4.tex | |
Kapitola1_5 | editovat | Hledání minimální kostry grafu | Karel.brinda | 15. 1. 2012 | 12:51 | cast1_kapitola5.tex | |
Kapitola1_6 | editovat | Jednotažky | Karel.brinda | 15. 1. 2012 | 12:53 | cast1_kapitola6.tex | |
Kapitola1_7 | editovat | Hamiltonovské kružnice a grafy | Karel.brinda | 15. 1. 2012 | 13:34 | cast1_kapitola7.tex | |
Kapitola1_8 | editovat | Párování v grafech | Karel.brinda | 15. 1. 2012 | 13:40 | cast1_kapitola8.tex | |
Kapitola1_9 | editovat | Toky v sítích | Karel.brinda | 15. 1. 2012 | 13:44 | cast1_kapitola9.tex | |
Kapitola1_10 | editovat | Hranové obarvení grafu | Karel.brinda | 15. 1. 2012 | 13:48 | cast1_kapitola10.tex | |
Kapitola1_11 | editovat | Vrcholové obarvení grafu | Karel.brinda | 15. 1. 2012 | 13:52 | cast1_kapitola11.tex | |
Kapitola1_12 | editovat | Planární grafy | Karel.brinda | 15. 1. 2012 | 13:56 | cast1_kapitola12.tex | |
Kapitola1_13 | editovat | Vlastní čísla adjacenční matice grafu | Karel.brinda | 15. 1. 2012 | 13:57 | cast1_kapitola13.tex | |
Kapitola2_1 | editovat | Brouwerova věta o pevném bodě | Karel.brinda | 15. 1. 2012 | 14:11 | cast2_kapitola1.tex | |
Kapitola2_2 | editovat | Pravděpodobnostní důkazy v teorii grafů | Karel.brinda | 15. 1. 2012 | 14:12 | cast2_kapitola2.tex | |
Kapitola2_3 | editovat | Extremální teorie grafů | Karel.brinda | 15. 1. 2012 | 14:16 | cast2_kapitola3.tex | |
Kapitola2_4 | editovat | Ramseyovská čísla | Karel.brinda | 15. 1. 2012 | 14:18 | cast2_kapitola4.tex | |
Kapitola3_1 | editovat | Obyčejné mocninné řady | Karel.brinda | 15. 1. 2012 | 14:22 | cast3_kapitola1.tex | |
Kapitola3_2 | editovat | Exponenciální generující funkce | Karel.brinda | 15. 1. 2012 | 14:22 | cast3_kapitola2.tex |
Zdrojový kód
%\wikiskriptum{01ZTGA} \section{Bipartitní grafy} \begin{defn} Řekneme, že graf $G=(V,E)$ je \textbf{bipartitní} (angl. \emph{bipartite}), existuje-li rozklad množiny $V$ na dvě disjunktní neprázdné množiny $V_{1},V_{2}$ takový, že $E\cap\binom{V_{1}}{2}=\emptyset$, $E\cap\binom{V_{2}}{2}=\emptyset$, tj. takový, že mezi žádnými dvěma vrcholy z $V_{1}$ ani mezi žádnými dvěma vrcholy z $V_{2}$ nevede hrana. \end{defn} \begin{rem} Jestliže je $G$ bipartitní, lze očíslovat vrcholy tak, že prvních $k$ vrcholů leží ve $V_{1}$ a zbylých $n-k$ vrcholů ve $V_{2}$. Adjacenční matice má potom tvar\[ \vec{A}_{G}=\left(\begin{array}{cc} \vec{0} & \vec{B}\\ \vec{B}^{\T} & \vec{0}\end{array}\right).