02GR:Kapitola3: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
m
m (důkaz důsledku Sylowovy věty)
Řádka 810: Řádka 810:
 
\end{enumerate}
 
\end{enumerate}
 
\end{dusl}
 
\end{dusl}
 +
 +
\begin{proof}
 +
  1) $\implies$ 2): $n_p=1$, znamená že pro všechna $g\in G$ platí $|gPg^{-1}|=|P|$, tudíž $gPg^{-1}=P$, tj. $P \npg G$.\\
 +
  2) $\implies$ 1): $\forall g\in G, gPg^{-1}=P$. Nechť $\tilde(P)\in Syl_p(G)$. Pak $\tilde{P}=gPg^{-1}=P$.
 +
\end{proof}

Verze z 27. 12. 2018, 10:09

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02GR

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02GRMaresj23 23. 12. 201221:49
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201513:51
Header editovatHlavičkový souborNguyebin 26. 12. 201516:53 header.tex
Kapitola0 editovatPředmluvaNguyebin 26. 12. 201516:55 kapitola0.tex
Kapitola1 editovatGrupyKubuondr 5. 1. 201910:03 kapitola1.tex
Kapitola2 editovatPodgrupyKubuondr 25. 12. 201814:30 kapitola2.tex
Kapitola3 editovatFaktor grupyKubuondr 7. 1. 201922:00 kapitola3.tex
Kapitola4 editovatPřímý a polopřímý součin grupKubuondr 6. 1. 201913:45 kapitola4.tex
Kapitola5 editovatReprezentaceKubuondr 6. 1. 201917:50 kapitola5.tex
KapitolaA editovatLiteraturaMaresj23 21. 12. 201216:45 literatura.tex

Vložené soubory

soubornázev souboru pro LaTeX
Soubor:02GR_trojuhelnik.jpg‎ trojuhelnik.jpg
Soubor:02GR_usporadani.jpg‎ usporadani.jpg
Soubor:02GR_mrizka.PNG mrizka.PNG
Soubor:02GR_vlakna.PNG‎ vlakna.PNG
Soubor:02GR_nasobeni_reprezentanti.PNG‎ nasobeni_reprezentanti.PNG

Zdrojový kód

%\wikiskriptum{02GR}
 
% ****************************************************************************************************************************
%                             KAPITOLA: Faktor grupy
% ****************************************************************************************************************************
 
\chapter{Faktor grupy}
 
\begin{remark}
Studium faktor grup dané grupy $G$ nám umožňuje zkoumat její strukturu a je ekvivalentní zkoumání homomorfismů $G$.
\end{remark}
 
 
\begin{define}
  Mějme homomorfismus $\varphi : G \rightarrow H$. \textbf{Vláknem} homomorfismu $\varphi$ příslušejícím prvku $x \in H$ nazýváme množinu $\{y \in G|\varphi(y)=x\}$, tedy množina všech prvků, které se zobrazí na $x$. (Obr. \ref{fig:vlakna}).
\end{define}
 
\begin{figure}[!htbt]
	\centering
	\includegraphics[scale=.8]{vlakna.PNG}
	\caption{Znázornění vláken homomorfismu. Převzato z \cite{AA}.}
	\label{fig:vlakna}
\end{figure}
 
 
\begin{corollary}
  Pro homomorfismus $\varphi$ : $G \rightarrow H$ platí:
  \begin{enumerate}
  	\item $\varphi(e_G)=e_H$
  	\item $\varphi(g^{-1})=\varphi(g)^{-1}$
  	\item $\varphi(g^{n})=\varphi(g)^{n}$
  	\item $\Ker\varphi \le G$
  	\item $\varphi(G) \le H$
    \end{enumerate}
\end{corollary}
    \end{enumerate}
 
\begin{proof}
  \begin{enumerate}
  	\item $\varphi(e_G)=\varphi(e_G e_G)=\varphi(e_G)^2\implies$ (krácení v H) $\varphi(e_G)=e_H$.
  	\item $\varphi(g)\varphi(g^{-1})=\varphi(gg^{-1})=\varphi(e_G)=e_H$, tedy $\varphi(g^{-1})=\varphi(g)^{-1}$.
  	\item Indukcí na $n$.
  	\item Stačí dokázat  $g_1,g_2\in\Ker\varphi\implies g_1 g_2^{-1}\in \Ker\varphi.$ platí $e_G\in\Ker\varphi$, tj. jádro je neprázdné. Nechť $g_1,g_2\in\Ker\varphi.$ Pak $\varphi(g_1)=\varphi(g_2)=e_G.$ Potom $\varphi(g_1 g_2^{-1})=\varphi(g_1)\varphi(g_2^{-1})=e_H$.
  	\item Stejně jako předchozí bod, jen předpoklad $h_1=\varphi(g_1)$.  
\end{proof}
 
\begin{define}
  Mějme homomorfismus $\varphi : G \rightarrow H$ s jádrem $\Ker\varphi=K$. Potom \textbf{faktor grupa} $G/K$ ($G$ mod $K$) je grupa na vláknech $\varphi$ s operací definovanou pomocí reprezentantů: pokud $X$ je vlákno nad $a$ a $Y$ je vlákno nad $b$, pak prvek $XY \in G/K$ je vlákno nad $ab$.
\end{define}
 
\begin{remark}
To, že faktor grupa má skutečně vlastnosti grupy, se lehce ověří z platnosti těchto vlastností v $G$.
\end{remark}
 
\section{Levé a pravé třídy}
 
\begin{theorem}
\label{v:tridy}
  Mějme homomorfismus $\varphi : G \rightarrow H$ s jádrem $\Ker\varphi=K$ a nechť $X_a \in G/K$ je vlákno nad $a \in H$, tedy $X_a=\varphi^{-1}(a)$. Potom platí: 
  \begin{enumerate}
  	\item $\all u \in X_a$ je $X_a=\{uk|k \in K\}$,
  	\item $\all u \in X_a$ je $X_a=\{ku|k \in K\}$.
    \end{enumerate}
  \begin{proof}
  Dokážeme pouze první bod (druhý se dokazuje analogicky). Označme $uK = \{uk|k \in K\}$, mějme $u \in X_a$ (tedy $\varphi(u)=a$) a ukážeme, že $uK \subset X_a$: $\varphi(uk)=\varphi(u)\varphi(k)=\varphi(u)e=a$. (Využili jsme nejprve toho, že $\varphi$ je homomorfismus a pak toho, že $k$ je z jádra.) 
  Pro důkaz opačné inkluze mějme libovolné $g \in X_a$ a vezměme $k=u^{-1}g$. Jelikož $\varphi(k)=\varphi(u^{-1}g)=\varphi(u^{-1})\varphi(g)=a^{-1}a=e$, $k$ patří do jádra. Dále zřejmě $g=uk$, tedy $g \in uK$.
  \end{proof}
\end{theorem}
 
\begin{remark}
  Právě dokázaná věta nás opravňuje považovat vlákna a množiny $uK=Ku$ za třídy ekvivalence vzhledem k ekvivalenci $a\sim b\Leftrightarrow a=k b$ pro nějaké $k \in K$. (Triviální ověření vlastností ekvivalence je přenecháno čtenáři.)
\end{remark}
 
\begin{define}
  Pro libovolnou $H \le G$ a libovolné $g \in G$ nazýváme množiny $gH=\{gh|h \in H\}$ respektive $Hg=\{hg|h \in H\}$ \textbf{levé} respektive \textbf{pravé třídy} $H$ v $G$. Libovolný prvek třídy nazýváme jejím \textbf{reprezentantem}.
\end{define}
 
\begin{theorem}
  Buďte $G$ grupa a $K$ jádro nějakého homomorfismu $\varphi$ z $G$ do nějaké grupy. Potom množina levých tříd $K$ v $G$ s operací definovanou jako $aK \otimes bK = (ab)K$ je grupa $G/K$. Tedy tato operace je dobře definovaná (nezávisí na výběru reprezentanta). (Obr. \ref{fig:nasobeni_reprezentanti})
  \begin{proof}
Mějme $X,Y \in G/K$, $X=\varphi^{-1}(a)$, $Y=\varphi^{-1}(b)$ a $Z=XY \in G/K$. Podle definice operací v $G/K$ je $Z=\varphi^{-1}(ab)$. Z věty \ref{v:tridy} víme, že prvky $G/K$ jsou levé třídy $K$. Je třeba ukázat, že i operace, kterou zde definuje pomocí reprezentantů odpovídá původní definici násobení v $G/K$ bez ohledu na výběr reprezentanta. Mějme $u \in X$ a $v \in Y$, tedy $\varphi(u)=a$, $\varphi(v)=b$ a $X=uK$ a $Y=vK$. Určíme, zda $uv \in Z$. 
\begin{align}
\varphi(uv)=\varphi(u)\varphi(v)=ab \nonumber 
\end{align}
Odtud tedy plyne, že $uv \in Z$, a tedy $Z=uvK$.
  \end{proof}
\end{theorem}
 
