02GR:Kapitola3: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
m
(pridana rovnice trid a dalsi tvrzeni potrebne k dukazu Sylowovy vety)
Řádka 453: Řádka 453:
 
\end{theorem}
 
\end{theorem}
  
 +
%___________________________________________________Rovnice trid____________________________________________________
  
 +
\begin{theorem}\label{pocet trid ekvivalence}
 +
Nechť $G$ je grupa, $A$ neprázdná množina. Pak platí:
 +
\begin{enumerate}
 +
\item Relace na $A$ definovaná přes akci G jako $a \sim b \lra a = g \cdot b \quad g \in G$ je ekvivalence.
 +
\item $\all a \in A$ je počet prvků ve třídě ekvivalence obsahující $a$ roven $|G:G_a|$, index stabilizátoru a.
 +
\end{enumerate}
 +
\begin{proof}
 +
\begin{enumerate}
 +
\item Reflexivita je jasná, pro ověření symetrie nechť $a \sim b$. Pak $a = g \cdot b$, takže $g^{-1} \cdot a = g^{-1} \cdot g \cdot b = b$, tedy $b \sim a$. Nakonec pro důkaz tranzitivity mějme $a \sim b$ a $b \sim c$, tedy $a = g \cdot b$ a $b = h \cdot c$ pro nějaké $g, h \in G$. Dostáváme $a = g \cdot b = g \cdot (h \cdot c) = (gh) \cdot c$, proto $a \sim c$.
 +
\item Sestrojíme bijekci mezi levými třídami $G_a$ v $G$ a třídami ekvivalnece $a$ (orbitami $a$). Nechť tedy $\Cc_a = \{ g \cdot a | g \in G \}$. Pak zobrazení $g \cdot a \rightarrow gG_a$ zobrazuje $\Cc_a$ do množiny levých třid $G_a$ v $G$ a je očividně surjektivní. Protože $g \cdot a = h \cdot a \lra h^{-1}g \in G_a \lra gG_a = hG_a$ je taky prosté.
 +
\end{enumerate}
 +
\end{proof}
 +
\end{theorem}
  
 +
\begin{remark}
 +
Konjugace splňuje axiomy akce a platí $G_s = C_G(s) = N_G({s})$ pro akci $G$ na $S$, $s \in S$.
 +
\end{remark}
 +
 +
\begin{remark}
 +
Dále budeme pod pojmem orbita rozumět příslušnou třídu ekvilence konjugace.
 +
\end{remark}
 +
 +
\begin{theorem}
 +
(Rovnice tříd) Nechť $G$ je konečná grupa a $g_1, g_2, \dots g_r$ reprezentanti různých orbit neobsažených v $G$. Pak
 +
\begin{align}
 +
|G| = |Z(G)| + \sum_{i=1}^{r}|G:C_G(g_i)|.
 +
\end{align}
 +
\begin{proof}
 +
Orbita $x$ obsahuje jenom jeden prvek právě tehdy když $x \in Z(G)$, protože $gxg^{-1} = x$, $\all g \in G$. Nechť $Z(G) = \{1, z_2, \dots, z_m$ a $O_1, O_2, \dots, O_r$ orbity neobsažené v centru a $g_i$ reprezentant $O_i$, $\all i$. Potom všechny orbity (třídy ekvivalence) jsou:
 +
\begin{align}
 +
\{1\}, \{z_2\}, \dots, \{z_m\}, O_1, O_2, \dots, O_r.
 +
\end{align}
 +
Protože třídy ekvivalence tvoří disjunktní rozklad $G$, máme díky předchozí větě
 +
\begin{align}
 +
|G|=\sum_{i=1}^{m}1+\sum_{i=1}^{r}|O_i|=|Z(G)|+\sum_{i=1}^{r}|G:C_G(g_i)|.
 +
\end{align} 
 +
\end{proof}
 +
\end{theorem}
  
 
+
%___________________________________________________Sylowova veta_________________________________________________
 
+
  
  

Verze z 14. 12. 2015, 23:40

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02GR

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02GRMaresj23 23. 12. 201221:49
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201513:51
Header editovatHlavičkový souborNguyebin 26. 12. 201516:53 header.tex
Kapitola0 editovatPředmluvaNguyebin 26. 12. 201516:55 kapitola0.tex
Kapitola1 editovatGrupyKubuondr 5. 1. 201910:03 kapitola1.tex
Kapitola2 editovatPodgrupyKubuondr 25. 12. 201814:30 kapitola2.tex
Kapitola3 editovatFaktor grupyKubuondr 7. 1. 201922:00 kapitola3.tex
Kapitola4 editovatPřímý a polopřímý součin grupKubuondr 6. 1. 201913:45 kapitola4.tex
Kapitola5 editovatReprezentaceKubuondr 6. 1. 201917:50 kapitola5.tex
KapitolaA editovatLiteraturaMaresj23 21. 12. 201216:45 literatura.tex

Vložené soubory

soubornázev souboru pro LaTeX
Soubor:02GR_trojuhelnik.jpg‎ trojuhelnik.jpg
Soubor:02GR_usporadani.jpg‎ usporadani.jpg
Soubor:02GR_mrizka.PNG mrizka.PNG
Soubor:02GR_vlakna.PNG‎ vlakna.PNG
Soubor:02GR_nasobeni_reprezentanti.PNG‎ nasobeni_reprezentanti.PNG

