01RMF:Kapitola2: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
Řádka 19: Řádka 19:
 
\begin{define}
 
\begin{define}
 
Nechť $f$ je reálná, resp. komplexní funkce reálné proměnné. Nechť dále  
 
Nechť $f$ je reálná, resp. komplexní funkce reálné proměnné. Nechť dále  
$$\exists \displaystyle \int_{\left[a,b \right]}f(x)\phi(x)\dd x < +\infty , \: \forall \left[a,b \right] , \: \forall \phi \in \D(\R^1)$$.
+
$$\exists \displaystyle \int_{\left[a,b \right]}f(x)\phi(x)\dd x < +\infty , \: \forall \left[a,b \right] , \: \forall \phi \in \D(\R^1).$$
 
Pak nazvěme $f$ {\bf zobecněnou funkcí}.  
 
Pak nazvěme $f$ {\bf zobecněnou funkcí}.  
  
{\bf Akcí testovací funkce $\phi$ na $f$} rozumíme  
+
\noident {\bf Akcí testovací funkce $\phi$ na $f$} rozumíme  
 
$$\left(f,\phi\right) := \displaystyle \int_\R f(x)\phi(x)\dd x , \: \forall \phi \in \D(\R^1)$$.  
 
$$\left(f,\phi\right) := \displaystyle \int_\R f(x)\phi(x)\dd x , \: \forall \phi \in \D(\R^1)$$.  
  
 
\end{define}
 
\end{define}

Verze z 4. 10. 2016, 17:36

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01RMF

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01RMFMazacja2 16. 12. 201618:29
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůMazacja2 28. 12. 201613:12
Header editovatHlavičkový souborMazacja2 18. 12. 201621:10 header.tex
Kapitola0 editovatPředmluvaMazacja2 9. 11. 201620:51 predmluva.tex
Kapitola1 editovatMotivaceJohndavi 8. 4. 201916:34 motivace.tex
Kapitola2 editovatZobecněné funkceLomicond 7. 12. 201916:51 zobecnene_funkce.tex
Kapitola3 editovatIntegrální transformaceLomicond 25. 12. 201915:58 integralni_transformace.tex
Kapitola4 editovatŘešení dif. rovnicJohndavi 9. 4. 201915:15 reseni.tex
Kapitola5 editovatIntegrální rovniceJohndavi 8. 4. 201916:25 Kapitola5.tex
Kapitola6 editovatSturm-Liouvilleova teorieJohndavi 8. 4. 201915:35 Kapitola6.tex

Zdrojový kód

%\wikiskriptum{01RMF}
\chapter{Testovací funkce}
 
\begin{define}
{\bf Nosičem funkce $\phi$} rozumíme množinu $\overline{\{ x \in \R^n \ | \ \phi(x) \neq 0 \} }$. Označujeme jej $\nf \phi$. 
\end{define}
 
\begin{define}
Množinu $\D (\R^n) = \{ \phi \in \Ci (\R^n) \ | \ \nf \phi \mbox{ je omezený} \}$ nazvěme {\bf množinu testovacích funkcí}. Tzn. {\bf testovací funkce} jsou funkce třídy $\Ci (\R^n)$ s kompaktním nosičem. 
Buď nyní $G = G^o$ otevřená podmnožina $\R^n$. Pak definujeme $\D (G) = \{ \phi \in \D (\R^n) \ | \ \nf \phi \subset G \}$ 
\end{define}
 
\begin{remark}
Je zřejmé, že pokud $\phi \in \D (\R^n)$, pak $\alpha \phi \in \D (\R^n)$ pro $\alpha \in \R$.
Buď nyní $f$ hladká funkce. Pak rovněž $f\phi \in \D (\R^n)$ 
\end{remark}
 
Abychom získali jistou intuici a vhled do dané problematiky, předběžně definujme zobecněné funkce $\D' (\R^1)$. Tuhle definici později zpřesníme a zobecníme. 
\begin{define}
Nechť $f$ je reálná, resp. komplexní funkce reálné proměnné. Nechť dále 
$$\exists \displaystyle \int_{\left[a,b \right]}f(x)\phi(x)\dd x < +\infty , \: \forall \left[a,b \right] , \: \forall \phi \in \D(\R^1).$$
Pak nazvěme $f$ {\bf zobecněnou funkcí}. 
 
\noident {\bf Akcí testovací funkce $\phi$ na $f$} rozumíme 
$$\left(f,\phi\right) := \displaystyle \int_\R f(x)\phi(x)\dd x , \: \forall \phi \in \D(\R^1)$$. 
 
\end{define}