 
\begin{figure}
    \centering
    \includegraphics[scale=0.6]{nasobeni_reprezentanti.PNG}
    \caption{Znázornění násobení v $G/K$ pomocí reprezentantů levých tříd. Převzato z \cite{AA}.}
    \label{fig:nasobeni_reprezentanti}
\end{figure}
 
 
\begin{theorem}
  Nechť $N \le G$, potom množina levých tříd $N$ v $G$ tvoří rozklad $G$ (jejich sjednocením je $G$ a jednotlivé třídy mají prázdný průnik). Dále $\all u,v \in G $ platí $uN=vN$ právě tehdy, když $u^{-1}v \in N$, tedy když $u$ a $v$ jsou reprezentanty stejné třídy.
  \begin{proof}
Nejprve ukážeme, že sjednocením levých tříd je celé $G$. Jelikož $N$ je grupa, pak $e \in N$, a tedy platí:
\begin{align}
\bigcup_{g \in G} gN \subset \bigcup_{g \in G} ge = G. \nonumber 
\end{align}
Pro důkaz druhé části vezmeme $uN \cap vN \neq \emptyset$ a ukážeme, že potom platí $uN = vN$. Vezměme $x \in uN \cap vN$, tedy $x$ můžeme napsat jako $x= un_1 = vn_2$ pro nějaká $n_1,n_2 \in N$. Rovnost vynásobíme zprava $n_1^{-1}$ a dostaneme $u = vn_2 n_1^{-1} = vn_3$ pro nějaké $n_3 \in N$. Tedy vidíme, že $u \in vN$. Dále pro libovolné $t \in uN$ platí $t = un_4 = (vn_3)n_4 = vn_5$, takže $t \in vN$ pro $\all t \in uN$, tedy $uN \subset vN$. Opačnou inkluzi dostaneme záměnou role $u$ a $v$.
 
Jelikož víme, že $u=vn_3$, pak platí $v^{-1}u=n_3$, tedy $v^{-1}u \in N$ a to platí pro libovolné reprezentanty tříd.
  \end{proof}
\end{theorem}
 
\begin{remark}
  Právě dokázaná věta říká, že levé třídy jsou třídy ekvivalence vzhledem k ekvivalenci $a\sim b\Leftrightarrow a=n b$ pro nějaké $n \in N$ a $G$ je tedy rozloženo do tříd ekvivalence.
\end{remark}
 
\begin{theorem}
\label{v:normalni}
  Buď $G$ grupa a $N \le G$. Potom:
  \begin{enumerate}
  	\item Operace na levých třídách definovaná jako $uNvN=(uv)N$ je dobře definovaná právě tehdy, když $(gng^{-1} \in N)(\all g \in G $ a $ \all n \in N)$.
  	\item Je-li výše uvedená operace dobře definovaná, pak je množina levých tříd $N$ grupou s jednotkou $eN$ a inverzním prvkem $(gN)^{-1}=g^{-1}N$.
    \end{enumerate}
  \begin{proof}
    \begin{enumerate}
       \item
       \begin{enumerate}
          \item[$\ra$)] Nechť je operace na levých třídách dobře definovaná, tedy
            \begin{align}
              (\all u,v \in G)(u,u_1 \in uN \text{ a } v,v_1 \in vN \ra uvN=u_1v_1N).
              \end{align}
            Nechť $g \in G$ a $n \in N$ libovolné. Položíme $u = e$, $u_1 = n$ a $v = v_1 = g^{-1}$ a z předpokladu dostaneme
            \begin{align}
              g^{-1}N=ng^{-1}N
              \end{align}
            Protože $e \in N$, $ng^{-1} \in g^{-1}N$. Tedy $ng^{-1}=g^{-1}n_1$, pro nějaké $n_1 \in N$. Vynásobením $g$ zleva dostáváme požadovanou rovnost $gng^{-1}=n_1 \in N$.
           \item[$\la$)] Předpokládáme $(gng^{-1} \in N)(\all g \in G$ a $\all n \in N)$ a vezmeme $u,u_1 \in uN$ a $v,v_1 \in vN$. Pak můžeme psát $u_1=un$ a $v_1=vm$ pro nějaké $n,m \in N$. Musíme ukázat, že $u_1v_1 \in uvN$:
            \begin{align}
              u_1v_1=(un)(vm)=u(vv^{-1})nvm=(uv)(v^{-1}nv)m=(uv)(n_1)m=uvn_2 \in uvN,
              \end{align}
             kde $n_1=v^{-1}nv=(v^{-1})n(v^{-1})^{-1} \in N$ z předpokladu a $n_2 = n_1m \in N$ z definice. Protože $u_1v_1 \in uvN \cap u_1v_1N$, plyne z předchozí věty rovnost $uvN = u_1v_1N$.
           \end{enumerate}
         \item Je-li operace na levých třídách dobře definovaná, axiomy grupy se přenášejí z $G$. Asociativita:
           \begin{align}
             (uN)(vNwN)=uN(vwN)=u(vw)N=(uv)wN=(uNvN)(wN),\quad \all u,v,w \in G
             \end{align}
           Z definice násobení je vidět že jednotka v $G/N$ je $N$ a $g^{-1}N$ je inverze $gN$.
      \end{enumerate}
	%str 81/95
  \end{proof}
\end{theorem}
 
 
 
%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxx
 
 
 
%\begin{define}
%  Operce na levých třídách (na pravých obdobně) $N$ v $G$ je \textbf{dobře definovaná}, pokud $(\all u,u_1 \in uN)(\all v,v_1 \in vN)$ platí $(uvN=u_1v_1 N)$.
%\end{define}
%
%
%\begin{theorem}
%  Máme-li $N \le G$, potom:
%  \begin{enumerate}
%  	\item Operace na levých třídách je dobře definovaná $\lra$ $(\all n \in N)(\all g \in G)(gng{-1}N)$.
%  	\item Je-li operace dobře definovaná, pak množina tříd s touto operací tvoří grupu. (Tedy jsem schopen vytvořit faktor grupu.)
%    \end{enumerate}
%  \begin{proof}
%  \begin{enumerate}
%  	\item $\la)$ Nechť ($u=e, u_1 \in N, v=v_1=g^{-1} \in G) \le (eg^{-1}N=u_1g^{-1}) \le (N=gug^{-1}N)$.\\
%  	$\ra) (\all n\in N, \all g \in G)(gng^{-1}\in N).$ Mějme $u_1,u_2 \in u_1 N$ a $v_1,v_2 \in v_1 N$ ??????????
%  	\item $eN=N$ (jednotka je $N$), $(gN)^{-1}=g^{-1}N$, asociativita.
%    \end{enumerate}
%  \end{proof}
%\end{theorem}
 
%____________________________________________________________________________________________
 
\section{Normální podgrupy}
 
\begin{define}
  Prvek $m=gng^{-1}$ se nazývá \textbf{konjugovaný} k $n$ prvkem $g$.
\end{define}
 
\begin{define}
  Buď $A \subset G$ libovolná podmnožina grupy. Množina $M=gAg^{-1}$ se nazývá \textbf{konjugovaná} k $A$ prvkem $g$.
\end{define}
 