Zdrojový kód

%\wikiskriptum{02GR}
 
% ****************************************************************************************************************************
%                             KAPITOLA: Faktor grupy
% ****************************************************************************************************************************
\chapter{Faktor grupy}
 
\begin{remark}
Studium faktor grup dané grupy $G$ nám umožňuje zkoumat její strukturu a je ekvivalentní zkoumání homomorfismů $G$.
\end{remark}
 
 
\begin{define}
  Mějme homomorfismus $\varphi : G \rightarrow H$. \textbf{Vláknem} homomorfismu $\varphi$ příslušejícím prvku $x \in H$ nazýváme množinu $\{y \in G|\varphi(y)=x\}$, tedy množina všech prvků, které se zobrazí na $x$. (Obr. \ref{fig:vlakna}).
\end{define}
 
 
\begin{figure}
    \centering
    \includegraphics[scale=.8]{vlakna.PNG}
    \caption{Znázornění vláken homomorfismu. Převzato z \cite{AA}.}
    \label{fig:vlakna}
\end{figure}
 
 
\begin{corollary}
  Pro homomorfismus $\varphi$ : $G \rightarrow H$ platí:
  \begin{enumerate}
  	\item $\varphi(1_G)=1_H$
  	\item $\varphi(g^{-1})=\varphi(g)^{-1}$
  	\item $\varphi(g^{n})=\varphi(g)^{n}$
  	\item $\mathrm{Ker}\varphi \le G$
  	\item $\mathrm{Im}\varphi \le H$ (obraz)
    \end{enumerate}
\end{corollary}
 
 
\begin{define}
  Mějme homomorfismus $\varphi : G \rightarrow H$ s jádrem $\mathrm{Ker}\varphi=K$. Potom \textbf{faktor grupa} $G/K$ ($G$ mod $K$) je grupa na vláknech $\varphi$ s operací definovanou pomocí reprezentantů: pokud $X$ je vlákno nad $a$ a $Y$ je vlákno nad $b$, pak prvek $XY \in G/K$ je vlákno nad $ab$.
\end{define}
 
\begin{remark}
To, že faktor grupa má skutečně vlastnosti grupy se lehce ověří z platnosti těchto vlastností v $G$.
\end{remark}
 
 
\begin{theorem}
\label{v:tridy}
  Mějme homomorfismus $\varphi : G \rightarrow H$ s jádrem $\mathrm{Ker}\varphi=K$ a nechť $X_a \in G/K$ je vlákno nad $a \in H$, tedy $X_a=\varphi^{-1}(a)$. Potom platí: 
  \begin{enumerate}
  	\item $\all u \in X_a$ je $X_a=\{uk|k \in K\}$,
  	\item $\all u \in X_a$ je $X_a=\{ku|k \in K\}$.
    \end{enumerate}
  \begin{proof}
  Dokážeme pouze první bod (druhý se dokazuje analogicky). Označme $uK = \{uk|k \in K\}$, mějme $u \in X_a$ (tedy $\varphi(u)=a$) a ukážeme, že $uK \subset X_a$: $\varphi(uk)=\varphi(u)\varphi(k)=\varphi(u)e=a$. (Využili jsme nejprve toho, že $\varphi$ je homomorfismus a pak toho, že $k$ je z jádra.) 
  Pro důkaz opačné inkluze mějme libovolné $g \in X_a$ a vezměme $k=u^{-1}g$. Jelikož $\varphi(k)=\varphi(u^{-1}g)=\varphi(u^{-1})\varphi(g)=a^{-1}a=e$, $k$ patří do jádra. Dále zřejmě $g=uk$, tedy $g \in uK$.
  \end{proof}
\end{theorem}
 
 
\begin{define}
  Pro libovolnou $H \le G$ a libovolné $g \in G$ nazýváme množiny $gH=\{gh|h \in H\}$ respektive $Hg=\{hg|h \in H\}$ \textbf{levé} respektive \textbf{pravé} třídy $H$ v $G$. Libovolný prvek třídy nazýváme jejím \textbf{reprezentantem}.
\end{define}
 
\begin{theorem}
  Buďte $G$ grupa a $K$ jádro nějakého homomorfismu $\varphi$ z $G$ do nějaké grupy. Potom množina levých tříd $K$ v $G$ s operací definovanou jako $aK \otimes bK = (ab)K$ je grupa $G/K$. Tedy tato operace je dobře definovaná (nezávisí na výběru reprezentanta). (Obr. \ref{fig:nasobeni_reprezentanti})
  \begin{proof}
Mějme $X,Y \in G/K$, $X=\varphi^{-1}(a)$, $Y=\varphi^{-1}(b)$ a $Z=XY \in G/K$. Podle definice operací v $G/K$ je $Z=\varphi^{-1}(ab)$. Z věty \ref{v:tridy} víme, že prvky $G/K$ jsou levé třídy $K$. Je třeba ukázat, že i operace, kterou zde definuje pomocí reprezentantů odpovídá původní definici násobení v $G/K$ bez ohledu na výběr reprezentanta. Mějme $u \in X$ a $v \in Y$, tedy $\varphi(u)=a$, $\varphi(v)=b$ a $X=uK$ a $Y=vK$. Určíme, zda $uv \in Z$. 
\begin{align}
\varphi(uv)=\varphi(u)\varphi(v)=ab \nonumber 
\end{align}
Odtud tedy plyne, že $uv \in Z$, a tedy $Z=uvK$.
  \end{proof}
\end{theorem}
 