\] Naopak: $G$ je bipartitní, existuje-li permutace vrcholů (a tedy zároveň řádků i sloupců matice $\vec{A}_{G}$) taková, že $\vec{A}_{G}$ má uvedený tvar. \end{rem} \begin{defn} Bipartitní graf $G=(V_{1}\cup V_{2},E)$ se nazývá \textbf{úplný}, jestliže $\left(\forall u\in V_{1}\right)\left(\forall v\in V_{2}\right)\left(\{ u,v\}\in E\right)$. \end{defn} \begin{thm} Buď $G=(V,E)$ graf, $\# V\geq2$. Potom $G$ je bipartitní právě tehdy, když neobsahuje kružnici liché délky. \end{thm} \begin{proof} $\boxed{{\Rightarrow:}}$ Libovolná kružnice prochází střídavě vrcholy z $V_{1}$ a $V_{2}$. Zvolíme-li nějaký vrchol za počáteční a půjdeme po kružnici, nakonec se do tohoto vrcholu vrátíme. Jdeme tedy několikrát z $V_{1}$ do $V_{2}$ a zpět, takže kružnice nemůže mít lichou délku. $\boxed{{\Leftarrow:}}$ Nejprve předpokládejme, že $G$ je souvislý. Nechť tedy v $G$ neexistuje kružnice liché délky. Zvolme libovolně $u\in V$ a definujme nejkrat\v{s}í cesta z u do v má sudou délku \[ V_{1}=\left\{ \left.v\in V\right|\textrm{ nejkrat\v{s}í cesta z }u\textrm{ do }v\textrm{ má sudou délku}\right\} ,\] \[ V_{2}=V\backslash V_{1}.\] Protože $G$ je souvislý, tak vrcholy z $V_{2}$ mají nejkratší cestu do $u$ liché délky. Platí zřejmě $u\in V_{1},V_{1}\cap V_{2}=\emptyset$ a navíc z $u$ určitě vede nějaká hrana, třeba do vrcholu $z$, což znamená, že $z\in V_{2}$ (nejkratší cesta z $u$ do $z$ je po jediné hraně, tj. má délku $1$, a to je liché číslo). $V_{1}$i $V_{2}$ jsou tedy neprázdné. Ukážeme sporem, že ve $V_{1}$ nevede hrana: Nechť $\left(\exists x,y\in V_{1}\right)\left(\{ x,y\}\in E\right)$. Buď $P_{x}$ nejkratší cesta z $u$ do $x$, podobně $P_{y}$ nejkratší cesta z $u$ do $y$. $P_{x}$ i $P_{y}$ jsou sudé délky. Označmě $z$ nejbližší bod od bodů $x,y$ na cestách $P_{x}$ a $P_{y}$, který je pro obě cesty stejný (v krajním případě může být tímto bodem i $u$), viz obrázek \ref{cap:bipart_dukaz}. Potom úsek cesty $P_{x}$ mezi $z$ a $u$ je stejně dlouhý jako tentýž úsek po cestě $P_{y}$. Kdyby tomu tak nebylo, mohli bychom ten kratší z nich (nechť je to třeba úsek $P_{x}$) použít pro vytvoření kratší cesty z $y$ do $u$, což je spor s volbou $P_{y}$ jako nejkratší cesty.% \begin{figure} \begin{center} %Title: bipart_dukaz.fig %%Created by: ..\UTILS\FIG2DEV.EXE Version 3.2 Patchlevel 5-alpha7 %%CreationDate: Thu Feb 12 22:14:16 1970 %%User: Pavel Strachota@DIGITHELL (DIGITHELL) \font\thinlinefont=cmr5 % \begingroup\makeatletter\ifx\SetFigFont\undefined% \gdef\SetFigFont#1#2#3#4#5{% \reset@font\fontsize{#1}{#2pt}% \fontfamily{#3}\fontseries{#4}\fontshape{#5}% \selectfont}% \fi\endgroup% \mbox{\beginpicture \setcoordinatesystem units <1.00000cm,1.00000cm> \unitlength=1.00000cm \linethickness=1pt \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) \setshadesymbol ({\thinlinefont .