%\begin{define}
%  Buď $\emptyset \neq A \subset G$. Množinu $C_G(A)=\{g\in  G|(gag^{-1}=a )(\all a \in A)\}$ nazveme \textbf{centralizátor} $A$ v $G$.
%\end{define}
%
%\begin{theorem}
%  $C_G(A) \le G$.
%  \begin{proof}
%	$e \in C_G(A), g_1 g_2 = a, g_1^{-1} g_2^{-1} = a$ 
%  \end{proof}
%\end{theorem}
%
%
%\begin{define}
%  \textbf{Centrum} grupy je $Z_G=\{z \in G|gzg^{-1}=z \all g \in G\}=C_G(G)$. (Neboli $gz=zt$ - všechny prvky, které komutují s celou grupou. Je to množina, kterou centralizuje celá grupa.)
%\end{define}
%
%\begin{define}
%  Množinu $N_G(A)=\{g\in G|gAg^{-1}=A\}$ nazveme \textbf{normalizátor} $A$ v $G$.
%\end{define}
%
%\begin{remark}
%  $C_G(A) \le N_G(A)$.
%\end{remark}
 
\begin{define}
  Pokud pro $N \le G$ platí $N_G(N)=G$ (normalizátor $N$ v $G$), pak $N$ nazýváme \textbf{normální} podgrupa. Značíme $N \npg G$
\end{define}
 
\begin{remark}
Pro ověření, zda podgrupa $N \le G$ je normální, stačí ověřit, že komutuje s generátory množiny $G \setminus N$ (množinový rozdíl), pokud tyto generátory známe.
\end{remark}
 
\begin{theorem}
\label{v:ekvivalence_normalni}
  Nechť $N \le G$, potom následující tvrzení jsou ekvivalentní:
  \begin{enumerate}
  	\item $N \npg G$
  	\item $N_G(N)=G$
  	\item $gN=Ng$ pro $\forall g \in G$.
  	\item Operace na třídách je dobře definovaná.
  	\item $gNg^{-1} \subset N$ pro $\forall g \in G$.
  \end{enumerate}
  \begin{proof}
	Přepsání definic a věta \ref{v:normalni}.
  \end{proof}
\end{theorem}
 
\begin{theorem}
  Nechť $N \le G$, potom $N \npg G$ právě tehdy když $\exists$ homomorfismus $\varphi$ takový, že $N=\Ker\varphi$.
  \begin{proof}
    \begin{enumerate}
      \item[$\la$)] Podle věty \ref{v:tridy} víme, že levé a pravé třídy jsou stejné ($gN = Ng$), což je podle věty \ref{v:ekvivalence_normalni} ekvivalentní normálnosti grupy.
 
      \item[$\ra$)] Nyní máme $N \npg G$ a označíme $H = G/N$ (podle věty \ref{v:ekvivalence_normalni} je operace na levých třídách pro normální grupu dobře definovaná). Definujeme zobrazení $\pi: G \rightarrow G/N$ jako $\pi(g) = gN$ pro $\all g \in G$. Z definice operací v $G/N$ platí pro $\all f,g \in G$: $\pi(fg) = (fg)N = fNgN = \pi(f)\pi(g)$, tedy $\pi$ je homomorfismus. Jeho jádro je: $\Ker(\pi) = \{g \in G | \pi(g) = eN\} = \{g \in G | gN = eN \} = \{g \in G | g \in N\} = N$.
    \end{enumerate}
  \end{proof}
\end{theorem}
 
\begin{remark}
  Nyní můžeme faktorizovat podle normální podgrupy $G/N$, aniž bychom měli homomorfismus.
\end{remark}
 
\begin{define}
  Buď $N \npg G$, pak zobrazení $\pi:G \rightarrow G/N: \pi(g)=gN$ nazýváme \textbf{přirozená projekce} $G$ na $G/N$.
\end{define}
 
%____________________________________________________________________________________________
 
\section{Index grupy, Lagrangeova věta}
 
\begin{theorem}[Lagrange]
\label{v:lagrange}
  Nechť $G$ je konečná, $H \le G$, potom $|H|$ dělí $|G|$. Navíc počet levých tříd $H$ v $G$ je roven $\frac{|G|}{|H|}$.
  \begin{proof}
Nejprve ukážeme, že všechny levé třídy mají stejně prvků. Označme $|H|=|eH|=n$ a $k$ počet levých tříd a definujme zobrazení $f:aH\rightarrow bH$ mezi libovolnými dvěma levými třídami $aH$ a $bH$ předpisem $f(x)=ba^{-1}x$. Protože zobrazení s předpisem $f^{-1}(y)=ab^{-1}y$ je zřejmě inverzní k $f$, je $f$ bijekce mezi levými třídami, a ty tedy mají stejný počet prvků.
 
Jelikož je tedy $G$ rozděleno na $k$ levých tříd o $n$ prvcích, platí $|G|=kn$, a tedy $k=\frac{|G|}{n}$.
  \end{proof}
\end{theorem}
 
\begin{remark}
  První část důkazu (všechny levé třídy mají stejně prvků) platí i pro nekonečné grupy. 
\end{remark}
 
\begin{remark}
  Komutativní grupa prvočíselného řádu nemůže mít netriviální normální podgrupu.
\end{remark}
 
\begin{define}
Buď $G$ grupa (i nekonečného řádu) a $H \le G$. Potom počet levých tříd $H$ v $G$ nazýváme \textbf{index} $H$ v $G$ a značíme $|G:H|$.
\end{define}
 
\begin{remark}
  Nechť $H\le G$ má index $|G:H|=2$. Potom je $H$ normální podgrupou, protože rozklady do levých a pravých tříd $G=H\cup gH=H\cup Hg$ implikuje rovnost $gH=Hg$. 
\end{remark}
 
\begin{remark}
Pro konečné grupy tedy platí $|G:H|=\frac{|G|}{|H|}$.
\end{remark}
 
 
\begin{dusl}
Pro konečnou grupu $G$ a $x \in G$ platí $|x|$ dělí $|G|$.
\end{dusl}
 
\begin{proof}
  Díky konečnosti řádu prvku v konečné grupě, dokázané v pozn. \ref{rad prvku rad grupy}, tvoří mocniny $x$ cyklickou podgrupu $G$.
\end{proof}
 
\begin{dusl}
Grupa prvočíselného řádu je cyklická.
\end{dusl}
 
\begin{theorem}[Cauchy]
  Nechť grupa $G$ má řád $|G|=n\in \N$ a $p$ je prvočíslo, které dělí $n$. Pak existuje prvek $x\in G$ s řádem $|x|=p$ 
\end{theorem}
 
\begin{proof}
  Protože máme konečnou grupu, řád prvku $x$ dělí řád grupy $G$. Proto pro každé $x\in G$ a $k$ řád $x$ platí $x^n=\left(x^k\right)^\frac{n}{k}=e$. Protože $p$ dělí $n$, tj. $n=pk$, platí $x^n=x^{kp}=\left(x^k\right)^p=e$, tj. $x^k$ má řád $p$.
\end{proof}x\in G
 
\begin{define}
Grupu $G$, jejíž jediné normální podgrupy jsou triviální ($e$ a $G$), nazýváme \textbf{prostá}.
\end{define}
 
\begin{remark}
Opačné tvrzení k Lagrangeově větě neplatí. Tedy konečná grupa $G$, jejíž řád má dělitele $n$, nemusí mít podgrupu řádu $n$. (Platí to pro konečné abelovské grupy.) 
\end{remark}
 
%____________________________________________________________________________________________
 
\section{Součinová podgrupa}
 
\begin{define}
Zavádíme \uv{součin} podgrup $K,H \le G$ jako: $KH= \{kh | k \in K, h \in H \}$.
\end{define}
 
%A další věci od strany 93... nevím, co z toho se dělalo na přednášce.
 
\begin{theorem}
	Nechť $H$ a $K$ jsou podgrupy konečné grupy $G$, pak
	\begin{align}
		|HK|=\frac{|H||K|}{|H \cap K|}.
		\end{align}
	\begin{proof}
		$HK$ můžeme napsat jako sjednocení levých tříd $K$,
		\begin{align}
			HK = \bigcup_{h \in H}hK.
			\end{align}
		Protože všechny levé třídy mají stejný počet prvků $|K|$, stačí zjistit počet různých levých tříd tvaru $hK, h \in H$. Ale $h_1K = h_2K$ pro $h_1,h_2 \in H$, právě když $h_2^{-1}h_1 \in K$. Tedy
		\begin{align}
			h_1K=h_2K \Leftrightarrow h_2^{-1}h_1 \in H \cap K \Leftrightarrow h_1(H \cap K) = h_2(H \cap K).
			\end{align}
		To znamená, že počet různých levých tříd tvaru $hK, h \in H$ je stejný jako počet levých tříd tvaru $h(H \cap K), h \in H$. A to je, z Lagrangeovy věty, rovno $\frac{|H|}{|H \cap K|}$	. Tedy $HK$ obsahuje $\frac{|H|}{|H \cap K|}$	různých levých tříd K, kde každá má $|K|$ prvků, čímž dostáváme tvrzení věty.
		\end{proof}
	\end{theorem}
 