 
\begin{figure}
    \centering
    \includegraphics[scale=0.6]{nasobeni_reprezentanti.PNG}
    \caption{Znázornění násobení v $G/K$ pomocí reprezentantů levých tříd. Převzato z \cite{AA}.}
    \label{fig:nasobeni_reprezentanti}
\end{figure}
 
 
\begin{theorem}
  Nechť $N \le G$, potom množina levých tříd $N$ v $G$ tvoří rozklad $G$ (jejich sjednocením je $G$ a jednotlivé třídy mají prázdný průnik). Dále $\all u,v \in G $ platí $uN=vN$ právě tehdy, když $u^{-1}v \in N$, tedy když $u$ a $v$ jsou reprezentanty stejné třídy.
  \begin{proof}
Nejprve ukážeme, že sjednocením levých tříd je celé $G$. Jelikož $N$ je grupa, pak $1 \in N$, a tedy platí:
\begin{align}
\bigcup_{g \in G} gN \subset \bigcup_{g \in G} g1 = G. \nonumber 
\end{align}
Pro důkaz druhé části vezmeme $uN \cap vN \neq \emptyset$ a ukážeme, že potom platí $uN = vN$. Vezměme $x \in uN \cap vN$, tedy $x$ můžeme napsat jako $x= un_1 = vn_2$ pro nějaká $n_1,n_2 \in N$. Rovnost vynásobíme zprava $n_1^{-1}$ a dostaneme $u = vn_2 n_1^{-1} = vn_3$ pro nějaké $n_3 \in N$. Tedy vidíme, že $u \in vN$. Dále pro libovolné $t \in uN$ platí $t = un_4 = (vn_3)n_4 = vn_5$, takže $t \in vN$ pro $\all t \in uN$, tedy $uN \subset vN$. Opačnou inkluzi dostaneme záměnou role $u$ a $v$.
 
Jelikož víme, že $u=vn_3$, pak platí $v^{-1}u=n_3$, tedy $v^{-1}u \in N$ a to platí pro libovolné reprezentanty tříd.
  \end{proof}
\end{theorem}
 
 
\begin{theorem}
\label{v:normalni}
  Buď $G$ grupa a $N \le G$. Potom:
  \begin{enumerate}
  	\item Operace na levých třídách definovaná jako $uNvN=(uv)N$ je dobře definovaná právě tehdy, když $(gng^{-1} \in N)(\all g \in G $ a $ \all n \in N)$.
  	\item Je-li výše uvedená operace dobře definovaná, pak je množina levých tříd $N$ grupou s jednotkou $eN$ a inverzním prvkem $(gN)^{-1}=g^{-1}N$.
    \end{enumerate}
  \begin{proof}
    \begin{enumerate}
       \item
       \begin{enumerate}
          \item[$\ra$)] Nechť je operace na levých třídách dobře definovaná, tedy
            \begin{align}
              (\all u,v \in G)(u,u_1 \in uN \text{ a } v,v_1 \in vN \ra uvN=u_1v_1N).
              \end{align}
            Nechť $g \in G$ a $n \in N$ libovolné. Položíme $u = 1$, $u_1 = n$ a $v = v_1 = g^{-1}$ a z předpokladu dostaneme
            \begin{align}
              g^{-1}N=ng^{-1}N
              \end{align}
            Protože $1 \in N$, $ng^{-1} \in g^{-1}N$. Tedy $ng^{-1}=g^{-1}n_1$, pro nějaké $n_1 \in N$. Vynásobením $g$ zleva dostáváme požadovanou rovnost $gng^{-1}=n_1 \in N$.
           \item[$\la$)] Předpokládáme $(gng^{-1} \in N)(\all g \in G$ a $\all n \in N)$ a vezmeme $u,u_1 \in uN$ a $v,v_1 \in vN$. Pak můžeme psát $u_1=un$ a $v_1=vm$, pro nějaké $n,m \in N$. Musíme ukázat že $u_1v_1 \in uvN$:
            \begin{align}
              u_1v_1=(un)(vm)=u(vv^{-1})nvm=(uv)(v^{-1}nv)m=(uv)(n_1)=uvn_2 \in uvN
              \end{align}
             kde $n_1=v^{-1}nv=(v^{-1})n(v^{-1})^{-1} \in N$ z předpokladu a $n_2 = n_1m \in N$ z definice. Protože $u_1v_1 \in uvN \cap u_1v_1N$, plyne z předchozí věty rovnost $uvN = u_1v_1N$.
           \end{enumerate}
         \item Pokud je operace na levých třídách dobře definovaná, plynou axiomy grupy z platnosti v $G$. Asociativita:
           \begin{align}
             (uN)(vNwN)=uN(vwN)=u(vw)N=(uv)wN=(uNvN)(wN),\quad \all u,v,w \in G
             \end{align}
           Z definice násobení je vidět že jednotka v $G/N$ je N a $g^{-1}N$ je inverze $gN$.
      \end{enumerate}
	%str 81/95
  \end{proof}
\end{theorem}
 
