Matematika1Priklady:Kapitola1: Porovnání verzí
Z WikiSkripta FJFI ČVUT v Praze
(Založena nová stránka: %\wikiskriptum{Matematika1Priklady} \section{Limity} \begin{multicols}{2} \begin{enumerate} \begin{priklad} \lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x} - 2}=\fra...) |
m (oprava preklepu) |
||
(Není zobrazeno 15 mezilehlých verzí od 3 dalších uživatelů.) | |||
Řádka 1: | Řádka 1: | ||
%\wikiskriptum{Matematika1Priklady} | %\wikiskriptum{Matematika1Priklady} | ||
− | \section{Limity} | + | \section{Limity a spojitost} |
+ | |||
+ | \subsection*{\fbox{Rozcvička}} | ||
+ | V této krátké části jsou příklady, které pro svou nižší náročnost nebudou ve zkouškové písemce, a tudíž nejsou číslovány. | ||
+ | |||
+ | \begin{itemize} | ||
+ | |||
+ | %\input{01} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to +\infty}\frac{\sqrt{x^2+1}}{x+1} | ||
+ | \end{priklad} | ||
+ | \res{1} | ||
− | \begin{ | + | \item \begin{priklad} |
+ | \lim_{x \to \pi} \frac{\sin{x}}{x-\pi} | ||
+ | \end{priklad} | ||
+ | \res{-1} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 0} x \cot{3x} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{1}{3}$} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 1} \frac{\ln{x}}{x^2-1} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{1}{2}$} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 0} \frac{x^3+2x^2-x-2}{x^2-1} | ||
+ | \end{priklad} | ||
+ | \res{2} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to +\infty} \frac{3x^2 - 2x + 5}{ 4x^2 + 3x -7} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{3}{4}$} | ||
+ | |||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 3} \frac{x^2-9}{x^2+2x-15} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{3}{4}$} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 0} \frac{\tan{x}}{x} | ||
+ | \end{priklad} | ||
+ | \res{1} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 0} x \cot{x} | ||
+ | \end{priklad} | ||
+ | \res{1} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 0} \frac{\sin{5x}}{x} | ||
+ | \end{priklad} | ||
+ | \res{5} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 5} \frac{x^2-4x-5}{x^2-7x+10} | ||
+ | \end{priklad} | ||
+ | \res{2} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to +\infty} \frac{5x^3 - x^2 +3}{x^3+6x^2-4} | ||
+ | \end{priklad} | ||
+ | \res{5} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 1} \frac{x^2+x-2}{4x-4} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{3}{4}$} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 0} \frac{\cos^2{x} - 1}{x^2} | ||
+ | \end{priklad} | ||
+ | \res{-1} | ||
+ | |||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to +\infty} \frac{x^3-1}{5x^3} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{1}{5}$} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to 2} \frac{3x^3-10x-4}{4-x^2} | ||
+ | \end{priklad} | ||
+ | \res{$- \frac{13}{2}$} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to -1} \frac{2x^2-6x-8}{2x^3+2} | ||
+ | \end{priklad} | ||
+ | \res{$- \frac{5}{3}$} | ||
+ | |||
+ | \item \begin{priklad} | ||
+ | \lim_{x \to a} \frac{\sin{x} - \sin{a}}{x - a} | ||
+ | \end{priklad} | ||
+ | \res{$\cos{a}$} | ||
+ | |||
+ | \end{itemize} | ||
+ | |||
+ | \subsection*{\fbox{Zkouškové příklady}} | ||
+ | |||
\begin{enumerate} | \begin{enumerate} | ||
− | + | ||
− | + | \odstavec{l'Hôpitalovo pravidlo zakázáno} | |
− | + | ||
+ | \item \bezlh | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 3} \frac{x^2+x-12}{9-3x} | ||
+ | \end{priklad} | ||
+ | \res{$ - \frac{7}{3}$} | ||
+ | |||
+ | \item \bezlh | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 0} \frac{\cos{x} - 1}{x^2} | ||
+ | \end{priklad} | ||
+ | \res{$- \frac{1}{2}$} | ||
+ | |||
+ | |||
+ | \item \bezlh | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 2} \frac{x^3-8}{x^4-16} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{3}{8}$} | ||
+ | |||
+ | \item \bezlh | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 2} \frac{x^2 - 2x}{8-x^3} | ||
+ | \end{priklad} | ||
+ | \res{$- \frac{1}{6}$} | ||
+ | |||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sin^2 x + \sin^8 x - \sin^3 x}{\sin^5 x + 1 - \cos^2 x + \sin^7 x} | |