\begin{theorem}
	Nechť $H,K \le G$, pak $HK \le G$ právě tehdy, když $HK = KH$.
	\begin{proof}
		\begin{enumerate}
			\item[$\la$)] Nechť $HK = KH$ a $a,b \in HK$. Ukážeme, že $ab^{-1} \in HK$, takže $HK$ je podgrupa. Můžeme psát $a = h_1k_1$ a $b = h_2k_2$ pro nějaké $h_1,h_2 \in H$ a $k_1,k_2 \in K$. Tedy
				\begin{align}
					ab^{-1}=h_1k_1k_2^{-1}h_2^{-1}=h_1k_3h_2^{-1}
					\end{align}
				kde $k_3 = k_1k_2^{-1} \in K$. Užitím předpokladu můžeme napsat $k_3h_2^{-1}=h_4k_4$ a dostáváme
				\begin{align}
					ab^{-1}=(h_1h_4)k_4 \in HK.
					\end{align}	
			\item[$\ra$)] Vezměme $a\in KH$. Pak $a=kh$ a platí $a^{-1}=(kh)^{-1}=h^{-1}k^{-1}\in HK$. Protože $HK$ je podgrupa, je i $a\in HK$ a tudíž $KH \subset HK$. Pro důkaz opačné inkluze vezmeme $hk \in HK$. Protože $HK$ je podgrupa, můžeme psát $hk = a^{-1}$ pro nějaké $a \in HK$. Ale taky $a = h_1k_1$ pro nějaké $h_1 \in H$, $k_1 \in K$. Dostáváme tedy
			\begin{align}
				hk=(h_1k_1)^{-1}=k_1^{-1}h_1^{-1} \in KH.
				\end{align}		
			\end{enumerate}
		\end{proof} 
	\end{theorem}	
 
\begin{dusl}
	Nechť $H,K \le G$ a $H \le N_G(K)$, pak $HK \le G$. Speciálně pokud $K \npg G$, pak $HK \le G$ pro libovolnou $H \le G$.
	\begin{proof}
		Ukážeme že $HK = KH$. Nechť $h \in H$, $k \in K$. Z předpokladu máme $hkh^{-1} \in K$, tudíž
		\begin{align}
			hk=(hkh^{-1})h \in KH.
			\end{align}
			Ukázali jsme tedy, že $HK \subset KH$. Opačná inkluze se ukáže analogicky a z předchozí věty už plyne, co jsme chtěli dokázat.
		\end{proof}
	\end{dusl}
 
 
 
%____________________________________________________________________________________________
 
\section{Věty o isomorfismech}
 
 
\begin{theorem}[1. VOI] Pokud $\varphi : G \rightarrow H$ je homomorfismus, pak $\Ker\varphi \npg G$ a $G/\Ker \varphi \cong \varphi(G)$.
  \begin{proof}
  První část je zřejmá z vět \ref{v:tridy} a \ref{v:ekvivalence_normalni}. Důkaz druhé spočívá v ověření, že $\varphi':g/\Ker \varphi \rightarrow \varphi(G):\varphi'(g\Ker \varphi)=\varphi(g)$ je izomorfismus, což je ponecháno jako cvičení. 
  \end{proof}
\end{theorem}
 
\begin{dusl}
Buď $\varphi : G \rightarrow H$ homomorfismus. Potom platí:
\begin{enumerate}
	\item $\varphi$ je monomorfní, právě když $\Ker \varphi = e$,
	\item $|G:\Ker\varphi| = |\varphi(G)|$.
\end{enumerate}
\end{dusl}
 
 
\begin{theorem}[2. VOI, \uv{diamantová}] \label{2.VOI}
Buď $G$ grupa a $A \le G$, $B \le G$ a $A \le N_G(B)$. Potom $AB \le G$, $B \npg AB$, $A \cap B \npg A$ a $AB/B \cong A/A \cap B$. 
  \begin{proof}
	Z předchozího důsledku plyne, že $AB \le G$. Protože $A \le N_G(B)$ z předpokladu a $B \le N_G(B)$ triviálně, je taky $AB \le N_G(B)$, tedy $B \npg AB$ a faktorgrupa $AB/B$ je dobře definována. Definujeme proto homomorfismus $\varphi :A \rightarrow AB/B$ předpisem $\varphi(a)= aB$:
	\begin{align}
		\varphi(a_1a_2)=(a_1a_2)B=a_1Ba_2B=\varphi(a_1)\varphi(a_2).
		\end{align}
		Z definice je vidět, že $\varphi$ je surjektivní. Jednotkový prvek v $AB/B$ je $B$, tedy $\Ker\varphi = \{a \in A,\ aB = B\} = A \cap B$. Z 1. VOI už plyne, že $A \cap B \npg A$ a $A/A \cap B \cong AB/B$.
		\end{proof}
\end{theorem}
 
 
\begin{theorem}
  [3. VOI] Buď $G$ grupa a $H \npg G$, $K \npg G$ a $H \le K$. Potom $K/H \npg G/H$ a $(G/H)/(K/H)\cong G/K$. Označíme-li faktor grupu podle $H$ pruhem, tvrzení lze přepsat ve tvaru $\bar{G}/\bar{K} \cong G/K$. 
  \begin{proof}
	Definujeme homomorfismus
		$\varphi : G/H \rightarrow G/K$ předpisem $\varphi(gH) = gK$. Abychom ukázali že $\varphi$ je dobře definované, vezmeme $g_1H = g_2H$. Potom $g_1 = g_2h$ pro nějaké $h \in H$. Protože $H \le K$, je taky $h \in K$, proto $g_1K = g_2K$. Tudíž $\varphi(g_1H) = \varphi(g_2H)$ a $\varphi$ je dobře definované. Protože $g$ může být libovolné, je $\varphi$ taky surjektivní. Dále
		\begin{align}
			\Ker\varphi = \{gH \in G/H | \varphi(gH) = K\} = \{gH \in G/H | gK = K\} = \{gH \in G/H | g \in K \} = K/H,
			\end{align}
		z 1. VOI už plyne $(G/H)/(K/H) \cong G/K$.	
	\end{proof}
\end{theorem}
 
\begin{remark}
Následují věta hovoří o vztahu struktury podgrup původní grupy $G$ a faktorgrupy $G/N$. Vlastně říká, že struktura podgrup faktorgrupy je stejná jako struktura podgrup $G$, které obsahují $N$. 
\end{remark}
 
\begin{theorem}\label{4.VOI}
  [4. VOI, \uv{mřížková}] Buď $G$ grupa a $N \npg G$. Potom existuje bijekce $\theta$ z množiny podgrup $G$ obsahujících $N$ na množinu podgrup $G/N$, která každé podgrupě $A$ z první množiny přiřazuje podgrupu $A/N$ ze druhé. Zobrazení $\theta$ má navíc tyto vlastnosti: Pro $A,B\leq G$ obsahující $N$ jako podgrupu platí
\begin{enumerate}
  \item $B\leq A\Leftrightarrow B/N\leq A/N,$
  \item Je–li $A\leq B$, pak $|B:A|=|B/N:A/N|,$
  \item $\cycl{A,B}/N=\cycl{A/N,B/N},$
  \item $A/N\cap B/N=(A\cap B)/N,$
  \item $A \npg B \Leftrightarrow A/N \npg B/N.$
\end{enumerate}
  \begin{proof}
Ověříme, že zobrazení $\theta$ definované pomocí $A\mapsto A/N$ je bijekce: Nejprve prostota. Nechť $A/N=B/N$. Pak $\forall a\in A$ platí $aN=bN$ pro nějaké $b\in B$, tj. $a^{-1}b\in N\subset B$ a $A\subset B$. Druhá inkluze se dokáže stejně.
Nyní surjektivita: Je–li $S$ podgrupa $G/N$, a $\phi:G\rightarrow G/N$, pak $\phi^{-1}(S)=\{s\in G|sN\in S\}$ je podgrupa $G$ obsahující $N=\phi^{-1}(\{e\})$ a $\theta(\phi^{-1}(S))=\{sN|sN\in S\}=S$, což dokazuje surjektivitu.\\
Nyní ověříme vlastnosti:
\begin{enumerate}
  \item Z $A \leq B$ plyne $A/N \leq B/N$ díky tomu, že operace na levých třídách je díky $N \npg G$ dobře definovaná, obráceně proto, že $\theta$ je bijekce.
  \item Zobrazení $\psi$ zobrazuje levé třídy v $B/A$ do levých tříd v $(B/N)/(A/N)$ tak, že pro $b\in B$ zobrazí $bA$ na $(bN)(A/N)$. $\psi$ je dobře definované a prosté, protože $b_1 A=b_2 A\Leftrightarrow b_1^{-1}b_2\in A\Leftrightarrow (b_1 N)^{-1}(b_2 N)\in (A/N)\Leftrightarrow (b_1 N)(A/N)=(b_2 N)(A/N).$ $\psi$ je také surjektivní, protože v $(bN)(A/N)$ prochází $b$ celé $B$, a tedy $\psi$ je izomorfismus.
  \item Protože $N \npg G$, je operace na levých třídách dobře definovaná. Proto pro důkaz inkluze $\cycl{A,B}/N\subset \cycl{A/N,B/N}$ stačí ověřit $xN\subset\cycl{A/N,B/N}$ pro $x\in A$ nebo $x\in B$. To ale zřejmě platí, protože $x\in A$ implikuje $xN\in A/N$, stejně pro $x\in B$. Podobně pro inkluzi $\cycl{A/N,B/N}\subset \cycl{A,B}/N$ stačí ověřit, že $xN\in A/N$ nebo $xN\in B/N$ implikuje $x\in \cycl{A,B}$. Nechť tedy $xN\in A/N$, pak $xN=aN$ pro nějaké $a\in A$, tudíž $a^{-1}x\in N\subset A\subset \cycl{A,B}$ a stejně pro $xN\in B/N$.
  \item Dodělat.
\end{enumerate}
  \end{proof}
\end{theorem}
 