 
 
%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxx
 
 
 
%\begin{define}
%  Operce na levých třídách (na pravých obdobně) $N$ v $G$ je \textbf{dobře definovaná}, pokud $(\all u,u_1 \in uN)(\all v,v_1 \in vN)$ platí $(uvN=u_1v_1 N)$.
%\end{define}
%
%
%\begin{theorem}
%  Máme-li $N \le G$, potom:
%  \begin{enumerate}
%  	\item Operace na levých třídách je dobře definovaná $\lra$ $(\all n \in N)(\all g \in G)(gng{-1}N)$.
%  	\item Je-li operace dobře definovaná, pak množina tříd s touto operací tvoří grupu. (Tedy jsem schopen vytvořit faktor grupu.)
%    \end{enumerate}
%  \begin{proof}
%  \begin{enumerate}
%  	\item $\la)$ Nechť ($u=e, u_1 \in N, v=v_1=g^{-1} \in G) \le (eg^{-1}N=u_1g^{-1}) \le (N=gug^{-1}N)$.\\
%  	$\ra) (\all n\in N, \all g \in G)(gng^{-1}\in N).$ Mějme $u_1,u_2 \in u_1 N$ a $v_1,v_2 \in v_1 N$ ??????????
%  	\item $eN=N$ (jednotka je $N$), $(gN)^{-1}=g^{-1}N$, asociativita.
%    \end{enumerate}
%  \end{proof}
%\end{theorem}
 
 
\begin{define}
  Prvek $m=gng^{-1}$ se nazývá \textbf{konjugovaný} k $n$ prvkem $g$.
\end{define}
 
\begin{define}
  Buď $A \subset G$ libovolná podmnožina grupy. Množina $M=gAg^{-1}$ se nazývá \textbf{konjugovaná} k $A$ prvkem $g$.
\end{define}
 
%\begin{define}
%  Buď $\emptyset \neq A \subset G$. Množinu $C_G(A)=\{g\in  G|(gag^{-1}=a )(\all a \in A)\}$ nazveme \textbf{centralizátor} $A$ v $G$.
%\end{define}
%
%\begin{theorem}
%  $C_G(A) \le G$.
%  \begin{proof}
%	$e \in C_G(A), g_1 g_2 = a, g_1^{-1} g_2^{-1} = a$ 
%  \end{proof}
%\end{theorem}
%
%
%\begin{define}
%  \textbf{Centrum} grupy je $Z_G=\{z \in G|gzg^{-1}=z \all g \in G\}=C_G(G)$. (Neboli $gz=zt$ - všechny prvky, které komutují s celou grupou. Je to množina, kterou centralizuje celá grupa.)
%\end{define}
%
%\begin{define}
%  Množinu $N_G(A)=\{g\in G|gAg^{-1}=A\}$ nazveme \textbf{normalizátor} $A$ v $G$.
%\end{define}
%
%\begin{remark}
%  $C_G(A) \le N_G(A)$.
%\end{remark}
 
\begin{define}
  Pokud pro $N \le G$ platí $N_G(N)=G$ (normalizátor $N$ v $G$), pak $N$ nazýváme \textbf{normální} podgrupa. Značíme $N \npg G$
\end{define}
 
\begin{remark}
Pro ověření, zda podgrupa $N \le G$ je normální, stačí ověřit, že komutuje s generátory množiny $G \setminus N$ (množinový rozdíl), pokud tyto generátory známe.
\end{remark}
 
\begin{theorem}
\label{v:ekvivalence_normalni}
  Nechť $N \le G$, potom následující tvrzen jsou ekvivalentní:
  \begin{enumerate}
  	\item $N \npg G$
  	\item $N_G(N)=G$
  	\item $gN=Ng$
  	\item Operace na třídách je dobře definovaná.
  	\item $gNg^{-1} \subset N$
  \end{enumerate}
  \begin{proof}
	Přepsání definic.
  \end{proof}
\end{theorem}
 
\begin{theorem}
  Nechť $N \le G$, potom $N \npg G$ právě tehdy když $\exists$ homomorfismus $\varphi$ takový, že $N=Ker(\varphi)$.
  \begin{proof}
    \begin{enumerate}
      \item[$\la$)] Podle věty \ref{v:tridy} víme, že levé a pravé třídy jsou stejné ($gN = Ng$), což je podle věty \ref{v:ekvivalence_normalni} ekvivalentní normálnosti grupy.
 