}) \setlinear % % Fig ELLIPSE % \linethickness= 0.500pt \setplotsymbol ({\thinlinefont .}) {\color[rgb]{0,0,0}\put{\makebox(0,0)[l]{\circle*{ 0.339}}} at 1.090 25.991 }% % % Fig ELLIPSE % \linethickness= 0.500pt \setplotsymbol ({\thinlinefont .}) {\color[rgb]{0,0,0}\put{\makebox(0,0)[l]{\circle*{ 0.339}}} at 1.090 23.271 }% % % Fig ELLIPSE % \linethickness= 0.500pt \setplotsymbol ({\thinlinefont .}) {\color[rgb]{0,0,0}\put{\makebox(0,0)[l]{\circle*{ 0.339}}} at 4.489 24.630 }% % % Fig ELLIPSE % \linethickness= 0.500pt \setplotsymbol ({\thinlinefont .}) {\color[rgb]{0,0,0}\put{\makebox(0,0)[l]{\circle*{ 0.339}}} at 6.530 24.630 }% % % Fig POLYLINE object % \linethickness=1pt \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) {\color[rgb]{0,0,0}\plot 1.090 25.991 1.092 25.984 / \plot 1.092 25.984 1.099 25.974 / \plot 1.099 25.974 1.107 25.950 / \plot 1.107 25.950 1.124 25.916 / \plot 1.124 25.916 1.145 25.868 / \plot 1.145 25.868 1.175 25.802 / \plot 1.175 25.802 1.211 25.724 / \plot 1.211 25.724 1.251 25.633 / \plot 1.251 25.633 1.300 25.527 / \plot 1.300 25.527 1.353 25.411 / \plot 1.353 25.411 1.410 25.288 / \plot 1.410 25.288 1.469 25.159 / \plot 1.469 25.159 1.530 25.025 / \plot 1.530 25.025 1.594 24.894 / \plot 1.594 24.894 1.657 24.763 / \plot 1.657 24.763 1.719 24.634 / \plot 1.719 24.634 1.778 24.511 / \plot 1.778 24.511 1.835 24.397 / \plot 1.835 24.397 1.890 24.287 / \plot 1.890 24.287 1.943 24.185 / \plot 1.943 24.185 1.992 24.092 / \plot 1.992 24.092 2.038 24.007 / \plot 2.038 24.007 2.083 23.931 / \plot 2.083 23.931 2.123 23.863 / \plot 2.123 23.863 2.161 23.802 / \plot 2.161 23.802 2.197 23.751 / \plot 2.197 23.751 2.231 23.705 / \plot 2.231 23.705 2.263 23.669 / \plot 2.263 23.669 2.292 23.637 / \plot 2.292 23.637 2.320 23.614 / \plot 2.320 23.614 2.345 23.597 / \plot 2.345 23.597 2.371 23.586 / \plot 2.371 23.586 2.394 23.582 / \plot 2.394 23.582 2.424 23.584 / \plot 2.424 23.584 2.451 23.592 / \plot 2.451 23.592 2.477 23.611 / \plot 2.477 23.611 2.502 23.639 / \plot 2.502 23.639 2.525 23.673 / \plot 2.525 23.673 2.548 23.713 / \plot 2.548 23.713 2.572 23.762 / \plot 2.572 23.762 2.595 23.817 / \plot 2.595 23.817 2.616 23.876 / \plot 2.616 23.876 2.637 23.942 / \plot 2.637 23.942 2.656 24.009 / \plot 2.656 24.009 2.678 24.081 / \plot 2.678 24.081 2.697 24.155 / \plot 2.697 24.155 2.718 24.229 / \plot 2.718 24.229 2.737 24.306 / \plot 2.737 24.306 2.756 24.380 / \plot 2.756 24.380 2.775 24.452 / \plot 2.775 24.452 2.794 24.522 / \plot 2.794 24.522 2.813 24.589 / \plot 2.813 24.589 2.832 24.653 / \plot 2.832 24.653 2.851 24.710 / \plot 2.851 24.710 2.872 24.763 / \plot 2.872 24.763 2.893 24.809 / \plot 2.893 