 
 
%____________________________________________________________________________________________
 
\section{Kompoziční řady}
 
 
\begin{theorem}\label{v: cauchy abel}
Je-li $G$ konečná Abelovská grupa a $p$ prvočíslo, které dělí $|G|$, pak $G$ obsahuje prvek řádu $p$.
  \begin{proof}
Důkaz se provádí pomocí takzvané úplné indukce podle řádu $G$. Tedy se předpokládá, že tvrzení platí pro všechny grupy řádu ostře menšího než $|G|$ a ukáže se platnost pro $|G|$. Pro $|G|=1$ je tvrzení triviální.
 
Mějme $|G|>1$, tedy existuje $x \in G, x \neq e$. Pokud $|G|=p$ je v důsledku Lagrangeovy věty \ref{v:lagrange} $G$ cyklická a tedy generovaná nějakým prvkem řádu $|G|$. Dále tedy předpokládejme $|G|>p$. 
 
Pokud bychom vzali prvek, jehož řád je dělitelný číslem $p$ (tedy $|x|=pn$), pak stačí vzít prvek $x^n$, který je řádu $|x^n|=p$. Dále tedy uvažujeme $p \nmid |x|$.
 
Buď $N = \cycl x$. Jelikož $G$ je abelovská, pak $N \npg G$ a z Lagrangeovy věty máme $|G/N| = \frac{|G|}{|N|}$, respektive $|G/N||N|=|G|$. Protože $|N|>1$, musí platit $|G/N|<|G|$. Dále jelikož $p \mid |G|$, ale $p \nmid |N|$, musí platit $p \mid |G/N|$. Z indukčního předpokladu pak $G/N$ obsahuje prvek $\bar{y} = yN$ řádu $p$. Jelikož $y \notin N$, ale $y^p \in N$, musí být $\cycl{y^p} \neq \cycl y$, a tedy $|y^p|<|y|$. Podle věty \ref{v:rady} tedy platí $p \mid |y|$ a dostáváme se k předchozímu případu.
  \end{proof}
\end{theorem}
 
 
 
\begin{define}
  Grupa $G$ (konečná i nekonečná) se nazývá \textbf{jednoduchá}, pokud $|G|>1$ a jejími jedinými normálními podgrupami jsou $e$ a $G$.
\end{define}
 
\begin{define}
  V grupě $G$ řadu podgrup (řetěz) $e=N_0 \le N_1 \le \ldots \le N_{k-1} \le N_k = G$ nazýváme \textbf{kompoziční řada}, pokud $(\all i, 0\le i\le k-1)(N_i \npg N_{i+1})$ a $N_{i+1}/N_i$ je jednoduchá. Faktor grupy $N_{i+1}/N_i$ se pak nazývají \textbf{kompoziční faktory} $G$.
\end{define}
 
 
\begin{theorem}
 	[Jordan-Hölder] Buď $G \neq e$ konečná grupa. Pak:
 	\begin{enumerate}
  	\item $G$ má kompoziční řadu,
  	\item kompoziční faktory této řady jsou dány jednoznačně. Konkrétně pokud $e=N_0 \le N_1 \le \ldots \le N_r = G$ a $e=M_0 \le M_1 \le \ldots \le M_s = G$ jsou dvě kompoziční řady $G$, pak $r=s$ a existuje permutace $\pi$ $r$-tice $(1, 2, \ldots, r)$ taková, že 
  	\begin{equation}
  	M_{\pi(i)}/M_{\pi(i)-1} \cong N_i/N_{i-1} \quad 1 \le i \le r.
  	\end{equation}
  	\end{enumerate}
 
  \begin{proof}[Důkaz J–H první část.]
	Mějme nejdelší možný řetěz normálních podgrup podgrup
 \[e=N_0 \npg N_1 \npg \ldots \npg N_r = G.\]
 Sporem dokážeme, že $N_{i+1}/N_i$ je jednoduchá pro všechna $i$:
Kdyby existovalo $i$ tak, že $N_{i+1}/N_i$ není jednoduchá, pak existuje $H\npg N_{i+1}/N_i$, $H\neq \{e\}, H\neq N_{i+1}/N_i.$
 Vezmu–li $\pi^{-1}(H)$, tj. vzor $H$ při projekci $\pi:N_{i+1}\rightarrow N_{i+1}/N_i$, pak ze 4.VOI \ref{4.VOI} plyne $N_i\npg \pi^{-1}(H)\npg N_{i+1}$, takže by bylo možné $\pi^{-1}(H)$ \uv{vřadit} do řetězu a vytvořili bychom delší řetěz, což je spor s předpokládanou maximalitou.
\end{proof}
\end{theorem}
Pro důkaz druhé části nejprve vyslovíme a dokážeme následující lemma:
 
\begin{lemma}
	Nechť $G$ je grupa, $M,N$ její normální podgrupy, $M\neq N$, $G/M$ a $G/N$ jednoduché. Potom $G=NM$ a platí $M/(M\cap N)\cong G/N$ a $N/(M\cap N)\cong G/M$.
	\begin{proof}
	 $M$ není podgrupa $N$ (a obráceně), protože jinak by díky 4. VOI byla $N/M$ normální podgrupou $G/M$ různou od $G/M$ a $\{e\}$ ($M\neq N$), což je spor s jednoduchostí.\\
Protože $M,N\npg G$, pak i $NM\npg G$ (všichni reprezentanti komutují se vším). Tudíž platí, že $NM/M\npg G/M$. Protože je ale $G/M$ jednoduchá, musí $NM/M$ být buď $G/M$ nebo $\{e\}$. Druhá varianta však nenastává, protože jinak by $MN=M$ a $N\leq M$. Tudíž $MN/M=G/M$ a $MN=G$. Potom závěry $M/(M\cap N)\cong G/N$ a $N/(M\cap N)\cong G/M$ plynou z 2. VOI \ref{2.VOI}.
	\end{proof}
\end{lemma}
 
\begin{proof}[Důkaz J–H druhá část]
            Důkaz provedeme úplnou indukcí v $r$: Pokud je $r=1$, pak i $s=1$, protože $\{e\}\npg G$ je jediný přípustný řetěz.\\
Nyní indukční krok $r=1,\ldots n-1\rightarrown$: Mějme dva řetězy normálních podgrup
\[e=N_0 \le N_1 \le \ldots \le N_r = G,\quad e=M_0 \le M_1 \le \ldots \le M_s = G.\]
Pokud $N_{r-1}=M_{s-1}$, pak je věta splněna z indukčního předpokladu, takže nadále předpokládáme $N_{r-1}\neq M_{s-1}$. Pro zkrácení zápisu si označím $M_{s-1}=M$ a $N_{r-1}=N$ a definuji $K=M\cap N$. Díky indukčnímu předpokladu má $K$ kompozitní řadu 
\[e=K_0 \le K_1 \le \ldots \le K_t = K.\]
$K$ je normální podgrupa $M$ a $N$ (2. VOI \ref{2.VOI}), proto rozšířením kompozitní řady pro $K$ získáme kompozitní řady pro $M$ a $N,$   konkrétně
\[e=K_0 \le K_1 \le \ldots \le K_t = K\le M,\quad e=K_0 \le K_1 \le \ldots \le K_t = K\le N.\]
Díky indukčnímu předpokladu platí $r-1=t+1=s-1$ (stejné délky řetězů), tj. $r=s$, a také vlastnost vůči permutacím faktorgrup. Díky dokázanému lemmatu pak platí také $N/(M\cap N)\cong G/M$, což je $N_{r-1}/(N_{r-1}\cap M_{s-1})\cong M_s/M_{s-1}$, takže permutační vlastnost faktorgrup platí na celých kompozitních řadách
\[e=N_0 \le N_1 \le \ldots \le N_r = G,\quad e=M_0 \le M_1 \le \ldots \le M_s = G.\]
  \end{proof}
 