      \item[$\ra$)] Nyní máme $N \npg G$ a označíme $H = G/N$ (Podle věty \ref{v:normalni} je operace na levých třídách pro normální grupu dobře definovaná). Definujeme zobrazení $\pi: G \rightarrow G/N$ jako $\pi(g) = gN$ pro $\all g \in G$. Z definice operací v $G/N$ platí pro $\all f,g \in G$: $\pi(fg) = (fg)N = fNgN = \pi(f)\pi(g)$, tedy $\pi$ je homomorfismus. Jeho jádro je: $Ker(\pi) = \{g \in G | \pi(g) = 1N\} = \{g \in G | gN = 1N \} = \{g \in G | g \in N\} = N$.
    \end{enumerate}
  \end{proof}
\end{theorem}
 
\begin{remark}
  Nyní můžeme faktorizovat podle normální podgrupy $G/N$ aniž bychom měli homomorfismus.
\end{remark}
 
\begin{define}
  Buď $N \npg G$, pak zobrazení $\pi:G \rightarrow G/N: \pi(g)=gN$ nazýváme \textbf{přirozená projekce} $G$ na $G/N$.
\end{define}
 
\begin{theorem}
\label{v:lagrange}
  (Lagrangeova věta) Nechť $G$ je konečná, $H \le G$, potom $|H|$ dělí $|G|$. Navíc počet levých tříd $H$ v $G$ je roven $\frac{|G|}{|H|}$.
  \begin{proof}
Nejprve ukážeme, že všechny levé třídy mají stejně prvků. Označme $|H|=n$ a $k$ počet levých tříd a pro $\all g \in G$ definujme zobrazení z $H$ do $gH$ přiřazující $h \rightarrow gh$. Podle definice levých tříd je toto zobrazení surjektivní a jelikož $gh_1=gh_2$ právě, když $h_1 = h_2$, je i injektivní. Odtud plyne $|gH|=|H|$.
 
Jelikož je tedy $G$ rozděleno na $k$ levých tříd o $n$ prvcích, platí $|G|=kn$, a tedy $k=\frac{|G|}{n}$.
  \end{proof}
\end{theorem}
 
\begin{remark}
  Komutativní grupa prvočíselného řádu nemůže mít netriviální normální podgrupu.
\end{remark}
 
\begin{define}
Buď $G$ grupa (i nekonečného řádu) a $H \le G$. Potom počet levých tříd $H$ v $G$ nazýváme \textbf{index} $H$ v $G$ a značíme $|G:H|$.
\end{define}
 
\begin{remark}
Pro konečné grupy tedy platí $|G:H|=\frac{|G|}{|H|}$.
\end{remark}
 
 
\begin{dusl}
Pro konečnou grupu $G$ a $x \in G$ platí $|x|$ dělí $|G|$.
\end{dusl}
 
\begin{dusl}
Grupa prvočíselného řádu je cyklická.
\end{dusl}
 
 
\begin{define}
Grupu $G$, jejíž jediné normální podgrupy jsou triviální ($1$ a $G$), nazýváme \textbf{prostá}.
\end{define}
 
\begin{remark}
Opačné tvrzení k Lagrangeově větě neplatí. Tedy konečná grupa $G$, jejíž řád má dělitele $n$ nemusí mít podgrupu řádu $n$. (Platí to pro konečné abelovské grupy.) 
\end{remark}
 
 
\begin{define}
Zavádíme \uv{součin} podgrup $K,H \le G$ jako: $KH= \{kh | k \in K, h \in H \}$.
\end{define}
 
%A další věci od strany 93... nevím, co z toho se dělalo na přednášce.
 
\begin{theorem}
	Nechť $H$ a $K$ jsou podgrupy nějaké grupy, pak
	\begin{align}
		|HK|=\frac{|H||K|}{|H \cap K|}.
		\end{align}
	\begin{proof}
		$HK$ můžeme napsat jako sjednocení levých tříd $K$,
		\begin{align}
			HK = \bigcup_{h \in H}hK.
			\end{align}
		Protože cšechny levé třídy mají stejný počet prvků $|K|$, stačí zjistit počet různých levých tříd tvaru $hK$, $h \in H$. Ale $h_1K = h_2K$ pro $h_1,h_2 \in H$ pávě tehdy když $h_2^{-1}h_1 \in K$. Tedy
		\begin{align}
			h_1K=h_2K \Leftrightarrow h_2^{-1}h_1 \in H \cap K \Leftrightarrow h_1(H \cap K) = h_2(H \cap K).
			\end{align}
		To znamená, že počet různých levých tříd tvaru $hK$, $h \in H$ je stejný jako počet levých tříd tvaru $h(H \cap K)$, $h \in H$. A to je, z Lagrangeovy věty, rovno $\frac{|H|}{|H \cap K|}$	. Tedy $HK$ obsahuje $\frac{|H|}{|H \cap K|}$	různých levých tříd K, kde každá má $|K|$ prvků, čímž dostáváme tvrzení věty.
		\end{proof}
	\end{theorem}
 
\begin{theorem}
	Nechť $H,K \le G$, pak $HK \le G$ právě tehdy když $HK = KH$.
	\begin{proof}
		\begin{enumerate}
			\item[$\la$)] Nechť $HK = KH$ a $a,b \in HK$. Ukážeme že $ab^{-1} \in HK$, takže $HK$ je podgrupa. Můžeme psát $a = h_1k_1$ a $b = h_2k_2$ pro nějaké $h_1,h_2 \in H$ a $k_1,k_2 \in K$. Tedy
				\begin{align}
					ab^{-1}=h_1k_1k_2^{-1}h_2^{-1}=h_1k_3h_2^{-1}
					\end{align}
				kde $k_3 = k_1k_2^{-1} \in K$. Užítím předpokladu můžeme napsat $k_3h_2^{-1}=h_4k_4$ a dostáváme
				\begin{align}
					ab^{-1}=(h_1h_4)k_4 \in HK.
					\end{align}	
			\item[$\ra$)] Když $HK \le G$, pak protože $K \le HK$ a $H \le HK$ platí $KH \subset HK$. Pro důkaz opačné inkluze vezmeme $hk \in HK$. Protože $HK$ je podgrupa, můžeme psát $hk = a^{1}$ pro nějaké $a \in HK$. Ale taky $a = h_1k_1$ pro nějaké $h_1 \in H$, $k_1 \in K$. Dostávame tedy
			\begin{align}
				hk=(h_1k_1)^{-1}=k_1^{-1}h_1^{-1} \in KH.
				\end{align}		
			\end{enumerate}
		\end{proof} 
	\end{theorem}	
 
