02TSFA:Kapitola7: Porovnání verzí
Z WikiSkripta FJFI ČVUT v Praze
(Založena nová stránka: %\wikiskriptum{02TSFA} \section{Kanonický soubor} \index{soubor, kanonický} \label{kansoub} V reálném případě nelze pozorovat absolutně uzavřený systém. Obvy...) |
(přidání definice) |
||
Řádka 14: | Řádka 14: | ||
popisující systém. Potom | popisující systém. Potom | ||
− | $$ \ | + | $$ U \equiv \<H\>= \suma{\gamma}{}w_\gamma E_\gamma$$ |
− | Hodnoty $E_\gamma$ jsou hodnotami hamiltoniánu systému ve stavu $\gamma$. Lagrangeův multiplikátor příslušný k energii označme $\beta$ (konvence). Pak: | + | Hodnoty $E_\gamma$ jsou hodnotami hamiltoniánu systému ve stavu $\gamma$. Lagrangeův multiplikátor příslušný k energii označme $\beta$ (konvence). |
+ | |||
+ | \emph{Kanonický soubor} proto definujeme jako soubor systémů o stejné \uv{teplotě} $\beta$ a konstantních počtech částic jednotlivých komponent. | ||
+ | |||
+ | |||
+ | Pak: | ||
Řádka 42: | Řádka 47: | ||
Některé energetické stavy mohou být degenerované, tj. několika mikrostavům může náležet stejná hodnota energie. Pak se zavádí | Některé energetické stavy mohou být degenerované, tj. několika mikrostavům může náležet stejná hodnota energie. Pak se zavádí | ||
− | tzv. \index{koeficient, degenerace}\emph{koeficient degenerace} $ | + | tzv. \index{koeficient, degenerace}\emph{koeficient degenerace} $g_n$, který udává počet stavů pro $n$-tou hladinu energie, a partiční fce je pak suma přes |
všechny hodnoty energie: | všechny hodnoty energie: | ||
− | $$Z_C = \suma{ | + | $$Z_C = \suma{E_n}{}g_n \exp(-\beta E_n)$$ |
\end{remark} | \end{remark} |
Verze z 7. 9. 2010, 12:26
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu 02TSFA
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu 02TSFA | Admin | 1. 8. 2010 | 10:52 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Admin | 7. 9. 2015 | 13:48 | ||
Header | editovat | Hlavičkový soubor | Karel.brinda | 27. 1. 2011 | 20:47 | header.tex | |
Kapitola1 | editovat | Matematický aparát | Kunzmart | 25. 8. 2021 | 11:16 | kapitola1.tex | |
Kapitola2 | editovat | Statistický popis složitých soustav | Krasejak | 27. 6. 2014 | 12:56 | kapitola2.tex | |
Kapitola3 | editovat | Statistický soubor a rozdělovací funkce | Krasejak | 27. 6. 2014 | 13:15 | kapitola3.tex | |
Kapitola4 | editovat | Nejpravděpodobnější rozdělení | Krasejak | 29. 3. 2014 | 02:23 | kapitola4.tex | |
Kapitola5 | editovat | Partiční funkce systému a jeho podsystémů | Krasejak | 29. 3. 2014 | 03:02 | kapitola5.tex | |
Kapitola6 | editovat | Mikrokanonický soubor | Kunzmart | 26. 8. 2021 | 09:10 | kapitola6.tex | |
Kapitola7 | editovat | Kanonický soubor | Maresj23 | 5. 1. 2014 | 11:23 | kapitola7.tex | |
Kapitola8 | editovat | Grandkanonický soubor | Godalale | 7. 6. 2023 | 21:04 | kapitola8.tex | |
Kapitola9 | editovat | Ekvivalence statistických souborů | Kunzmart | 12. 7. 2021 | 00:40 | kapitola9.tex | |
Kapitola10 | editovat | Principy termodynamiky | Krasejak | 29. 3. 2014 | 02:29 | kapitola10.tex | |
Kapitola11 | editovat | Termodynamické potenciály | Kunzmart | 12. 7. 2021 | 03:41 | kapitola11.tex | |
Kapitola12 | editovat | Závislost termodynamických potenciálů na látkovém množství | Krasejak | 29. 3. 2014 | 02:33 | kapitola12.tex | |
Kapitola13 | editovat | Vztahy mezi derivacemi termodynamických veličin | Batysfra | 30. 8. 2011 | 14:22 | kapitola13.tex | |
Kapitola14 | editovat | Další termodynamické veličiny | Tomas | 7. 9. 2010 | 14:53 | kapitola14.tex | |
Kapitola15 | editovat | Kvantověmechanický harmonický oscilátor | Kubuondr | 29. 5. 2017 | 13:21 | kapitola15.tex | |
Kapitola16 | editovat | Měření Poissonovy konstanty | Admin | 1. 8. 2010 | 10:47 | kapitola16.tex | |
Kapitola17 | editovat | Termodynamika směsí různých látek | Tomas | 7. 9. 2010 | 12:38 | kapitola17.tex | |
Kapitola18 | editovat | Vratné a nevratné procesy | Kubuondr | 26. 5. 2017 | 12:32 | kapitola18.tex | |
Kapitola19 | editovat | Ustálení dynamické rovnováhy | Tomas | 7. 9. 2010 | 12:40 | kapitola19.tex | |
Kapitola20 | editovat | Důsledky podmínek rovnováhy | Kubuondr | 15. 4. 2017 | 08:26 | kapitola20.tex | |