+ | \end{priklad} | ||
+ | \res{1} | ||
− | |||
− | |||
− | |||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt{\sin^2 x}+\sqrt{1-\cos^2 x}}{|x|} | |
+ | \end{priklad} | ||
+ | \res{2} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -2} \frac{x^3 + 3x^2+3x+2}{x^3+3x^2+4x+4} | |
+ | \end{priklad} | ||
+ | \res{$\frac34$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{x^3+2x^2+5x}{(x^2+6)\sin x} | |
+ | \end{priklad} | ||
+ | \res{$\frac56$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt{1 + \tg x} - \sqrt{1+\sin x}}{x^3} | |
+ | \end{priklad} | ||
+ | \res{$\frac14$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x} | |
+ | \end{priklad} | ||
+ | \res{1} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 5} \frac{x^2 + 2x-35}{x^3-3x^2-9x-5} | |
+ | \end{priklad} | ||
+ | \res{$\frac13$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sin^2x}{x\sqrt{1-\cos^2x}} | |
− | + | \end{priklad} | |
+ | \res{neex} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -2} \frac{x^3+2x^2+x+2}{x^2+3x+2} | |
+ | \end{priklad} | ||
+ | \res{-5} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to +\infty} \frac{x^3}{2x^2-1} - \frac{x^2}{2x+1} | |
+ | \end{priklad} | ||
+ | \res{$\frac14$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 3} \frac{\sqrt{x+13} - 2 \sqrt{x+1}}{x^2-9} | |
+ | \end{priklad} | ||
+ | \res{$-\frac{1}{16}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} x~\hbox{tg}{\left ( \frac{\pi}{2}-x \right )} | |
+ | \end{priklad} | ||
+ | \res{1} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{x^2}{\sqrt{1+x \sin x} - \sqrt{\cos x}} | |
+ | \end{priklad} | ||
+ | \res{$\frac43$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 2} \frac{x^3-4x}{x^4+x-18} | |
+ | \end{priklad} | ||
+ | \res{$\frac{8}{33}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 2} \frac{1-\cos(x-2)}{x^3-2x^2-4x+8} | |
+ | \end{priklad} | ||
+ | \res{$\frac18$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to +\infty} \frac{\sinh x}{\cosh x + \sinh x} | |
+ | \end{priklad} | ||
+ | \res{$\frac12$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -\infty} \frac{\sinh x}{\cosh x + \sinh x} | |
+ | \end{priklad} | ||
+ | \res{$-\infty$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{1-\sqrt{\cos x}}{x^2} | |
+ | \end{priklad} | ||
+ | \res{$\frac14$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\cos^2 x + \sin^8 x - \cos^3 x}{\sin^5 x + 1 - \cos^2 x + \sin^7 x} | |
+ | \end{priklad} | ||
+ | \res{$\frac12$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x} - 2} | |
+ | \end{priklad} | ||
+ | \res{$\frac{4}{3}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -\infty}\frac{\sqrt{x^2+1}}{x+1} | |
+ | \end{priklad} | ||
+ | \res{-1} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{x^2}{\sqrt{1+x \sin{x}} - \sqrt{\cos{x}}} | |
+ | \end{priklad} | ||
+ | \res{$\frac{4}{3}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\tg{x} - \sin{x}}{\sin^3{x}} | |
+ | \end{priklad} | ||
+ | \res{$\frac{1}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 4} \big( \frac{1}{x} - \frac{1}{4} \big) \big(\frac{1}{x-4} \big) | |
+ | \end{priklad} | ||
+ | \res{$ -\frac{1}{16}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{x^2-3x}{\tg{x}} | |
+ | \end{priklad} | ||
+ | \res{-3} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 1} (1-x) \tg{(x \frac{\pi}{2})} | |
+ | \end{priklad} | ||
+ | \res{$\frac{2}{\pi}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to \frac{\pi}{3}} \frac{\sin{(x-\frac{\pi}{3})}}{1-2\cos{x}} | |
+ | \end{priklad} | ||
+ | \res{$\frac{\sqrt{3}}{3}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to \frac{\pi}{2}_-} \frac{\frac{\pi}{2} - x}{\sin{x} \cos{x}} | |
+ | \end{priklad} | ||
+ | \res{1} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to \pi} \frac{\tg{x} - \sin{x}}{\cos ^3{x}} | |
+ | \end{priklad} | ||
+ | \res{0} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 1} \frac{x^3+2x^2-x-2}{x^2-1} | |
+ | \end{priklad} | ||
+ | \res{3} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{1- \cos{2x} + \tg^2{x}}{x \sin{x}} | |
+ | \end{priklad} | ||