\begin{dusl}
	Nechť $H,K \le G$ a $H \le N_G(K)$, pak $HK \le G$. Specálně pokud $K \npg G$, pak $HK \le G$ pro libovolnou $H \le G$.
	\begin{proof}
		Ukážeme že $HK = KH$. Nechť $h \in H$, $k \in K$. Z předpokladu máme $hkh^{-1} \in K$, tudíž
		\begin{align}
			hk=(hkh^{-1})h \in KH.
			\end{align}
			Ukázali jsme tedy, že $HK \subset KH$. Opačná inkluze se ukáže analogicky a z předchozí věty už plyne co jsme chtěli dokázat.
		\end{proof}
	\end{dusl}
 
 
 
%____________________________________________________________________________________________
 
\section{Věty o isomorfismech}
 
 
\begin{theorem}
  (1. VOI) Pokud $\varphi : G \rightarrow H$ je homomorfismus, pak $Ker(\varphi) \npg G$ a $G/Ker(\varphi) \cong \varphi(G)$.
  \begin{proof}
Cvičení.
  \end{proof}
\end{theorem}
 
\begin{dusl}
Buď $\varphi : G \rightarrow H$ homomorfismus. Potom platí:
\begin{enumerate}
	\item $\varphi$ je prosté, právě když $Ker(\varphi) = 1$,
	\item $|G:Ker(\varphi)| = |\varphi(G)|$.
\end{enumerate}
\end{dusl}
 
 
\begin{theorem}
  (2. (\uv{diamantová}) VOI) Buď $G$ grupa a $A \le G$, $B \le G$ a $A \le N_G(B)$. Potom $AB \le G$, $B \npg AB$, $A \cap B \npg A$ a $AB/B \cong A/A \cap B$. 
  \begin{proof}
	Z předchozího důsledku plyne, že $AB \le G$. Protože $A \le N_G(B)$ z předpokladu a $B \le N_G(b)$ triviálně, je taky $AB \le N_G(B)$, tedy $B \npg AB$ a faktorgrupa $AB/B$ je dobře definována. Definujeme proto homomorfismus $\varphi :A \rightarrow AB/B:a \rightarrow aB$:
	\begin{align}
		\varphi(a_1a_2)=(a_1a_2)B=a_1Ba_2B=\varphi(a_1)\varphi(a_2).
		\end{align}
		Z definice je vidět, že $\varphi$ je surjektivní. Jednotkový prvek v $AB/B$ je $B$, tedy $Ker(\varphi) = \{a \in A,\ aB = B\} = A \cap B$. Z 1. VOI už plyne, že $A \cap B \npg A$ a $A/A \cap B \cong AB/B$.
		\end{proof}
\end{theorem}
 
 
\begin{theorem}
  (3. VOI) Buď $G$ grupa a $H \npg G$, $K \npg G$ a $H \le K$. Potom $K/H \npg G/H$ a $(G/H)/(K/H)\cong G/K$, tedy pokud faktorgrupu podle $H$ označíme pruhem, tvrzení je: $\bar{G}/\bar{K} \cong G/K$. 
  \begin{proof}
	Definujeme homomorfismus:
	\begin{align}
		\varphi : G/H \rightarrow G/K : gH \rightarrow gK.
		\end{align}
		Abychom ukázali že $\varphi$ je dorbře definované vezmeme $g_1H = g_2H$. Potom $g_1 = g_2h$ pro nějaké $h \in H$. Protože $H \le K$, je taky $h \in K$, proto $g_1K = g_2K$. Tudíž $\varphi(g_1H) = \varphi(g_2H)$ a $\varphi$ je dobře definované. Protože $g$ může být libvolné je $\varphi$ taky surjektivní. Dále
		\begin{align}
			Ker(\varphi) = \{gH \in G/H | \varphi(gH) = K\} = \{gH \in G/H | gK = K\} = \{gH \in G/H | g \in K \} = K/H,
			\end{align}
		z 1. VOI už plyne $(G/H)(K/H) \cong G/K$.	
	\end{proof}
\end{theorem}
 
\begin{remark}
Následují věta hovoří o vztahu struktury podgrup původní grupy $G$ a faktorgrupy $G/N$. Vlastně říká, že struktura podgrup faktorgrupy je stejná jako struktura podgrup $G$, které obsahují $N$. 
\end{remark}
 
\begin{theorem}
  (4. (mřížková) VOI) Buď $G$ grupa a $N \npg G$. Potom existuje bijekce z množiny podgrup $G$ obsahujících $N$ na množinu podgrup $G/N$, která každé podgrupě $A$ z první množiny přiřazuje podgrupu $A/N$ ze druhé.
  \begin{proof}
Str 99/113
  \end{proof}
\end{theorem}
 