Kapitola21 | editovat | Rovnováha systému o více fázích | Tomas | 7. 9. 2010 | 14:23 | kapitola21.tex | |
Kapitola22 | editovat | Klasifikace fázových přechodů | Chladjar | 14. 9. 2020 | 14:32 | kapitola22.tex | |
Kapitola23 | editovat | Joule-Thompsonův pokus | Tomas | 7. 9. 2010 | 18:43 | kapitola23.tex | |
Kapitola24 | editovat | Termodynamické nerovnosti | Karel.brinda | 6. 2. 2011 | 20:44 | kapitola24.tex | |
Kapitola25 | editovat | Narušení rovnováhy (Braun-Le Chatelierův princip) | Tomas | 7. 9. 2010 | 12:46 | kapitola25.tex | |
Kapitola26 | editovat | Statistická rozdělení soustavy volných částic | Chladjar | 15. 9. 2020 | 10:40 | kapitola26.tex | |
Kapitola27 | editovat | Odvození termodynamiky IP statistickými metodami | Admin | 25. 4. 2024 | 11:36 | kapitola27.tex | |
Kapitola28 | editovat | Fotonový plyn a záření absolutně černého tělesa | Groveond | 1. 7. 2014 | 20:35 | kapitola28.tex | |
Kapitola29 | editovat | Modely krystalů | Chladjar | 17. 9. 2020 | 17:19 | kapitola29.tex | |
Kapitola30 | editovat | Jiný statistický přístup — kinetická teorie | Tomas | 14. 2. 2011 | 23:22 | kapitola30.tex | |
Kapitola31 | editovat | Otázky ke zkoušce z TSF | Admin | 1. 8. 2010 | 10:51 | kapitola31.tex | |
Kapitola32 | editovat | Reference | Tomas | 7. 9. 2010 | 12:54 | reference.tex |
Vložené soubory
soubor | název souboru pro LaTeX |
---|---|
Image:Gauss.pdf | Gauss.pdf |
Image:Fcel1.pdf | fcel1.pdf |
Image:2krabab.pdf | 2krabab.pdf |
Image:Transw.pdf | transw.pdf |
Image:Syst.pdf | syst.pdf |
Image:3pt.pdf | 3pt.pdf |
Image:Cholesctv.pdf | Cholesctv.pdf |
Image:Oscpot.pdf | Oscpot.pdf |
Image:Spins.pdf | spins.pdf |
Image:Spins2.pdf | spins2.pdf |
Image:Spins3.pdf | spins3.pdf |
Image:Spins4.pdf | spins4.pdf |
Image:Ptdiag.pdf | ptdiag.pdf |
Image:Joulthom.pdf | joulthom.pdf |
Image:Trirozd.pdf | trirozd.pdf |
Image:FD_e_mu.jpg | FD_e_mu.jpg |
Image:Krystal.pdf | krystal.pdf |
Image:Krystal2.pdf | krystal2.pdf |
Image:Procesyr.pdf | procesyr.pdf |
Image:Hgraf.pdf | hgraf.pdf |
Zdrojový kód
%\wikiskriptum{02TSFA} \section{Kanonický soubor} \index{soubor, kanonický} \label{kansoub} V reálném případě nelze pozorovat absolutně uzavřený systém. Obvykle zkoumáme systémy, které nějakým způsobem interagují se svým okolím. Nás budou nyní zajímat takové, které jsou s okolím v rovnováze. Takové okolí je například lázeň (termostat), ve které se nachází náš systém. Vezměme si třeba plyn v nádobě. Jeho částice narážejí do stěn a předávají svou energii molekulám nádoby. Probíhá samozřejmě i opačný proces --- nádoba předává energii molekulám plynu. Následkem toho není energie v systému konstantní, ale fluktuuje kolem nějaké střední hodnoty. Vezměme tedy vnitřní energii jako veličinu popisující systém. Potom $$ U \equiv \<H\>= \suma{\gamma}{}w_\gamma E_\gamma$$ Hodnoty $E_\gamma$ jsou hodnotami hamiltoniánu systému ve stavu $\gamma$. Lagrangeův multiplikátor příslušný k energii označme $\beta$ (konvence). \emph{Kanonický soubor} proto definujeme jako soubor systémů o stejné \uv{teplotě} $\beta$ a konstantních počtech částic jednotlivých komponent. Pak: \begin{center} \begin{tabular}[t]{|ll|} \hline Veličiny kanonického souboru & \\ \hline $Z_C = \suma{\gamma}{}\exp( -\beta H_\gamma) = \suma{\gamma}{}\exp(-\beta E_\gamma)$ & Kanonická partiční funkce \tabularnewline[12pt] $w_\gamma = \frac{1}{Z_C}\exp( -\beta H_\gamma) = \frac{1}{Z_C}\exp(-\beta E_\gamma)$ & Nejpravděpodobnější rozdělení \tabularnewline[12pt] $U = - \pderivx{(\ln Z_C)}{\beta}$ & Vnitřní energie \tabularnewline[12pt] $S(U) = k_B \ln Z_C + k_B\beta U$ & Entropie\tabularnewline[12pt] $\left<(U - H_\gamma)^2\right> = \left<H_\gamma^2\right> - \left<H_\gamma\right> ^2 = \pderivxx{(\ln Z_c)}{\beta}$ & Fluktuace stř. h. energie\tabularnewline[12pt] \hline \end{tabular} \end{center} \begin{remark} Některé energetické stavy mohou být degenerované, tj. několika mikrostavům může náležet stejná hodnota energie. Pak se zavádí tzv. \index{koeficient, degenerace}\emph{koeficient degenerace} $g_n$, který udává počet stavů pro $n$-tou hladinu energie, a partiční fce je pak suma přes všechny hodnoty energie: $$Z_C = \suma{E_n}{}g_n \exp(-\beta E_n)$$ \end{remark}