+ | \res{3} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 1} \frac{x^2 - x}{\sqrt{x} - 1} | |
+ | \end{priklad} | ||
+ | \res{2} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to +\infty} \frac{5-2x+ 3x^2}{3x-7+ 4x^2 } | |
+ | \end{priklad} | ||
+ | \res{$\frac{3}{4}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -2} \frac{\sqrt{6+x} - 2}{x+2} | |
+ | \end{priklad} | ||
+ | \res{$\frac{1}{4}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{(1+x)^5 - (1+5x)}{x^2+x^5} | |
+ | \end{priklad} | ||
+ | \res{10} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sin{x} - x}{\sin{x} + x} | |
+ | \end{priklad} | ||
+ | \res{0} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 2} \frac{x-2}{\sqrt{x+2} - 2} | |
+ | \end{priklad} | ||
+ | \res{4} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to \frac{\pi}{4}} \frac{\cos{x} - \sin{x}}{1-\tg{x}} | |
+ | \end{priklad} | ||
+ | \res{$\frac{\sqrt{2}}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to +\infty} \frac{x^3 + 5x^4 - x^2 +3}{4-x^3+6x^2-x^4} | |
+ | \end{priklad} | ||
+ | \res{-5} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{\sin{x}} | |
+ | \end{priklad} | ||
+ | \res{$\frac{\sqrt{2}}{4}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\cos{x} - 1}{1-\cos^2{x}} | |
+ | \end{priklad} | ||
+ | \res{$-\frac{1}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 8} \frac{\sqrt{9+2x} - 5}{\sqrt[3]{x} - 2} | |
+ | \end{priklad} | ||
+ | \res{$\frac{12}{5}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \Big( \frac{\sin{3x}}{x} + \frac{\sin{x}}{3x}\Big) | |
+ | \end{priklad} | ||
+ | \res{$\frac{10}{3}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -1} \frac{x^2-2x-3}{x^2+x^3-2x-2} | |
+ | \end{priklad} | ||
+ | \res{4} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 5} \frac{25 + x^2 -10x}{x^3 -9x- 3x^2-5} | |
+ | \end{priklad} | ||
+ | \res{0} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -1} \frac{x+1}{\sqrt{10+x} - 3} | |
+ | \end{priklad} | ||
+ | \res{6} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{1- \cos{x}}{\tg{x}} | |
+ | \end{priklad} | ||
+ | \res{0} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -2} \frac{x^3+2x^2+x+2}{x^2+3x+2} | |
+ | \end{priklad} | ||
+ | \res{-5} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 2} \frac{x^3-4x}{x^4+x-18} | |
+ | \end{priklad} | ||
+ | \res{$\frac{8}{33}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{\sin{x}} | |
+ | \end{priklad} | ||
+ | \res{$\frac{1}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x - 1} | |
+ | \end{priklad} | ||
+ | \res{$\frac{1}{4}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sin{4x}}{\sqrt{x+1}-1} | |
+ | \end{priklad} | ||
+ | \res{8} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{1-\cos^2{x}}{x(1+\cos{x})} | |
+ | \end{priklad} | ||
+ | \res{0} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 3} \frac{9-x^2}{\sqrt{3x} - 3} | |
+ | \end{priklad} | ||
+ | \res{-12} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to \frac{\pi}{4}} \frac{\sin{x} - \cos{x}}{\cos{2x}} | |
+ | \end{priklad} | ||
+ | \res{$-\frac{\sqrt{2}}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to \pi} \frac{\sqrt{1-\tg{x}} - \sqrt{1+\tg{x}}}{\sin{2x}} | |
+ | \end{priklad} | ||
+ | \res{$- \frac{1}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to a} \frac{\sin{x} - \sin{a}}{x^2 - a^2} | |
+ | \end{priklad} | ||
+ | \res{$\frac{\cos{a}}{2a}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \Big( \frac{1}{\sin{x}} - \frac{1}{\tg{x}}\Big) | |
+ | \end{priklad} | ||
+ | \res{0} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to \frac{\pi}{2}} \Big( \frac{\sin{x}}{\cos^2{x}} - \tg^2{x} \Big) | |
+ | \end{priklad} | ||
+ | \res{$\frac{1}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1} | |
+ | \end{priklad} | ||
+ | \res{$\frac{2}{3}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x} | |
+ | \end{priklad} | ||
+ | \res{$\frac{2}{3}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt{x^2+1} -1}{\sqrt{x^2+16} -4} | |
+ | \end{priklad} | ||
+ | \res{4} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} | |
+ | \end{priklad} | ||
+ | \res{3} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sin{x} - \tg{x}}{\sin^3{x}} | |