 
 
 
%____________________________________________________________________________________________
 
\section{Kompoziční řady a Hölderův program}
 
 
\begin{theorem}
Je-li $G$ konečná Abelovská grupa a $p$ prvočíslo, které dělí $|G|$, pak $G$ obsahuje prvek řádu $p$.
  \begin{proof}
Důkaz se provádí pomocí takzvané úplné indukce podle řádu $G$. Tedy se předpokládá, že tvrzení platí pro všechny grupy řádu ostře menšího než $|G|$ a ukáže se platnost pro $|G|$. Pro $|G|=1$ je tvrzení triviální.
 
Mějme $|G|>1$, tedy existuje $x \in G$, $x \neq 1$. Pokud $|G|=p$ je v důsledku Lagrangeovy věty \ref{v:lagrange} $G$ cyklická a tedy generovaná nějakým prvkem řádu $|G|$. Dále tedy předpokládejme $|G|>p$. 
 
Pokud bychom vzali prvek, jehož řád je dělitelný číslem $p$ (tedy $|x|=pn$), pak stačí vzít prvek $x^n$, který je řádu $|x^n|=p$. Dále tedy uvažujeme $p \nmid |x|$.
 
Buď $N = <x>$. Jelikož $G$ je abelovská, pak $N \npg G$ a z Lagrangeovy věty máme $|G/N| = \frac{|G|}{|N|}$, respektive $|G/N||N|=|G|$. Protože $|N|>1$, musí platit $|G/N|<|G|$. Dále jelikož $p \mid |G|$, ale $p \nmid |N|$, musí platit $p \mid |G/N|$. Z indukčního předpokladu pak $G/N$ obsahuje prvek $\bar{y} = yN$ řádu $p$. Jelikož $y \notin N$, ale $y^p \in N$, musí být $<y^p> \neq <y>$, a tedy $|y^p|<|y|$. Podle věty \ref{v:rady} tedy platí $p \mid |y|$ a dostáváme se k předchozímu případu.
  \end{proof}
\end{theorem}
 
 
 
\begin{define}
  Grupa $G$ (konečná i nekonečná) se nazývá \textbf{jednoduchá}, pokud $|G|>1$ a jejími jedinými normálními podgrupami jsou $1$ a $G$.
\end{define}
 
\begin{define}
  V grupě $G$ řadu podgrup $1=N_0 \le N_1 \le \ldots \le N_{k-1} \le N_k = G$ nazýváme \textbf{kompoziční řada}, pokud $(\all 0\le i\le k-1)(N_i \npg N_{i+1})$ a $N_{i+1}/N_i$ je jednoduchá. Faktor grupy $N_{i+1}/N_i$ se pak nazývají \textbf{kompoziční faktory} $G$.
\end{define}
 
 
\begin{theorem}
 	(Jordan-Hölder) Buď $G \neq 1$ konečná grupa. Pak:
 	\begin{enumerate}
  	\item $G$ má kompoziční řadu,
  	\item kompoziční faktory této řady jsou dány jednoznačně. Konkrétně pokud $1=N_0 \le N_1 \le \ldots \le N_r = G$ a $1=M_0 \le M_1 \le \ldots \le M_s = G$ jsou dvě kompoziční řady $G$, pak $r=s$ a existuje permutace $\pi$ $r$-tice $(1, 2, \ldots, r)$ taková, že 
  	\begin{equation}
  	M_{\pi(i)}/M_{\pi(i)-1} \simeq N_i/N_{i-1} \quad 1 \le i \le r.
  	\end{equation}
  	\end{enumerate}
  \begin{proof}
	117
  \end{proof}
\end{theorem}
 
 
\begin{theorem}
 	Existuje 18 (nekonečných) rodin jednoduchých grup a 26 jednoduchých grup, které nepatří do žádné z těchto skupin (sporadické jednoduché grupy) takových, že každá konečná jednoduchá grupa je isomorfní s některou z výše uvedených. 
  \begin{proof}
	Výsledek cca 100 let práce mnoha matematiků na 5000-10000 stránkách odborných časopisů. Ponecháno čtenáři jako snadné cvičení.
  \end{proof}
\end{theorem}
 
 
\begin{theorem}
	Je-li $G$ jednoduchá grupa prvočíselného řádu, pak $G \simeq \mathbb{Z}_p$ pro nějaké prvočíslo $p$.
  \begin{proof}
	255 stran... 
  \end{proof}
\end{theorem}
 