 
 
\begin{theorem}
 	Existuje 18 (nekonečných) rodin jednoduchých grup a 26 jednoduchých grup, které nepatří do žádné z těchto skupin (sporadické jednoduché grupy) takových, že každá konečná jednoduchá grupa je isomorfní s některou z výše uvedených. 
  \begin{proof}
	Výsledek cca 100 let práce mnoha matematiků na 5000-10000 stránkách odborných časopisů. Ponecháno čtenáři jako snadné cvičení.
  \end{proof}
\end{theorem}
 
 
\begin{theorem}
	Je-li $G$ jednoduchá grupa prvočíselného řádu, pak $G \cong \mathbb{Z}_p$ pro nějaké prvočíslo $p$.
  \begin{proof}
	255 stran... 
  \end{proof}
\end{theorem}
 
 
% ****************************************************************************************************************************
%                             KAPITOLA: akce grupy na množině
% ****************************************************************************************************************************
 
 
 
\chapter{Akce grupy na množině}
 
\begin{define}
	\textbf{Akcí grupy $G$ na množině $A$} nazveme zobrazení $\cdot:G\times A \rightarrow A$ (značíme $g\cdot a$), které splňuje:
	\begin{enumerate}
		\item $(\all g_1,g_2 \in G)(\all a \in A)(g_1\cdot(g_2\cdot a)=(g_1 g_2)\cdot a),$
		\item $(\all a \in A)(e\cdot a = a)$.
	\end{enumerate}
\end{define}
 
 
\begin{theorem}\label{akce a permutace}
	Buď $\cdot$ akce grupy $G$ na množině $A$. Zaveďme pro pevně zvolené $g \in G$ zobrazení $\sigma_g:A \rightarrow A$ vztahem $(\sigma_g(a)=g\cdot a) (\all a \in A)$. Potom platí:
	\begin{enumerate}
		\item $(\all g \in G)$ je zobrazení $\sigma_g$ permutací množiny $A$,
		\item zobrazení $\varphi: G \rightarrow S_A$ (permutace množiny $A$) definované $\varphi(g) = \sigma_g$ je homomorfismus.
	\end{enumerate}
	\begin{proof}
 
		1) Dokážeme, že $\sigma_g$ má oboustrannou inverzi, a to konkrétně $(\sigma_g)^{-1}=\sigma_{g^-1}$. Z vlastností akce platí: $(\sigma_{g^-1}\circ \sigma_g)(a) = g^{-1}\cdot(g\cdot a) = (g^{-1}g)\cdot a = e \cdot a = a$. Záměnou $g$ za $g^{-1}$ dostaneme, že také $(\sigma_g\circ \sigma_{g^-1})(a) = a$.
 
		2) Z bodu 1) víme, že skutečně $\sigma_g \in S_A$. Nyní jen ukážeme, že $\all a \in A$ a $\all f,g \in G$ platí $(\varphi(f)\circ \varphi(g))(a) = \sigma_f (\sigma_g(a)) = f\cdot (g \cdot a) = (fg) \cdot a = \sigma_{fg}(a) = \varphi(fg)(a)$.
 
	\end{proof}
\end{theorem}
 
\begin{corollary}
	Pro každou grupu $G$ a neprázdnou množinu $A$ existuje bijekce mezi akcemi $G$ na množině $A$ a homomorfismy $G$ do symetrické grupy $S_A$.
\end{corollary}
 
\section{Stabilizátory a orbity}
 
\begin{define}
	Mějme grupu $G$ a její akci $\cdot: G\times S \rightarrow S$ na množinu $S$ a nechť $s \in S$ je pevně zvolený prvek. Potom \textbf{stabilizátor} $s$ v $G$ je: $G_s = \{g \in G | g\cdot s = s\}$. \textbf{Orbita} $s$ v $G$ je $O_s = \{ g \cdot s | g \in G \}$, občas značeno též $G\cdot s$.
\end{define}
 
 
\begin{theorem}
	Platí $G_s \le G$.
	\begin{proof}
		Víme, že $e \in G_s$ z axiomu akce ($e\cdot s = s$). S využitím akce pak máme pro libovolné $y \in G_s$: $s = e\cdot s = (y^{-1}y)\cdot s = [$axiom akce$] = y^{-1}\cdot(y\cdot s) = y^{-1}\cdot s$, tedy $y^{-1} \in G_s$. Konečně pro $x,y \in G_s$ platí: $(xy)\cdot c = x\cdot(y\cdot s) = x \cdot s = s$, tedy i součin $xy$ patří do $G_s$.
	\end{proof}
\end{theorem}
 
\begin{define}
	Definujeme \textbf{jádro} akce jako: $\Ker(\cdot) = \{g \in G | g\cdot s = s $ pro $ \all s \in S\}$.
\end{define}
 
\begin{corollary}
	Platí, že $\Ker(\cdot) \le G$, navíc je průnikem všech stabilizátorů, tedy
	\begin{align}
	\Ker(\cdot)=\bigcap_{a\in A}G_a.
	\end{align}
\end{corollary}
 
\begin{define}
	Řekneme, že akce je \textbf{věrná}, pokud $\Ker(\cdot)=e$, respektive \textbf{tranzitivní}, existuje-li právě jedna orbita.
\end{define}
 
\begin{theorem}
Buď $H\leq G$, akce $G$ působí na levých třídách $\{g_iH\}_i=A$ a $\pi_H$ permutační reprezentace. Potom
\begin{enumerate}
	\item $G$ působí tranzitivně na $A$,
	\item stabilizátor $eH$ v $A$ je roven $H$, 
	\item jádro akce je největší normální podgrupa $H$, tj. $$\Ker(\pi_H)=\bigcap_{x\in G}xHx^{-1}.$$
\end{enumerate}
\begin{proof}
$
	\Ker(\pi_H)=\{g\in G\mid gxH=xH, \all x\in G\}=\{g\in G\mid x^{-1}gxH=H\},
	$
	kde $x^{-1}gx\in H$, tj. $g\in xHx^{-1}$.
\end{proof}
\end{theorem}
 
\begin{theorem}[Cayley]
	Každá grupa je isomorfní nějaké podgrupě grupy permutací.
	\begin{proof}
	  Pan profesor nevyžaduje. Pro každé $g\in G$ definujeme zobrazení $\varphi_g:G\rightarrow G:x\mapsto \varphi_g(x)=gx\in G$. Z definice je zřejmé, že $\varphi_g^{-1}=\varphi_{g^{-1}},$ jedná se tedy o bijekci a $\varphi\in S_G$. S pomocí tohoto zobrazení vytvoříme hledaný izomorfismus tak, že $
\Phi:G\rightarrow S_G, \Phi(g)=\varphi_g.$ Díky asociativitě grupy $G$ dostaneme, že se jedná o homomorfismus, protože platí 
\[\Phi(g_1 g_2)x=(g_1 g_2)x=g_1(\Phi(g_2)x)=\Phi(g_1)\Phi(g_2)x.\]
Protože $\Phi$ zřejmě na $\Im \Phi$ zobrazuje surjektivně, stačí ověřit prostotu: Díky krácení v grupě ale máme
\[\Phi(g_1)=\Phi(g_2)\Leftrightarrow\varphi_{g_1}=\varphi_{g_2}\Leftrightarrow \text{(aplikace na x) }g_1 x=g_2 x\Leftrightarrow g_1=g_2.\]
Máme tudíž $G\cong \Im \Phi$, což je podle předešlého tvrzení podgrupa $S_G$.
	\end{proof}
\end{theorem}
 
