01RMF:Kapitola2: Porovnání verzí
Z WikiSkripta FJFI ČVUT v Praze
Řádka 95: | Řádka 95: | ||
$$\left( \tilde{f}, \phi + \alpha \psi \right) = \displaystyle \int_{\R^n}f(x)(\phi + \alpha \psi) (x) \dd x = \displaystyle \int_{\R^n}f(x)\phi(x) \dd x + | $$\left( \tilde{f}, \phi + \alpha \psi \right) = \displaystyle \int_{\R^n}f(x)(\phi + \alpha \psi) (x) \dd x = \displaystyle \int_{\R^n}f(x)\phi(x) \dd x + | ||
\alpha \displaystyle \int_{\R^n}f(x)\psi(x) = \left(\tilde{f},\phi \right) + \alpha \left(\tilde{f},\psi \right). $$ | \alpha \displaystyle \int_{\R^n}f(x)\psi(x) = \left(\tilde{f},\phi \right) + \alpha \left(\tilde{f},\psi \right). $$ | ||
− | \item[{\it Spojitost:}] Chceme ukázat, že $\phi_n \stackrel{\D}{\longrightarrow} 0 \Rightarrow \left( \tilde{f},\phi_n \right) \longrightarrow 0 \mbox{ pro } n \to | + | \item[{\it Spojitost:}] Chceme ukázat, že $\phi_n \stackrel{\D}{\longrightarrow} 0 \Rightarrow \left( \tilde{f},\phi_n \right) \longrightarrow 0 \mbox{ pro } n \to +\infty$. |
Tedy | Tedy | ||
\end{enumerate} | \end{enumerate} |
Verze z 8. 10. 2016, 19:04
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu 01RMF
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu 01RMF | Mazacja2 | 16. 12. 2016 | 18:29 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Mazacja2 | 28. 12. 2016 | 13:12 | ||
Header | editovat | Hlavičkový soubor | Mazacja2 | 18. 12. 2016 | 21:10 | header.tex | |
Kapitola0 | editovat | Předmluva | Mazacja2 | 9. 11. 2016 | 20:51 | predmluva.tex | |
Kapitola1 | editovat | Motivace | Johndavi | 8. 4. 2019 | 16:34 | motivace.tex | |
Kapitola2 | editovat | Zobecněné funkce | Lomicond | 7. 12. 2019 | 16:51 | zobecnene_funkce.tex | |
Kapitola3 | editovat | Integrální transformace | Lomicond | 25. 12. 2019 | 15:58 | integralni_transformace.tex | |
Kapitola4 | editovat | Řešení dif. rovnic | Johndavi | 9. 4. 2019 | 15:15 | reseni.tex | |
Kapitola5 | editovat | Integrální rovnice | Johndavi | 8. 4. 2019 | 16:25 | Kapitola5.tex | |
Kapitola6 | editovat | Sturm-Liouvilleova teorie | Johndavi | 8. 4. 2019 | 15:35 | Kapitola6.tex |
Zdrojový kód
%\wikiskriptum{01RMF} \chapter{Zobecněné funkce} V~této kapitole korektně zavedeme zobecněné funkce a~uvidíme, že naše předešlá definice je jen velmi speciálním případem zobecněné funkce. Zároveň budeme v~definici požadovat, aby náš nově definovaný objekt byl něco rozdílného od klasické funkce, ale zároveň se od ní příliš nelišil. Rádi bychom totiž využívali některá tvrzení a~některé věty, které již máme z~předchozího studia matematické analýzy dokázány. \section{Zavedení zobecněných funkcí} \begin{define} Nechť $f$ je lineární funkcionál nad $\D(G)$, tj, $f:\D \longrightarrow \mathbb{C}$ a~$f$ je lineární. Množinu všech lineárních a spojitých, tj. konvergenci zachovávajících, funkcionálů nad $\D(G)$ nazveme {\bf prostorem zobecněných funkcí}, označujme ji $\D'(G)$. Hodnotu funkcionálu $f$ na funkci $\phi$ označujme $\left( f, \ \phi \right)$ namísto $f(\phi)$. \end{define} Vidíme, že prostor zobecněných funkcí závisí na volbě konvergence v $\D$. Tímto pojmem bude $\D'$ značně ovlivněno (kvůli identifikaci lineárních