24.809 2.915 24.852 / \plot 2.915 24.852 2.936 24.886 / \plot 2.936 24.886 2.959 24.913 / \plot 2.959 24.913 2.989 24.936 / \plot 2.989 24.936 3.020 24.951 / \plot 3.020 24.951 3.054 24.955 / \plot 3.054 24.955 3.090 24.953 / \plot 3.090 24.953 3.128 24.941 / \plot 3.128 24.941 3.167 24.924 / \plot 3.167 24.924 3.209 24.898 / \plot 3.209 24.898 3.253 24.867 / \plot 3.253 24.867 3.298 24.829 / \plot 3.298 24.829 3.344 24.786 / \plot 3.344 24.786 3.393 24.742 / \plot 3.393 24.742 3.440 24.693 / \plot 3.440 24.693 3.488 24.642 / \plot 3.488 24.642 3.535 24.591 / \plot 3.535 24.591 3.581 24.541 / \plot 3.581 24.541 3.626 24.492 / \plot 3.626 24.492 3.670 24.443 / \plot 3.670 24.443 3.713 24.399 / \plot 3.713 24.399 3.753 24.359 / \plot 3.753 24.359 3.793 24.323 / \plot 3.793 24.323 3.829 24.289 / \plot 3.829 24.289 3.867 24.261 / \plot 3.867 24.261 3.901 24.240 / \plot 3.901 24.240 3.935 24.223 / \plot 3.935 24.223 3.967 24.213 / \plot 3.967 24.213 4.000 24.208 / \plot 4.000 24.208 4.032 24.210 / \plot 4.032 24.210 4.066 24.217 / \plot 4.066 24.217 4.100 24.232 / \plot 4.100 24.232 4.136 24.251 / \plot 4.136 24.251 4.172 24.276 / \plot 4.172 24.276 4.210 24.308 / \plot 4.210 24.308 4.248 24.342 / \plot 4.248 24.342 4.286 24.382 / \plot 4.286 24.382 4.324 24.424 / \plot 4.324 24.424 4.362 24.467 / \plot 4.362 24.467 4.396 24.507 / \plot 4.396 24.507 4.426 24.545 / \plot 4.426 24.545 4.449 24.575 / \plot 4.449 24.575 4.468 24.600 / \plot 4.468 24.600 4.479 24.617 / \plot 4.479 24.617 4.487 24.625 / \plot 4.487 24.625 4.489 24.630 / }% % % Fig POLYLINE object % \linethickness=1pt \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) {\color[rgb]{0,0,0}\plot 4.489 24.630 4.494 24.634 / \plot 4.494 24.634 4.502 24.646 / \plot 4.502 24.646 4.517 24.666 / \plot 4.517 24.666 4.542 24.695 / \plot 4.542 24.695 4.572 24.733 / \plot 4.572 24.733 4.612 24.780 / \plot 4.612 24.780 4.655 24.831 / \plot 4.655 24.831 4.703 24.884 / \plot 4.703 24.884 4.752 24.936 / \plot 4.752 24.936 4.801 24.987 / \plot 4.801 24.987 4.849 25.032 / \plot 4.849 25.032 4.896 25.072 / \plot 4.896 25.072 4.942 25.106 / \plot 4.942 25.106 4.985 25.133 / \plot 4.985 25.133 5.027 25.154 / \plot 5.027 25.154 5.065 25.169 / \plot 5.065 25.169 5.103 25.176 / \putrule from 5.103 25.176 to 5.141 25.176 \plot 5.141 25.176 5.179 25.169 / \plot 5.179 25.169 5.218 25.159 / \plot 5.218 25.159 5.256 25.140 / \plot 5.256 25.140 5.292 25.118 / \plot 5.292 25.118 5.330 25.091 / \plot 5.330 25.091 5.368 25.061 / \plot 5.368 25.061 5.406 25.025 / \plot 5.406 25.025 5.448 24.985 / \plot 5.448 24.985 5.489 24.943 / \plot 5.489 24.943 5.531 24.896 / \plot 5.531 24.896 5.575 24.848 / \plot 5.575 24.848 5.620 24.795 / \plot 5.620 24.795 5.664 24.742 / \plot 5.664 24.742 5.709 24.685 / \plot 5.709 24.685 5.753 24.630 / \plot 5.753 24.630 5.798 24.575 / \plot 5.798 24.575 5.842 24.517 / \plot 5.842 24.517 5.884 24.464 / \plot 5.884 24.464 5.925 24.412 / \plot 5.925 24.412 5.965 24.363 / \plot 5.965 24.363 6.003 24.316 / \plot 6.003 24.316 6.039 24.274 / \plot 6.039 24.274 6.073 24.234 / \plot 6.073 24.234 6.104 24.198 / \plot 6.104 24.198 6.136 24.168 / \plot 6.136 24.168 6.164 24.141 / \plot 6.164 24.141 6.191 24.119 / \plot 6.191 24.119 6.221 24.100 / \plot 6.221 24.100 6.248 24.088 / \plot 6.248 24.088 6.274 24.081 / \plot 6.274 24.081 6.299 24.086 / \plot 6.299 24.086 6.320 24.096 / \plot 6.320 24.096 6.344 24.115 / \plot 6.344 24.115 6.365 24.143 / \plot 6.365 24.143 6.386 24.179 / \plot 6.386 24.179 6.407 24.223 / \plot 6.407 24.223 6.426 24.272 / \plot 6.426 24.272 6.447 24.329 / \plot 6.447 24.329 6.464 24.386 / \plot 6.464 24.386 6.483 24.443 / \plot 6.483 24.443 6.498 24.498 / \plot 6.498 24.498 6.509 24.545 / \plot 6.509 24.545 6.519 24.583 / \plot 6.519 24.583 6.526 24.608 / \plot 6.526 24.608 6.528 24.623 / \plot 6.528 24.623 6.530 24.630 / }% % % Fig POLYLINE object % \linethickness=1pt \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) \setdots < 0.3048cm> {\color[rgb]{0,0,0}\plot 4.489 24.630 4.494 24.623 / \plot 4.494 24.623 4.502 24.613 / \plot 4.502 24.613 4.519 24.591 / \plot 4.519 24.591 4.542 24.560 / \plot 4.542 24.560 4.574 24.519 / \plot 4.574 24.519 4.612 24.471 / \plot 4.612 24.471 4.657 24.416 / \plot 4.657 24.416 4.705 24.359 / \plot 4.705 24.359 4.756 24.299 / \plot 4.756 24.299 4.807 24.244 / \plot 4.807 24.244 4.856 24.191 / \plot 4.856 24.191 4.904 24.143 / \plot 4.904 24.143 4.951 24.098 / \plot 4.951 24.098 4.995 24.062 / \plot 4.995 24.062 5.038 24.031 / \plot 5.038 24.031 5.080 24.005 / \plot 5.080 24.005 5.120 23.984 / \plot 5.120 23.984 5.160 23.969 / \plot 5.160 23.969 5.201 23.956 / \plot 5.201 23.956 5.243 23.952 / \plot 5.243 23.952 5.283 23.950 / \plot 5.283 23.950 5.323 23.950 / \plot 5.323 23.950 5.364 23.956 / \plot 5.364 23.956 5.408 23.965 / \plot 5.408 23.965 5.453 23.978 / \plot 5.453 23.978 5.501 23.995 / \plot 5.501 23.995 5.552 24.016 / \plot 5.552 24.016 5.609 24.043 / \plot 5.609 24.043 5.668 24.073 / \plot 5.668 24.073 5.734 24.109 / \plot 5.734 24.109 5.804 24.149 / \plot 5.804 24.149 5.878 24.196 / \plot 5.878 24.196 5.956 24.244 / \plot 5.956 24.244 6.039 24.295 / \plot 6.039 24.295 6.119 24.348 / \plot 6.119 24.348 6.200 24.401 / \plot 6.200 24.401 6.276 24.454 / \plot 6.276 