\begin{dusl}
	Buď $p$ nejmenší prvodělitel $|G|$ ($G$ konečná) a podgrupa $H\leq G$ taková, že $|G:H|=p$. Potom $H\npg G$.
	\begin{proof}
	  Pro řád G platí $|G|=p^sm$, kde $p\nmid m$. Definujme akci grupy $G$ na levých třídách $H$ předpisem $x\cdot(gH)=xgH$. Tato akce indukuje homomorfismus $G$ na $S_p$ (viz věta \ref{akce a permutace}) a nechť $K$ je jeho jádro. Díky 1.VOI je $G/K$ izomorfní podgrupě $S_p$, tudíž $|G/K|$ dělí $p!$ Protože ale zároveň musí dělit $|G|$ a $p$ je nejmenší prvodělitel, pak $|G/K|=p$. Díky 3.VOI platí $|G/K|/|G/H|=|K/H|$, z čehož plyne $p=|G/K|=|G/H||K/H|=p|K/H|.$ Rovnost $|K/H|=1$ však znamená $H=K$, což je normální podgrupa $G$.
	\end{proof}
\end{dusl}
 
\begin{remark}
Buďte $G$ grupa a $S=\mathcal{P}(G)$. Pak $G$ působí na $S$ konjugací, tedy přiřazuje $B \mapsto gBg^{-1}$ pro $\all B \in S$ a $g \in G$.
\end{remark}
 
\begin{remark}
Normalizátor $N_G(A)$ je tedy stabilizátor konjugace $A$ v $G$.
\end{remark}
 
 
%___________________________________________________Rovnice trid____________________________________________________
 
 
\section{Rovnice tříd}
 
\begin{theorem}\label{v: pocet trid ekvivalence}
	Nechť $G$ je grupa, $A$ neprázdná množina. Pak platí: 
	\begin{enumerate}
		\item Relace na $A$ definovaná přes akci G jako $a \sim b \lra a = g \cdot b$ pro $g \in G$	je ekvivalence.
		\item $\all a \in A$ je počet prvků ve třídě ekvivalence obsahující $a$ roven $|G:G_a|$ (indexu stabilizátoru $a$).
		\end{enumerate}
	\begin{proof}
		\begin{enumerate}
		\item	Reflexivita je jasná, pro ověření symetrie nechť $a \sim b$. Pak $a = g \cdot b$, takže $g^{-1} \cdot a = g^{-1} \cdot g \cdot b = b$, tedy $b \sim a$. Nakonec pro důkaz tranzitivity mějme $a \sim b$ a $b \sim c$, tedy $a = g \cdot b$ a $b = h \cdot c$ pro nějaké $g, h \in G$. Dostáváme $a = g \cdot b = g \cdot (h \cdot c) = (gh) \cdot c$, proto $a \sim c$.
		\item	Sestrojíme bijekci mezi levými třídami $G_a$ v $G$ a třídami ekvivalence $a$ (orbitami $a$). Nechť tedy $O_a = \{ g \cdot a | g \in G \}$. Pak zobrazení $g \cdot a \mapsto gG_a$ zobrazuje $O_a$ do množiny levých tříd $G_a$ v $G$ a je očividně surjektivní. Protože $g \cdot a = h \cdot a \lra h^{-1}g \in G_a \lra gG_a = hG_a$ je taky prosté. 
			\end{enumerate}
		\end{proof}	
	\end{theorem}
 
\begin{remark}
	Konjugace splňuje axiomy akce a platí $G_s = C_G(s) = N_G({s})$ pro akci $G$ na $S, s \in S$.
	\end{remark}
 
\begin{remark}
	Dále budeme pod pojmem orbita rozumět příslušnou třídu ekvivalence konjugace. 
	\end{remark}
 
\begin{theorem}
	[rovnice tříd] Nechť $G$ je konečná grupa a $g_1, g_2, \dots g_r$ reprezentanti různých orbit neobsažených v $Z(G)$. Pak
	\begin{align*}
		|G| = |Z(G)| + \sum_{i=1}^{r}|G:C_G(g_i)|.
		\end{align*}
		\begin{proof}
			Orbita $x$ obsahuje jenom jeden prvek právě tehdy, když $x \in Z(G)$, protože $gxg^{-1} = x$ pro $\all g \in G$. Nechť $Z(G) = \{e, z_2, \dots, z_m\}$ a $\{O_1, O_2, \dots, O_r\}$ buď orbity neobsažené v centru a $g_i$ reprezentant $O_i$ pro $\all i$. Potom všechny orbity (třídy ekvivalence) jsou:
			\begin{align*}
				\{e\}, \{z_2\}, \dots, \{z_m\}, O_1, O_2, \dots, O_r.
				\end{align*}
 			Protože třídy ekvivalence tvoří disjunktní rozklad $G$, máme díky předchozí větě
 			\begin{align*}
 				|G|=\sum_{i=1}^{m}1+\sum_{i=1}^{r}|O_i|=|Z(G)|+\sum_{i=1}^{r}|G:C_G(g_i)|.
 				\end{align*}  
			\end{proof}
	\end{theorem}
 
\begin{dusl}
  Nechť $P$ je grupa řádu $|P|=p^\alpha$, kde $p$ je prvočíslo a $\alpha\in \N.$ Pak $Z(P)\neq\{e\}.$
\end{dusl}
 
\begin{proof}
  Z rovnice tříd $|P| = |Z(P)| + \sum_{i=1}^{r}|P:C_G(g_i)|$ plyne, že $|Z(P)|$ je dělitelné $p$, protože $|P|$ je dělitelné $p$ z předpokladu a $|P:C_G(g_i)|$ je dělitelné $p$ z předpokladu a Lagrangeovy věty. ($C_G(g_i)$ je podgrupa $P$, takže její řád je též mocnina $p$.) Řád $|Z(P)|$ je tedy alespoň $p$, tj. větší než 1.
\end{proof}
 
\begin{dusl}
 Grupa $P$ řádu $|P|=p^2$ pro $p$ prvočíslo je abelovská.
\end{dusl}
 
\begin{proof}
  $Z(P) \npg P.$ Proto $|P/Z(P)|$ musí být z množiny $\{1,p,p^2\}$. Protože $Z(P)$ obsahuje více než jeden prvek, $p^2$ to být nemůže. Sporem ukážeme, že to nemůže být $p$: Nechť $|P/Z(P)|=p$, pak $P/Z(P)$ je cyklická, tj. $P/Z(P)=\cycl{xZ(P)}.$ Potom ale bude $P$ abelovská, protože prvky z $P$ mají tvar $p_1=x^k z_1$, kde $z_1\in Z(P)$, a platí $p_1 p_2=x^k z_1 x^l z_2=x^{k+l}z_1 z_2=p_2 p_1$ z definice $z_1$ a $z_2$. To je ale implikuje $P=Z(P)$, což je spor s předpokladem.  Celkově tudíž $|P/Z(P)|=1$ a $Z(P)=P$ je abelovská.
\end{proof}
 
 
% ****************************************************************************************************************************
%                             KAPITOLA: Sylowova věta
% ****************************************************************************************************************************
 