a~především spojitých funkcionálů nad $\D$). Z~toho důvodu nyní definujeme konvergenci v~$\D$. Ještě předtím ale zavedeme pojem multiindex a~zavedeme notaci derivací pomocí multiindexu. \begin{define} {\bf Multiindexem} $\alpha$ v~n-dimenzionálním prostoru rozumíme uspořádanou n-tici čísel $\left(\alpha_1, \ \alpha_2, \ \dots, \ \alpha_n \right)$ ze $\mathbb{Z}_+ ^n := \left(\mathbb{N}\cup\{0\}\right)^n$. Označme $\vert \alpha \vert = \displaystyle \sum_{k=1} ^n \alpha_k $. Definujme rovněž operátor $D^{\alpha} : = \displaystyle\frac{\partial^{\vert \alpha \vert}}{\partial^{\alpha_1}x_1 \partial^{\alpha_2}x_2 \dots \partial^{\alpha_n}x_n}$. \end{define} \begin{define} Nechť $\{ \phi_n \}_{n \in \mathbb{N}\}$ je posloupnost v $\D(G)$ a $\phi \in \D(G)$. Řekneme, že {\bf $\phi_n$ konverguje k~$\phi$ v $\D$}, označme $\phi \stackrel{\D}{\longrightarrow} \phi$, právě když \begin{enumerate} \item nosiče $\phi_n $ jsou stejně (stejnoměrně) omezené, tj. $\exists R>0 \ \forall n \in \mathbb{N} \ \nf \phi_n \subset B_R(0)$; \item $\forall \aplha \in \mathbb{Z}_+ ^n$ platí, že $D^\alpha \phi_n$ konverguje stejnoměrně na množině $G$ k~$D^\alpha \phi$, tedy $D^\alpha \phi_n \sk{G} D^\alpha \phi$. \end{enumerate} \end{define} \begin{remark} Tato definice vyžaduje znalost limitní funkce $\phi$. Je ale možné definovat i~\uv{vlastnost konvergence} a~to za pomoci Bolzano-Cauchyovy podmínky pro stejnoměrnou konvergenci, která nám umožňuje nepsat ve druhé podmínce $D^\alpha \phi$. Pak můžeme tvrdit, že posloupnost funkcí $\{ \phi_n \}_{n \in \mathbb{N}}$ konverguje v~$\D$ a~tuto vlastnost zapisovat jako $\phi_n \stackrel{\D}{\longrightarrow} $. \end{remark} \begin{theorem} Buď $\{ \phi_n \}_{n \in \mathbb{N}} \subset \D(G)$ a nechť $\phi_n \stackrel{\D}{\longrightarrow} $. Pak existuje limitní funkce $\phi \in \D(G)$ taková, že $\phi_n \stackrel{\D}{\longrightarrow} \phi$. \begin{proof} Důkaz nechť si čtenář provede sám jako cvičení. Při dokazování je vhodné najít kandidáta na funkci $\phi$ pomocí nulté derivace. Dále je vhodné si uvědomit, že kandidát musí být třídy $\Ci$ a~že $\nf \phi$ má být kompakt. \end{theorem} \subsection{Příklad zobecněné funkce} {\bf Diracova $\delta$-funkce} S~touto funkcí jsme se setkali hned na začátku tohoto textu. Nyní ji korektně zavedeme a~dokážeme, že se jedná o~zobecněnou funkci. $$ \left(\forall \phi \in \D(R) \right) \ \mbox{definujeme } \left(\delta, \ \phi\right) := \phi(0) $$ Pro $\delta$ musíme tedy ověřit, že je to funkcionál nad~$\D$, že je lineární a~že je spojitý. \begin{enumerate} \item[{\it Funcionál:}] $\delta: \D \longrightarrow \mathbb{C}$. Jelikož je $\phi(0) < + \infty$, víme, že se tedy jedná o~funkcionál, neboť jeho definice dává dobrý smysl $\forall \phi \in \D$. \item[{\it Linearita:}] Uvažujme $\phi, \psi \in \D$ a $\alpha \in \mathbb{C}$. Pak $$( \delta, \underbrace{\phi + \alpha \psi}_{\eta \in \D} ) = \eta(0) = \left( \phi + \alpha \psi \right) (0) = \phi (0) + \alpha \psi(0) = \left( \delta, \phi \right) + \alpha \left( \delta, \psi\right)$$ \item[{\it Spojitost:}] Abychom dokázali spojitost námi definovaného funkcionálu, uvažujme