+ | \end{priklad} | ||
+ | \res{$-\frac{1}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -1} \frac{\sqrt[3]{1+2x} + 1}{ \sqrt[3]{2+x} + \sqrt[3]{x}} | |
+ | \end{priklad} | ||
+ | \res{$1$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -8} \frac{\sqrt{1-x} - 3}{2+\sqrt[3]{x}} | |
+ | \end{priklad} | ||
+ | \res{-2} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}} | |
+ | \end{priklad} | ||
+ | \res{$\frac{3}{2}$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -\infty} \frac{\sqrt[3]{x^3-2x^2}}{x+1} | |
+ | \end{priklad} | ||
+ | \res{1} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{(1+x)(1+2x)(1+3x)-1}{x} | |
+ | \end{priklad} | ||
+ | \res{$6$} | ||
− | + | \item \bezlh | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sqrt{1-\cos(x^2)}}{1-\cos{x}} | |
+ | \end{priklad} | ||
+ | \res{$\sqrt{2}$} | ||
+ | |||
+ | \item \bezlh | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{1}{2}$} | ||
− | |||
− | |||
− | |||
− | + | \odstavec{l'Hôpitalovo pravidlo povoleno} | |
− | + | ||
− | + | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\ln\cos x}{\ln\cos(\pi x)} | |
+ | \end{priklad} | ||
+ | \res{$\frac{1}{\pi^2}$} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\cosh{x}-1}{\cos{x}-1} | |
+ | \end{priklad} | ||
+ | \res{$-1$} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0} \frac{\sinh(x)}{\sin{x}} | |
+ | \end{priklad} | ||
+ | \res{$1$} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -\infty} \frac{e^x - e^{-x}}{x+\frac{1}{x}} | |
+ | \end{priklad} | ||
+ | \res{$+\infty$} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 1} ~(1-x)\tg\left(x\frac{\pi}{2}\right) | |
+ | \end{priklad} | ||
+ | \res{$\frac{2}{\pi}$} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to +\infty} \frac{\ln(4e^{-x})}{x} | |
+ | \end{priklad} | ||
+ | \res{-1} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to +\infty} \sqrt{1+x+x^2} - \sqrt{1-x+x^2} | |
+ | \end{priklad} | ||
+ | \res{1} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -\infty} \sqrt{x^2+x+1} - \sqrt{x^2-x+1} | |
+ | \end{priklad} | ||
+ | \res{-1} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to +\infty} \sqrt{x^2+x} - x | |
+ | \end{priklad} | ||
+ | \res{$\frac{1}{2}$} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to -\infty} \sqrt{x^2+x} - x | |
+ | \end{priklad} | ||
+ | \res{$+\infty$} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 2} \big( \frac{1}{x-2} - \frac{1}{|x-2|} \big) | |
+ | \end{priklad} | ||
+ | \res{neex} | ||
− | + | \item | |
− | + | \begin{priklad} | |
− | + | \lim_{x \to 0_-} \frac{\cos{x}\sqrt{1-\cos{2x}}}{x} | |
+ | \end{priklad} | ||
+ | \res{$-\sqrt{2}$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 0} \frac{\sqrt{1-\cos{3x}}}{\sqrt{1-\cos^2{x}}} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{3}{\sqrt{2}}$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to \frac{\pi}{4}} \tg{(2x)} \ln{(\tg{x})} | ||
+ | \end{priklad} | ||
+ | \res{$-1$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 0} \frac{\ln{\cos{x}}}{\ln{\cos{(2x)}}} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{1}{4}$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 0} \frac{e^{x}-e^{2x}}{x} | ||
+ | \end{priklad} | ||
+ | \res{-1} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} \sqrt{x^2+3x-1} - x | ||
+ | \end{priklad} | ||
+ | \res{$\frac{3}{2}$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x} | ||
+ | \end{priklad} | ||
+ | \res{0} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 1} \frac{\sqrt{4x^2-5x-x^3+2}}{x^2-1} | ||
+ | \end{priklad} | ||
+ | \res{neex} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 1} \Big( \frac{1}{1-x} - \frac{3}{1-x^3}\Big) | ||
+ | \end{priklad} | ||
+ | \res{-1} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} \frac{(1-x)(1-2x)(1-3x)(1-4x)(1-5x)}{(x-1)^5} | ||
+ | \end{priklad} | ||
+ | \res{$-5!$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} \left(\frac{2x^2-1}{2x^2+1} \right)^{\frac{x+2}{x+1}} | ||
+ | \end{priklad} | ||
+ | \res{$1$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} \left(\frac{3x^2-1}{2x^2+1} \right)^{\frac{1+2x}{x+1}} | ||
+ | \end{priklad} | ||