24.454 6.344 24.500 / \plot 6.344 24.500 6.403 24.541 / \plot 6.403 24.541 6.452 24.575 / \plot 6.452 24.575 6.488 24.600 / \plot 6.488 24.600 6.511 24.617 / \plot 6.511 24.617 6.524 24.625 / \plot 6.524 24.625 6.530 24.630 / }% % % Fig POLYLINE object % \linethickness=1pt \setplotsymbol ({\makebox(0,0)[l]{\tencirc\symbol{'160}}}) {\color[rgb]{0,0,0}\plot 1.090 23.271 1.092 23.275 / \plot 1.092 23.275 1.096 23.288 / \plot 1.096 23.288 1.107 23.309 / \plot 1.107 23.309 1.122 23.343 / \plot 1.122 23.343 1.143 23.389 / \plot 1.143 23.389 1.168 23.448 / \plot 1.168 23.448 1.202 23.523 / \plot 1.202 23.523 1.240 23.609 / \plot 1.240 23.609 1.285 23.705 / \plot 1.285 23.705 1.334 23.810 / \plot 1.334 23.810 1.384 23.920 / \plot 1.384 23.920 1.439 24.035 / \plot 1.439 24.035 1.494 24.149 / \plot 1.494 24.149 1.549 24.263 / \plot 1.549 24.263 1.604 24.373 / \plot 1.604 24.373 1.657 24.479 / \plot 1.657 24.479 1.710 24.581 / \plot 1.710 24.581 1.759 24.674 / \plot 1.759 24.674 1.808 24.761 / \plot 1.808 24.761 1.854 24.839 / \plot 1.854 24.839 1.897 24.911 / \plot 1.897 24.911 1.939 24.977 / \plot 1.939 24.977 1.979 25.034 / \plot 1.979 25.034 2.017 25.083 / \plot 2.017 25.083 2.053 25.127 / \plot 2.053 25.127 2.087 25.163 / \plot 2.087 25.163 2.123 25.193 / \plot 2.123 25.193 2.155 25.216 / \plot 2.155 25.216 2.189 25.233 / \plot 2.189 25.233 2.220 25.245 / \plot 2.220 25.245 2.252 25.254 / \plot 2.252 25.254 2.294 25.256 / \plot 2.294 25.256 2.335 25.250 / \plot 2.335 25.250 2.379 25.237 / \plot 2.379 25.237 2.421 25.216 / \plot 2.421 25.216 2.464 25.188 / \plot 2.464 25.188 2.508 25.154 / \plot 2.508 25.154 2.553 25.116 / \plot 2.553 25.116 2.597 25.072 / \plot 2.597 25.072 2.642 25.021 / \plot 2.642 25.021 2.688 24.968 / \plot 2.688 24.968 2.733 24.911 / \plot 2.733 24.911 2.777 24.854 / \plot 2.777 24.854 2.822 24.793 / \plot 2.822 24.793 2.866 24.733 / \plot 2.866 24.733 2.908 24.674 / \plot 2.908 24.674 2.951 24.615 / \plot 2.951 24.615 2.993 24.560 / \plot 2.993 24.560 3.031 24.507 / \plot 3.031 24.507 3.069 24.458 / \plot 3.069 24.458 3.107 24.414 / \plot 3.107 24.414 3.143 24.376 / \plot 3.143 24.376 3.177 24.340 / \plot 3.177 24.340 3.211 24.312 / \plot 3.211 24.312 3.243 24.289 / \plot 3.243 24.289 3.279 24.272 / \plot 3.279 24.272 3.313 24.261 / \plot 3.313 24.261 3.349 24.257 / \plot 3.349 24.257 3.382 24.259 / \plot 3.382 24.259 3.418 24.268 / \plot 3.418 24.268 3.452 24.282 / \plot 3.452 24.282 3.488 24.301 / \plot 3.488 24.301 3.522 24.327 / \plot 3.522 24.327 3.558 24.354 / \plot 3.558 24.354 3.594 24.386 / \plot 3.594 24.386 3.628 24.422 / \plot 3.628 24.422 3.662 24.458 / \plot 