konvergentní posloupnost $\{ \phi_n \}_{n \in \mathbb{N}} \subset \D$, která konverguje $\phi_n \stackrel{\D}{\longrightarrow} \phi$. Chceme ukázat, že odtud plyne, že v $\mathbb{C}$ konverguje číselná posloupnost$\left(\delta, \phi_n\right) \longrightarrow \left(\delta, \phi\right)$. Můžeme bez újmy na obecnosti uvažovat, že $\phi_n \stackrel{\D}{\longrightarrow} 0$ \footnote{Pokud by $\phi_n \stackrel{\D}{\longrightarrow} \phi$, pak víme, že funkce~$\phi$ je opět testovací funkcí a~můžeme přejít od~$\phi_n$ k~$\phi_n - \phi$, která již konverguje~k~0. Funkce $\phi_n - \phi$ je totiž testovací, neboť její nosič je pouze sjednocením nosičů funkcí $\phi_n$ a~$\phi$ a~rozdílem dvou hladkých funkcí je opět funkce hladká. }. Pak v toho, že posloupnost konverguje plyne, že \begin{enumerate} \item $\exists R>0 \ \forall n \in \mathbb{N} \ \nf \phi_n \subset B_R(0)$; \item $\forall \aplha \in \mathbb{Z}_+ ^n$ platí, že $D^\alpha \phi_n \sk{\R^n} 0$. \end{enumerate} Druhá podmínka platí pro všechny multiindexy, tedy speciálně i~pro nulový. Pak tedy dostáváme $\phi_n \sk{\R^n} 0 \Rightarrow \phi_n(x) \stackrel{\R^n}{\rightarrow} 0$ pro všechna $x\in \R^n$. Pokud nyní za $x$ volím 0, dostávám tvrzení, které jsem chtěl dokázat, neboť $\underbrace{\displaystyle\lim_{n\to\infty} \left(\delta, \phi_n \right)}_{\displaystyle\lim_{n\to\infty} \phi_n(0) = 0} = \left(\delta, 0 \right) = 0$, přičemž poslední rovnost plyne z linearity funkcionálu. \end{enumerate} \noindent Tímto jsme tedy dokázali, že {\it Diracova $\delta$-funkce} je zobecněnou funkcí. Obdobně se dá ukázat, že i~{\it centrovaná Diracova $\delta$-funkce}\footnote{\left(\delta_{x_0}, \ \phi\right) := \phi(x_0)} je zobecněná. Důkaz je zcela totožný, až na poslední krok, kdy se místo 0 volí $x_0$. \subsection{Souvislost mezi klasickými funkcemi a zobecněnými funkcemi} V následujícím odstavci bychom chtěli ukázat, že každé klasické funkci $f$ můžeme přiřadit jistou zobecněnou funkci $\tilde{f}$. Jako množinu funkcí $f$, ke které budeme vytvářet množinu zobecněných funkcí, vezměme lokálně integrabilní funkce na $\R^n$. Pro tyhle funkce jsme již ukázali, že integrál $\displaystyle \int_{\R^n}f(x)\phi(x)\dd x$ konverguje pro každou $\phi \in \D(\R^n)$. Pro tuhle hezkou vlastnost budeme definovat zobecněnou funkci (tj. funkcionál) následovně: $$\left(\tilde{f},\phi \right) := \displaystyle \int_{\R^n}f(x)\phi(x)\dd x.$$ Z konvergence nám okamžitě plyne fakt, že $\tilde{f}:\D \longrightarrow \mathbb{C}$ je funkcionál. Nyní, podobně jako výše, dokážeme, že se jedná o zobecněnou funkci. \begin{enumerate} \item[{\it Linearita:}] Buďte $\phi, \psi \in \D$ a $\alpha \in \mathbb{C}$. Pak $$\left( \tilde{f}, \phi + \alpha \psi \right) = \displaystyle \int_{\R^n}f(x)(\phi + \alpha \psi) (x) \dd x = \displaystyle \int_{\R^n}f(x)\phi(x) \dd x + \alpha \displaystyle \int_{\R^n}f(x)\psi(x) = \left(\tilde{f},\phi \right) + \alpha \left(\tilde{f},\psi \right). $$ \item[{\it Spojitost:}] Chceme ukázat, že $\phi_n \stackrel{\D}{\longrightarrow} 0 \Rightarrow \left( \tilde{f},\phi_n \right) \longrightarrow 0 \mbox{ pro } n \to +\infty$. Tedy \end{enumerate}