+ | \res{$\frac94$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} x \left(\ln(x+1)-\ln x \right) | ||
+ | \end{priklad} | ||
+ | \res{$1$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} \arctg \frac{x}{\sqrt{1+x^2}} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{\pi}{4}$} | ||
+ | |||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to -\infty} \arctg \frac{x}{\sqrt{1+x^2}} | ||
+ | \end{priklad} | ||
+ | \res{$-\frac{\pi}{4}$} | ||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to 1_-} \arctg \frac{1}{1-x} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{\pi}{2}$} | ||
+ | |||
+ | |||
+ | \item | ||
+ | \begin{priklad} | ||
+ | \lim_{x \to +\infty} \arcsin\frac{x}{x+1} | ||
+ | \end{priklad} | ||
+ | \res{$\frac{\pi}{2}$} | ||
+ | |||
+ | \odstavec{Spojitost} | ||
+ | |||
+ | \item Vyšetřete charakter bodů nespojitosti funkce | ||
+ | \begin{priklad} | ||
+ | f(x) = \arctg\frac{x^2-1}{x} | ||
+ | \end{priklad} | ||
+ | |||
+ | \res{v 0 skoková nespojitost} | ||
+ | |||
+ | |||
+ | \item Vyšetřete charakter bodů nespojitosti funkce | ||
+ | \begin{priklad} | ||
+ | f(x) = \sqrt{|x|}\arctg\frac{1}{x} | ||
+ | \end{priklad} | ||
+ | |||
+ | \res{v 0 odstranitelná nespojitost} | ||
+ | |||
+ | \item Vyšetřete charakter bodů nespojitosti funkce | ||
+ | \begin{priklad} | ||
+ | f(x) = x\sin\frac{1}{x} | ||
+ | \end{priklad} | ||
+ | |||
+ | \res{v 0 odstranitelná nespojitost} | ||
+ | |||
+ | \item Vyšetřete charakter bodů nespojitosti funkce | ||
+ | \begin{priklad} | ||
+ | f(x) = \frac{1}{\arcctg\frac{1}{x}} | ||
+ | \end{priklad} | ||
+ | |||
+ | \res{v 0 podstatná nespojitost} | ||
\end{enumerate} | \end{enumerate} | ||
− |
Aktuální verze z 25. 10. 2016, 08:25
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu Matematika1Priklady
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu Matematika1Priklady | Fucikrad | 18. 9. 2011 | 07:54 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Admin | 7. 9. 2015 | 13:44 | ||
Header | editovat | Hlavičkový soubor | Fucikrad | 27. 4. 2022 | 08:11 | header.tex | |
Kapitola1 | editovat | Limity a spojitost | Pitrazby | 25. 10. 2016 | 08:25 | kapitola1.tex | |
Kapitola2 | editovat | Derivace, inverzní funkce, tečny, normály, asymptoty | Dvoraro3 | 4. 11. 2022 | 21:56 | kapitola2.tex | |
Kapitola3 | editovat | Vyšetřování funkcí | Admin | 29. 1. 2023 | 19:44 | kapitola3.tex | |
Kapitola4 | editovat | Extremální úlohy, konvexnost, konkávnost, inflexe | Admin | 3. 4. 2024 | 10:17 | kapitola4.tex | |
Kapitola5 | editovat | Neurčité integrály a primitivní funkce | Dvoraro3 | 28. 11. 2022 | 22:16 | kapitola5.tex | |
Kapitola6 | editovat | Určité integrály | Pitrazby | 28. 4. 2016 | 11:29 | kapitola6.tex | |
Kapitola7 | editovat | Aplikace integrálů | Fucikrad | 12. 4. 2022 | 09:53 | kapitola7.tex |
Zdrojový kód
%\wikiskriptum{Matematika1Priklady} \section{Limity a spojitost} \subsection*{\fbox{Rozcvička}} V této krátké části jsou příklady, které pro svou nižší náročnost nebudou ve zkouškové písemce, a tudíž nejsou číslovány. \begin{itemize} %\input{01} \item \begin{priklad} \lim_{x \to +\infty}\frac{\sqrt{x^2+1}}{x+1} \end{priklad} \res{1} \item \begin{priklad} \lim_{x \to \pi} \frac{\sin{x}}{x-\pi} \end{priklad} \res{-1} \item \begin{priklad} \lim_{x \to 0} x \cot{3x} \end{priklad} \res{$\frac{1}{3}$} \item \begin{priklad} \lim_{x \to 1} \frac{\ln{x}}{x^2-1} \end{priklad} \res{$\frac{1}{2}$} \item \begin{priklad} \lim_{x \to 0} \frac{x^3+2x^2-x-2}{x^2-1} \end{priklad} \res{2} \item \begin{priklad} \lim_{x \to +\infty} \frac{3x^2 - 2x + 5}{ 4x^2 + 3x -7} \end{priklad} \res{$\frac{3}{4}$} \item \begin{priklad} \lim_{x \to 3} \frac{x^2-9}{x^2+2x-15} \end{priklad} \res{$\frac{3}{4}$} \item \begin{priklad} \lim_{x \to 0} \frac{\tan{x}}{x} \end{priklad} \res{1} \item \begin{priklad} \lim_{x \to 0} x \cot{x} \end{priklad} \res{1} \item \begin{priklad} \lim_{x \to 0} \frac{\sin{5x}}{x} \end{priklad} \res{5} \item \begin{priklad} \lim_{x \to 5} \frac{x^2-4x-5}{x^2-7x+10} \end{priklad} \res{2} \item \begin{priklad} \lim_{x \to +\infty} \frac{5x^3 - x^2 +3}{x^3+6x^2-4} \end{priklad} \res{5} \item \begin{priklad} \lim_{x \to 