3.662 24.458 3.696 24.498 / \plot 3.696 24.498 3.727 24.536 / \plot 3.727 24.536 3.759 24.577 / \plot 3.759 24.577 3.789 24.615 / \plot 3.789 24.615 3.818 24.653 / \plot 3.818 24.653 3.846 24.687 / \plot 3.846 24.687 3.873 24.721 / \plot 3.873 24.721 3.901 24.750 / \plot 3.901 24.750 3.926 24.776 / \plot 3.926 24.776 3.952 24.799 / \plot 3.952 24.799 3.981 24.822 / \plot 3.981 24.822 4.011 24.839 / \plot 4.011 24.839 4.041 24.850 / \plot 4.041 24.850 4.072 24.856 / \plot 4.072 24.856 4.106 24.854 / \plot 4.106 24.854 4.142 24.848 / \plot 4.142 24.848 4.178 24.835 / \plot 4.178 24.835 4.221 24.816 / \plot 4.221 24.816 4.263 24.793 / \plot 4.263 24.793 4.305 24.767 / \plot 4.305 24.767 4.350 24.737 / \plot 4.350 24.737 4.390 24.708 / \plot 4.390 24.708 4.426 24.680 / \plot 4.426 24.680 4.453 24.659 / \plot 4.453 24.659 4.473 24.644 / \plot 4.473 24.644 4.485 24.634 / \plot 4.485 24.634 4.489 24.630 / }% % % Fig TEXT object % \put{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}x}% } [lB] at 0.239 25.819 % % Fig TEXT object % \put{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}y}% } [lB] at 0.239 23.099 % % Fig TEXT object % \put{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}z}% } [lB] at 4.489 25.309 % % Fig TEXT object % \put{\SetFigFont{12}{14.4}{\rmdefault}{\mddefault}{\updefault}{\color[rgb]{0,0,0}u}% } [lB] at 7.211 24.460 \linethickness=0pt \putrectangle corners at 0.207 26.416 and 7.243 22.900 \endpicture} \end{center} \caption{\label{cap:bipart_dukaz}Cesty $P_{x}$ a $P_{y}$} \end{figure} Z toho ale plyne, že sled složený z úseků \begin{enumerate} \item $x$ do $z$ po $P_{x}$, \item $z$ do $y$ po $P_{y}$, \item $y$ do $x$ po hraně $\{ x,y\}$ \end{enumerate} je kružnice liché délky, což je spor. Je to proto, že cesta $x\to z\to u\to z\to y$ je sudé délky, její úsek $z\to u\to z$, po kterém nejdeme, je však také sudé délky, a tak i cesta $x\to z\to y$ musí být sudé délky. Hrana $\{ x,y\}$ ji pak uzavírá na kružnici liché délky. Zcela stejně ukážeme, že ani mezi vrcholy z $V_{2}$ nevede hrana. Jestliže $G$ není souvislý, provedeme důkaz pro jeho komponenty $G^{(1)},...,G^{(m)}$ a získáme tak množiny $V_{1}^{(1)},...,V_{1}^{(m)}$ a $V_{2}^{(1)},...,V_{2}^{(m)}$. Potom definujeme\begin{eqnarray*} V_{1} & = & \bigcup_{j=1}^{m}V_{1}^{(j)}\\ V_{2} & = & \bigcup_{j=1}^{m}V_{2}^{(j)}.\end{eqnarray*} \end{proof} \begin{rem*} Nechť $G=(V,E)$ je souvislý. Potom zobrazení $d:V\times V\mapsto\N_{0}$ definované jako $d(u,v)=$délka nejkatšího sledu z $u$ do $v$ je metrika na množině vrcholů $v$. Číslo $d(u,v)$ nazýváme \textbf{vzdáleností} vrcholů $u,v$ v grafu $G$. \end{rem*}