 
\chapter{Sylowova věta}
 
 
\begin{define}
  Buďte $G$ grupa a $p$ prvočíslo.
  \begin{enumerate}
  \item Grupu řádu $p^\alpha$ pro nějaké $\alpha \geq 1$ se nazývá \textbf{p-grupa}. Podgrupy $G$ řádu $p^\alpha$ nazýváme \textbf{p-podgrupy} $G$.
  \item Je-li $G$ řádu $p^\alpha m$ a $p \nmid m$, pak podgrupu řádu $p^\alpha$ nazýváme \textbf{Sylowova p-podgrupa} $G$.
  \item Množinu všech Sylowových $p$-podgrup značíme $Syl_p(G)$ a počet těchto podgrup $n_p(G)$ (nebo jen $n_p$, je-li grupa jasná z kontextu).
  \end{enumerate}
\end{define}
 
\begin{lemma}
	Nechť $P \in Syl_p(G)$ a $Q$ libovolná $p$-podgrupa $G$, pak $N_G(P) \cap Q= P \cap Q$.
	\begin{proof}
		Nechť $H = N_G(P) \cap Q$. Protože $P \le N_G(P)$, je jasné že $P \cap Q \le H$, musíme tedy ukázat opačnou inkluzi. Z definice je $H \le Q$, stačí proto ukázat, že $H \le P$. 	Protože $H \le N_G(P)$, je $PH$ podgrupa a platí
		\begin{align*}
			|PH|=\frac{|P||H|}{|P \cap H|}.
			\end{align*}
			Všechny členy na pravé straně jsou mocniny $p$, proto $PH$ je $p$-podgrupa a protože $P \le PH$  je p-podgrupa maximálního řádu, musí platit $|PH| = |P| = p^\alpha$, tedy $PH =P$ a $H \le P$.
		\end{proof}
	\end{lemma}
 
\begin{theorem}
	[Sylow] Buď $G$ grupa řádu $p^\alpha m$, kde $p$ je prvočíslo a $p \nmid m$. Pak:
	\begin{enumerate}
  	\item Existuje Sylowova $p$-podgrupa, tedy $Syl_p(G) \neq \emptyset$.
  	\item Je-li $P$ Sylowova $p$-podgrupa $G$ a $Q$ libovolná $p$-podgrupa $G$, pak existuje $g \in G$ takové, že $Q \le gPg^{-1}$, tedy $Q$ je obsažena v nějakém sdružení $P$. Speciálně každé dvě Sylowovy $p$-podgrupy $G$ jsou vzájemně sdružené v $G$.
  	\item Počet Sylowových $p$-podgrup je tvaru $1+kp$, tedy $n_p \equiv 1\mod p$. Dále $n_p$ je index grupy $N_G(P)$ v $G$ pro každou Sylowovu $p$-podgrupu $P$, a tedy $n_p | m$.
  	\end{enumerate}
  \begin{proof}
	\begin{enumerate}
		\item	Důkaz provedeme úplnou indukcí na $|G|$, přičemž pro $|G| = 1$ není co dokazovat. Nechť tedy existuje Sylowova $p$-podgrupa pro všechny grupy menšího řádu než $|G|$.
 
		Když $p \mid |Z(G)|$, pak podle věty \ref{v: cauchy abel} existuje $N \le Z(G)$ řádu $p$. Pak $|\overline{G}| = |G/N| = p^{\alpha-1}m$ a z indukčního předpokladu existuje $\overline{P} \le \overline{G}$ řádu $p^{\alpha -1}$. Takže pro $P$ podgrupu $G$ obsahující $N$ takovou, že $P/N = \overline{P}$, platí $|P| = |P/N||N| = p^{\alpha}$ a $P$ je Sylowova $p$-podgrupa G. Omezíme se proto na případ $p \nmid |Z(G)|$.
 
		Nechť $g_1, g_2, \dots, g_r$ jsou reprezentanti různých tříd neobsažených v centru G, pak platí rovnice tříd
		\begin{align}
			|G| = |Z(G)| + \sum_{i=1}^{r}|G:C_G(g_i)|.
			\end{align}
		Pokud by platilo $p \mid |G:C_G(g_i)|, \all i$, pak by platilo taky $p \mid |Z(G)|$, protože $p \mid |G|$. Proto pro nějaké $i$ musí platit $p \nmid |G:C_G(g_i)|$. Označíme $H = C_G(g_i)$ pro dané $i$ a máme
		\begin{align}
			|H| = p^\alpha k, \quad \text{kde }p \nmid k,
			\end{align}
		a  jelikož $g_i \notin Z(G), |H| < |G|$. Z indukčního předpokladu má $H$ Sylowovu $p$-podgrupu $P$, která je taky podgrupou $G$. Navíc $|P| = p^\alpha$, takźe $P$ je Sylovova $p$-podgrupa $G$.
 
		\item Nechť $Q$ je libovolná $p$-podgrupa G a nechť 
			\begin{align}
				\mathcal{S} = \{ gPg^{-1} | g \in G\} \overset{ozn.}{=} \{ P_1, P_2, \dots, P_r \} = \mathcal{S}.
				\end{align}
			Z definice $\mathcal S$ může $G$, tedy taky $Q$, působit na $\mathcal{S}$ konjugací. $\mathcal{S}$ lze proto zapsat jako sjednocení orbit akce $Q$:
			\begin{align}
				\mathcal{S} = O_1 \cup O_2 \cup \dots \cup O_s
				\end{align}
				kde $r = |O_1|+|O_2|+\dots+|O_s|$. Je potřeba si uvědomit, že $r$ nezávisí na $Q$, ale počet orbit $s$ ano ($G$ má z definice jenom jednu orbitu na $\mathcal{S}$, ale $Q$ jich může mít víc). Přeuspořádáme prvky $\mathcal{S}$ tak, aby prvních $s$ bylo reprezentanty $Q$-orbit: $P_i \in O_i, 1 \le i \le s$. Pak z věty \ref{v: pocet trid ekvivalence} plyne $|O_i| = |Q: N_Q(P_i)|$. Z definice platí $N_Q(P_i) = N_G(P_i) \cap Q$ a podle předchozího lemmatu, $N_G(P_i) \cap Q = P_i \cap Q$. Celkem tedy máme
				\begin{align}
					|O_i| = |Q : P_i \cap Q|,\quad 1 \le i \le s.
					\end{align}
 
				Teď můžeme ukázat, že $r \equiv 1\mod p$. Díky libovolnosti $Q$ můžeme položit $Q = P_1$, takže 
				\begin{align}
					|O_1| = 1,
					\end{align}
				a $\all i > 1, P_1 \neq P_i$, tedy $P_1 \cap\ P_i < P_1$	, proto
				\begin{align}
					|O_i| = |P_1 : P_1 \cap P_i| > 1,\quad 2 \le i \le s.
					\end{align}
				Protože $P_1$ je $p$-grupa, $|P_1 : P_1 \cap P_i|$ musí být mocnina $p$, tedy
				\begin{align}
					p \mid |O_i|, \quad 2 \le i \le s.
					\end{align}	
				Odtud
				\begin{align}
					r = |O_1| + (|O_2|+ \dots +|O_s|) \equiv 1 (mod\ p)
					\end{align}
 
				Nyní buď $Q$ libovolná $p$-podgrupa G. Kdyby $Q \notin P_i, \all i \in \hat{r}$, pak $Q \cap P_i < Q, \all i$, tedy
				\begin{align}
					|O_i| = |Q:Q \cap P_i| > 1, \quad 1 \le i \le s.
					\end{align}  	
				Tudíž	$p \mid |O_i|, \all i$ a $p \mid r$, což je spor s $r \equiv 1\mod p$. Proto $Q \le gPg^{-1}$, pro nějaké $g \in G$.
 
				Pro důkaz ekvivalence Sylowových $p$-podgrup stačí za $Q$ volit libovolnou Sylowovu $p$-podgrupu. Pak $Q \le gPg^{-1}$ a zároveň $|gPg^{-1}| = |Q| = p^\alpha$, proto $gPg^{-1} = Q$.
 
				\item Stačí si uvědomit že $\mathcal{S} = Syl_p(G)$ protože každá Sylowova $p$-podgrupa je konjugovaná k $P$, tedy $n_p = r \equiv 1\mod p$. Nakonec díky \ref{v: pocet trid ekvivalence} a tomu, že všechny Sylowovy $p$-podgrupy jsou konjugované, dostáváme
				\begin{align}
					n_p = |G:N_G(P)|, \quad \all P \in Syl_p(G).
					\end{align}					
		\end{enumerate}
	\end{proof}
\end{theorem}
 
 
\begin{dusl}
Buď $P$ Sylowova $p$-podgrupa grupy $G$. Potom následující tvrzení jsou ekvivalentní:
\begin{enumerate}
	\item $P$ je jediná Sylowova $p$-podgrupa v $G$, tedy $n_p = 1$,
	\item $P \npg G$.
\end{enumerate}
\end{dusl}
 
\begin{proof}
  1) $\implies$ 2): $n_p=1$, znamená že pro všechna $g\in G$ platí $|gPg^{-1}|=|P|$, tudíž $gPg^{-1}=P$, tj. $P \npg G$.\\
  2) $\implies$ 1): $\forall g\in G, gPg^{-1}=P$. Nechť $\tilde(P)\in Syl_p(G)$. Pak $\tilde{P}=gPg^{-1}=P$.
\end{proof}