1} \frac{x^2+x-2}{4x-4} \end{priklad} \res{$\frac{3}{4}$} \item \begin{priklad} \lim_{x \to 0} \frac{\cos^2{x} - 1}{x^2} \end{priklad} \res{-1} \item \begin{priklad} \lim_{x \to +\infty} \frac{x^3-1}{5x^3} \end{priklad} \res{$\frac{1}{5}$} \item \begin{priklad} \lim_{x \to 2} \frac{3x^3-10x-4}{4-x^2} \end{priklad} \res{$- \frac{13}{2}$} \item \begin{priklad} \lim_{x \to -1} \frac{2x^2-6x-8}{2x^3+2} \end{priklad} \res{$- \frac{5}{3}$} \item \begin{priklad} \lim_{x \to a} \frac{\sin{x} - \sin{a}}{x - a} \end{priklad} \res{$\cos{a}$} \end{itemize} \subsection*{\fbox{Zkouškové příklady}} \begin{enumerate} \odstavec{l'Hôpitalovo pravidlo zakázáno} \item \bezlh \begin{priklad} \lim_{x \to 3} \frac{x^2+x-12}{9-3x} \end{priklad} \res{$ - \frac{7}{3}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\cos{x} - 1}{x^2} \end{priklad} \res{$- \frac{1}{2}$} \item \bezlh \begin{priklad} \lim_{x \to 2} \frac{x^3-8}{x^4-16} \end{priklad} \res{$\frac{3}{8}$} \item \bezlh \begin{priklad} \lim_{x \to 2} \frac{x^2 - 2x}{8-x^3} \end{priklad} \res{$- \frac{1}{6}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sin^2 x + \sin^8 x - \sin^3 x}{\sin^5 x + 1 - \cos^2 x + \sin^7 x} \end{priklad} \res{1} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt{\sin^2 x}+\sqrt{1-\cos^2 x}}{|x|} \end{priklad} \res{2} \item \bezlh \begin{priklad} \lim_{x \to -2} \frac{x^3 + 3x^2+3x+2}{x^3+3x^2+4x+4} \end{priklad} \res{$\frac34$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{x^3+2x^2+5x}{(x^2+6)\sin x} \end{priklad} \res{$\frac56$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt{1 + \tg x} - \sqrt{1+\sin x}}{x^3} \end{priklad} \res{$\frac14$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x} \end{priklad} \res{1} \item \bezlh \begin{priklad} \lim_{x \to 5} \frac{x^2 + 2x-35}{x^3-3x^2-9x-5} \end{priklad} \res{$\frac13$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sin^2x}{x\sqrt{1-\cos^2x}} \end{priklad} \res{neex} \item \bezlh \begin{priklad} \lim_{x \to -2} \frac{x^3+2x^2+x+2}{x^2+3x+2} \end{priklad} \res{-5} \item \bezlh \begin{priklad} \lim_{x \to +\infty} \frac{x^3}{2x^2-1} - \frac{x^2}{2x+1} \end{priklad} \res{$\frac14$} \item \bezlh \begin{priklad} \lim_{x \to 3} \frac{\sqrt{x+13} - 2 \sqrt{x+1}}{x^2-9} \end{priklad} \res{$-\frac{1}{16}$} \item \bezlh \begin{priklad} \lim_{x \to 0} x~\hbox{tg}{\left ( \frac{\pi}{2}-x \right )} \end{priklad} \res{1} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{x^2}{\sqrt{1+x \sin x} - \sqrt{\cos x}} \end{priklad} \res{$\frac43$} \item \bezlh \begin{priklad} \lim_{x \to 2} \frac{x^3-4x}{x^4+x-18} \end{priklad} \res{$\frac{8}{33}$} \item \bezlh \begin{priklad} \lim_{x \to 2} \frac{1-\cos(x-2)}{x^3-2x^2-4x+8} \end{priklad} \res{$\frac18$} \item \bezlh \begin{priklad} \lim_{x \to +\infty} \frac{\sinh x}{\cosh x + \sinh x} \end{priklad} \res{$\frac12$} \item \bezlh \begin{priklad} \lim_{x \to -\infty} \frac{\sinh x}{\cosh x + \sinh x} \end{priklad} \res{$-\infty$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{1-\sqrt{\cos x}}{x^2} \end{priklad} \res{$\frac14$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\cos^2 x + \sin^8 x - \cos^3 x}{\sin^5 x + 1 - \cos^2 x + \sin^7 x} \end{priklad} \res{$\frac12$} \item \bezlh \begin{priklad} \lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x} - 2} \end{priklad} \res{$\frac{4}{3}$} \item \bezlh \begin{priklad} \lim_{x \to -\infty}\frac{\sqrt{x^2+1}}{x+1} \end{priklad} \res{-1} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{x^2}{\sqrt{1+x \sin{x}} - \sqrt{\cos{x}}} \end{priklad} \res{$\frac{4}{3}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\tg{x} - \sin{x}}{\sin^3{x}} \end{priklad} \res{$\frac{1}{2}$} \item \bezlh \begin{priklad} \lim_{x \to 4} \big( \frac{1}{x} - \frac{1}{4} \big) \big(\frac{1}{x-4} \big) \end{priklad} \res{$ -\frac{1}{16}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{x^2-3x}{\tg{x}} \end{priklad} \res{-3} \item \bezlh \begin{priklad} \lim_{x \to 1} (1-x) \tg{(x \frac{\pi}{2})} \end{priklad} \res{$\frac{2}{\pi}$} \item \bezlh \begin{priklad} \lim_{x \to \frac{\pi}{3}} \frac{\sin{(x-\frac{\pi}{3})}}{1-2\cos{x}} \end{priklad} \res{$\frac{\sqrt{3}}{3}$} \item \bezlh \begin{priklad} \lim_{x \to \frac{\pi}{2}_-} \frac{\frac{\pi}{2} - x}{\sin{x} \cos{x}} \end{priklad} \res{1} \item \bezlh \begin{priklad} \lim_{x \to \pi} \frac{\tg{x} - \sin{x}}{\cos ^3{x}} \end{priklad} \res{0} \item \bezlh \begin{priklad} \lim_{x \to 1} \frac{x^3+2x^2-x-2}{x^2-1} \end{priklad} \res{3} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{1- \cos{2x} + \tg^2{x}}{x \sin{x}} \end{priklad} \res{3} \item \bezlh \begin{priklad} \lim_{x \to 1} \frac{x^2 - x}{\sqrt{x} - 1} \end{priklad} \res{2} \item \bezlh \begin{priklad} \lim_{x \to +\infty} \frac{5-2x+ 3x^2}{3x-7+ 4x^2 } \end{priklad} \res{$\frac{3}{4}$} \item \bezlh \begin{priklad} \lim_{x \to -2} \frac{\sqrt{6+x} - 2}{x+2} \end{priklad} \res{$\frac{1}{4}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{(1+x)^5 - (1+5x)}{x^2+x^5} \end{priklad} \res{10} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sin{x} - x}{\sin{x} + x} \end{priklad} \res{0} \item \bezlh \begin{priklad} \lim_{x \to 2} \frac{x-2}{\sqrt{x+2} - 2} \end{priklad} \res{4} \item \bezlh \begin{priklad} \lim_{x \to \frac{\pi}{4}} \frac{\cos{x} - \sin{x}}{1-\tg{x}} \end{priklad} \res{$\frac{\sqrt{2}}{2}$} \item \bezlh \begin{priklad} \lim_{x \to +\infty} \frac{x^3 + 5x^4 - x^2 +3}{4-x^3+6x^2-x^4} \end{priklad} \res{-5} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2}}{\sin{x}} \end{priklad} \res{$\frac{\sqrt{2}}{4}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\cos{x} - 1}{1-\cos^2{x}} \end{priklad} \res{$-\frac{1}{2}$} \item \bezlh \begin{priklad} \lim_{x \to 8} \frac{\sqrt{9+2x} - 5}{\sqrt[3]{x} - 2} \end{priklad} \res{$\frac{12}{5}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \Big( \frac{\sin{3x}}{x} + \frac{\sin{x}}{3x}\Big) \end{priklad} \res{$\frac{10}{3}$} \item \bezlh \begin{priklad} \lim_{x \to -1} \frac{x^2-2x-3}{x^2+x^3-2x-2} \end{priklad} \res{4} \item \bezlh \begin{priklad} \lim_{x \to 5} \frac{25 + x^2 -10x}{x^3 -9x- 3x^2-5} \end{priklad} \res{0} \item \bezlh \begin{priklad} \lim_{x \to -1} \frac{x+1}{\sqrt{10+x} - 3} \end{priklad} \res{6} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{1- \cos{x}}{\tg{x}} \end{priklad} \res{0} \item \bezlh \begin{priklad} \lim_{x \to -2} \frac{x^3+2x^2+x+2}{x^2+3x+2} \end{priklad} \res{-5} \item \bezlh \begin{priklad} \lim_{x \to 2} \frac{x^3-4x}{x^4+x-18} \end{priklad} \res{$\frac{8}{33}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{\sin{x}} \end{priklad} \res{$\frac{1}{2}$} \item \bezlh \begin{priklad} \lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x - 1} \end{priklad} \res{$\frac{1}{4}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sin{4x}}{\sqrt{x+1}-1} \end{priklad} \res{8} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{1-\cos^2{x}}{x(1+\cos{x})} \end{priklad} \res{0} \item \bezlh \begin{priklad} \lim_{x \to 3} \frac{9-x^2}{\sqrt{3x} - 3} \end{priklad} \res{-12} \item \bezlh \begin{priklad} \lim_{x \to \frac{\pi}{4}} \frac{\sin{x} - \cos{x}}{\cos{2x}} \end{priklad} \res{$-\frac{\sqrt{2}}{2}$} \item \bezlh \begin{priklad} \lim_{x \to \pi} \frac{\sqrt{1-\tg{x}} - \sqrt{1+\tg{x}}}{\sin{2x}} \end{priklad} \res{$- \frac{1}{2}$} \item \bezlh \begin{priklad} \lim_{x \to a} \frac{\sin{x} - \sin{a}}{x^2 - a^2} \end{priklad} \res{$\frac{\cos{a}}{2a}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \Big( \frac{1}{\sin{x}} - \frac{1}{\tg{x}}\Big) \end{priklad} \res{0} \item \bezlh \begin{priklad} \lim_{x \to \frac{\pi}{2}} \Big( \frac{\sin{x}}{\cos^2{x}} - \tg^2{x} \Big) \end{priklad} \res{$\frac{1}{2}$} \item \bezlh \begin{priklad} \lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1} \end{priklad} \res{$\frac{2}{3}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x} \end{priklad} \res{$\frac{2}{3}$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt{x^2+1} -1}{\sqrt{x^2+16} -4} \end{priklad} \res{4} \item \bezlh \begin{priklad} \lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} \end{priklad} \res{3} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sin{x} - \tg{x}}{\sin^3{x}} \end{priklad} \res{$-\frac{1}{2}$} \item \bezlh \begin{priklad} \lim_{x \to -1} \frac{\sqrt[3]{1+2x} + 1}{ \sqrt[3]{2+x} + \sqrt[3]{x}} \end{priklad} \res{$1$} \item \bezlh \begin{priklad} \lim_{x \to -8} \frac{\sqrt{1-x} - 3}{2+\sqrt[3]{x}} \end{priklad} \res{-2} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}} \end{priklad} \res{$\frac{3}{2}$} \item \bezlh \begin{priklad} \lim_{x \to -\infty} \frac{\sqrt[3]{x^3-2x^2}}{x+1} \end{priklad} \res{1} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{(1+x)(1+2x)(1+3x)-1}{x} \end{priklad} \res{$6$} \item \bezlh \begin{priklad} \lim_{x \to 0} \frac{\sqrt{1-\cos(x^2)}}{1-\cos{x}} \end{priklad} \res{$\sqrt{2}$} \item \bezlh \begin{priklad} \lim_{x \to +\infty} \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x} \end{priklad} \res{$\frac{1}{2}$} \odstavec{l'Hôpitalovo pravidlo povoleno} \item \begin{priklad} \lim_{x \to 0} \frac{\ln\cos x}{\ln\cos(\pi x)} \end{priklad} \res{$\frac{1}{\pi^2}$} \item \begin{priklad} \lim_{x \to 0} \frac{\cosh{x}-1}{\cos{x}-1} \end{priklad} \res{$-1$} \item \begin{priklad} \lim_{x \to 0} \frac{\sinh(x)}{\sin{x}} \end{priklad} \res{$1$} \item \begin{priklad} \lim_{x \to -\infty} \frac{e^x - e^{-x}}{x+\frac{1}{x}} \end{priklad} \res{$+\infty$} \item \begin{priklad} \lim_{x \to 1} ~(1-x)\tg\left(x\frac{\pi}{2}\right) \end{priklad} \res{$\frac{2}{\pi}$} \item \begin{priklad} \lim_{x \to +\infty} \frac{\ln(4e^{-x})}{x} \end{priklad} \res{-1} \item \begin{priklad} \lim_{x \to +\infty} \sqrt{1+x+x^2} - \sqrt{1-x+x^2} \end{priklad} \res{1} \item \begin{priklad} \lim_{x \to -\infty} \sqrt{x^2+x+1} - \sqrt{x^2-x+1} \end{priklad} \res{-1} \item \begin{priklad} \lim_{x \to +\infty} \sqrt{x^2+x} - x \end{priklad} \res{$\frac{1}{2}$} \item \begin{priklad} \lim_{x \to -\infty} \sqrt{x^2+x} - x \end{priklad} \res{$+\infty$} \item \begin{priklad} \lim_{x \to 2} \big( \frac{1}{x-2} - \frac{1}{|x-2|} \big) \end{priklad} \res{neex} \item \begin{priklad} \lim_{x \to 0_-} \frac{\cos{x}\sqrt{1-\cos{2x}}}{x} \end{priklad} \res{$-\sqrt{2}$} \item \begin{priklad} \lim_{x \to 0} \frac{\sqrt{1-\cos{3x}}}{\sqrt{1-\cos^2{x}}} \end{priklad} \res{$\frac{3}{\sqrt{2}}$} \item \begin{priklad} \lim_{x \to \frac{\pi}{4}} \tg{(2x)} \ln{(\tg{x})} \end{priklad} \res{$-1$} \item \begin{priklad} \lim_{x \to 0} \frac{\ln{\cos{x}}}{\ln{\cos{(2x)}}} \end{priklad} \res{$\frac{1}{4}$} \item \begin{priklad} \lim_{x \to 0} \frac{e^{x}-e^{2x}}{x} \end{priklad} \res{-1} \item \begin{priklad} \lim_{x \to +\infty} \sqrt{x^2+3x-1} - x \end{priklad} \res{$\frac{3}{2}$} \item \begin{priklad} \lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x} \end{priklad} \res{0} \item \begin{priklad} \lim_{x \to 1} \frac{\sqrt{4x^2-5x-x^3+2}}{x^2-1} \end{priklad} \res{neex} \item \begin{priklad} \lim_{x \to 1} \Big( \frac{1}{1-x} - \frac{3}{1-x^3}\Big) \end{priklad} \res{-1} \item \begin{priklad} \lim_{x \to +\infty} \frac{(1-x)(1-2x)(1-3x)(1-4x)(1-5x)}{(x-1)^5} \end{priklad} \res{$-5!$} \item \begin{priklad} \lim_{x \to +\infty} \left(\frac{2x^2-1}{2x^2+1} \right)^{\frac{x+2}{x+1}} \end{priklad} \res{$1$} \item \begin{priklad} \lim_{x \to +\infty} \left(\frac{3x^2-1}{2x^2+1} \right)^{\frac{1+2x}{x+1}} \end{priklad} \res{$\frac94$} \item \begin{priklad} \lim_{x \to +\infty} x \left(\ln(x+1)-\ln x \right) \end{priklad} \res{$1$} \item \begin{priklad} \lim_{x \to +\infty} \arctg \frac{x}{\sqrt{1+x^2}} \end{priklad} \res{$\frac{\pi}{4}$} \item \begin{priklad} \lim_{x \to -\infty} \arctg \frac{x}{\sqrt{1+x^2}} \end{priklad} \res{$-\frac{\pi}{4}$} \item \begin{priklad} \lim_{x \to 1_-} \arctg \frac{1}{1-x} \end{priklad} \res{$\frac{\pi}{2}$} \item \begin{priklad} \lim_{x \to +\infty} \arcsin\frac{x}{x+1} \end{priklad} \res{$\frac{\pi}{2}$} \odstavec{Spojitost} \item Vyšetřete charakter bodů nespojitosti funkce \begin{priklad} f(x) = \arctg\frac{x^2-1}{x} \end{priklad} \res{v 0 skoková nespojitost} \item Vyšetřete charakter bodů nespojitosti funkce \begin{priklad} f(x) = \sqrt{|x|}\arctg\frac{1}{x} \end{priklad} \res{v 0 odstranitelná nespojitost} \item Vyšetřete charakter bodů nespojitosti funkce \begin{priklad} f(x) = x\sin\frac{1}{x} \end{priklad} \res{v 0 odstranitelná nespojitost} \item Vyšetřete charakter bodů nespojitosti funkce \begin{priklad} f(x) = \frac{1}{\arcctg\frac{1}{x}} \end{priklad} \res{v 0 podstatná nespojitost} \end{enumerate}