%___________________________________________________Rovnice trid____________________________________________________
 
\begin{theorem}\label{pocet trid ekvivalence}
	Nechť $G$ je grupa, $A$ neprázdná množina. Pak platí: 
	\begin{enumerate}
		\item Relace na $A$ definovaná přes akci G jako $a \sim b \lra a = g \cdot b \quad g \in G$	je ekvivalence.
		\item $\all a \in A$ je počet prvků ve třídě ekvivalence obsahující $a$ roven $|G:G_a|$, index stabilizátoru a.
		\end{enumerate}
	\begin{proof}
		\begin{enumerate}
		\item	Reflexivita je jasná, pro ověření symetrie nechť $a \sim b$. Pak $a = g \cdot b$, takže $g^{-1} \cdot a = g^{-1} \cdot g \cdot b = b$, tedy $b \sim a$. Nakonec pro důkaz tranzitivity mějme $a \sim b$ a $b \sim c$, tedy $a = g \cdot b$ a $b = h \cdot c$ pro nějaké $g, h \in G$. Dostáváme $a = g \cdot b = g \cdot (h \cdot c) = (gh) \cdot c$, proto $a \sim c$.
		\item	Sestrojíme bijekci mezi levými třídami $G_a$ v $G$ a třídami ekvivalnece $a$ (orbitami $a$). Nechť tedy $\Cc_a = \{ g \cdot a | g \in G \}$. Pak zobrazení $g \cdot a \rightarrow gG_a$ zobrazuje $\Cc_a$ do množiny levých třid $G_a$ v $G$ a je očividně surjektivní. Protože $g \cdot a = h \cdot a \lra h^{-1}g \in G_a \lra gG_a = hG_a$ je taky prosté. 
			\end{enumerate}
		\end{proof}	
	\end{theorem}
 
\begin{remark}
	Konjugace splňuje axiomy akce a platí $G_s = C_G(s) = N_G({s})$ pro akci $G$ na $S$, $s \in S$.
	\end{remark}
 
\begin{remark}
	Dále budeme pod pojmem orbita rozumět příslušnou třídu ekvilence konjugace. 
	\end{remark}
 
\begin{theorem}
	(Rovnice tříd) Nechť $G$ je konečná grupa a $g_1, g_2, \dots g_r$ reprezentanti různých orbit neobsažených v $G$. Pak
	\begin{align}
		|G| = |Z(G)| + \sum_{i=1}^{r}|G:C_G(g_i)|.
		\end{align}
		\begin{proof}
			Orbita $x$ obsahuje jenom jeden prvek právě tehdy když $x \in Z(G)$, protože $gxg^{-1} = x$, $\all g \in G$. Nechť $Z(G) = \{1, z_2, \dots, z_m$ a $O_1, O_2, \dots, O_r$ orbity neobsažené v centru a $g_i$ reprezentant $O_i$, $\all i$. Potom všechny orbity (třídy ekvivalence) jsou:
			\begin{align}
				\{1\}, \{z_2\}, \dots, \{z_m\}, O_1, O_2, \dots, O_r.
				\end{align}
 			Protože třídy ekvivalence tvoří disjunktní rozklad $G$, máme díky předchozí větě
 			\begin{align}
 				|G|=\sum_{i=1}^{m}1+\sum_{i=1}^{r}|O_i|=|Z(G)|+\sum_{i=1}^{r}|G:C_G(g_i)|.
 				\end{align}  
			\end{proof}
	\end{theorem}
 
%___________________________________________________Sylowova veta_________________________________________________
 
 
\section{Sylowova věta}
 
 
\begin{define}
  Buďte $G$ grupa a $p$ prvočíslo.
  \begin{enumerate}
  \item Grupu řádu $p^\alpha$ pro nějaké $\alpha \geq 1$ se nazývá \textbf{p-grupa}. Podgrupy $G$ řádu $p^\alpha$ nazýváme \textbf{p-podgrupy} $G$.
  \item Je-li $G$ řádu $p^\alpha m$ a $p \nmid m$, pak podgrupu řádu $p^\alpha$ nazýváme \textbf{Sylowova p-podgrupa} $G$.
  \item Množinu všech Sylowových $p$-podgrup značíme $Syl_p(G)$ a počet těchto podgrup $n_p(G)$ (nebo jen $n_p$, je-li grupa jasná z kontextu).
  \end{enumerate}
\end{define}
 
 
\begin{theorem}
	(Sylowova věta): Buď $G$ grupa řádu $p^\alpha m$, kde $p$ je prvočíslo a $p \nmid m$. Pak:
	\begin{enumerate}
  	\item Existuje Sylowova $p$-podgrupa, tedy $Syl_p(G) \neq \emptyset$.
  	\item Je-li $P$ Sylowova $p$-podgrupa $G$ a $Q$ libovolná $p$-podgrupa $G$, pak existuje $g \in G$ takové, že $Q \le gPg^{-1}$, tedy $Q$ je obsažena v nějakém sdružení $P$. Speciálně každé dvě Sylowovy $p$-podgrupy $G$ jsou vzájemně sdružené v $G$.
  	\item Počet Sylowových $p$-podgrup je tvaru $1+kp$, tedy $n_p = 1 ($mod $ p)$. Dále $n_p$ je index grupy $N_G(P)$ v $G$ pro každou Sylowovu $p$-podgrupu $P$, a tedy $n_p | m$.
  	\end{enumerate}
  \begin{proof}
	str. 140 
  \end{proof}
\end{theorem}
 
 
\begin{dusl}
Buď $P$ Sylowova $p$-podgrupa grupy $G$. Potom následující tvrzení jsou ekvivalentní:
\begin{enumerate}
	\item $P$ je jediná Sylowova $p$-podgrupa v $G$, tedy $n_p = 1$,
	\item $P \npg G$.
\end{enumerate}
\end{dusl}