TEX/Favorites: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
(Založena nová stránka: \textstyle \frac{x}{y} \frac{x}{y} \textstyle \sum_x^n \sum_{x=1}^{n} \textstyle \prod_x^n \prod^{x=1}_{n} \textstyle \int_a^b \int_{a}^{b} f (x)\,dx \textstyle \frac{\…)
 
m
 
Řádka 1: Řádka 1:
\textstyle \frac{x}{y} \frac{x}{y}
+
{|
\textstyle \sum_x^n \sum_{x=1}^{n}
+
|\textstyle \frac{x}{y}   ||  \frac{x}{y}  
\textstyle \prod_x^n \prod^{x=1}_{n}
+
|-
\textstyle \int_a^b \int_{a}^{b} f (x)\,dx
+
|\textstyle \sum_x^n   ||  \sum_{x=1}^{n}  
\textstyle \frac{\partial x}{\partial y} \frac{\partial x}{\partial y}
+
|-
\textstyle \sqrt x \sqrt{x}
+
|\textstyle \prod_x^n   ||  \prod^{x=1}_{n}  
\textstyle \sqrt[3]{x} \sqrt[3]{x}
+
|-
\textstyle f(x) f(x)
+
|\textstyle \int_a^b   ||  \int_{a}^{b} f (x)\,dx  
\lim \lim_{x\to\infty}
+
|-
***
+
|\textstyle \frac{\partial x}{\partial y} ||  \frac{\partial x}{\partial y}
\sin \sin (x)
+
|-
\cos \cos (x)
+
|\textstyle \sqrt x   ||  \sqrt{x}  
\tan \tan (x)
+
|-
\log \log (x)
+
|\textstyle \sqrt[3]{x} ||  \sqrt[3]{x}  
\ln \ln (x)
+
|-
***
+
|\textstyle f(x) ||  f(x)  
\le \le
+
|-
\ge \ge
+
|\lim   ||  \lim_{x\to\infty}  
\neq \neq
+
|-
\approx \approx
+
| ***
\equiv \equiv
+
|-
\propto \propto
+
|\sin   ||  \sin (x)  
\infty \infty
+
|-
***
+
|\cos   ||  \cos (x)  
\alpha \alpha
+
|-
\beta \beta
+
|\tan   ||  \tan (x)  
\gamma \gamma
+
|-
\delta \delta
+
|\log   ||  \log (x)  
\epsilon \epsilon
+
|-
\zeta \zeta
+
|\ln   ||  \ln (x)  
\eta \eta
+
|-
\theta \theta
+
| ***
\vartheta \vartheta
+
|-
\kappa \kappa
+
|\le   ||  \le  
\lambda \lambda
+
|-
\mu \mu
+
|\ge   ||  \ge  
\xi \xi
+
|-
\pi \pi
+
|\neq   ||  \neq  
\rho \rho
+
|-
\sigma \sigma
+
|\approx   ||  \approx  
\tau \tau
+
|-
\phi \phi
+
|\equiv   ||  \equiv  
\varphi \varphi
+
|-
\chi \chi
+
|\propto   ||  \propto  
\psi \psi
+
|-
\omega \omega
+
|\infty   ||  \infty  
***
+
|-
\Rightarrow \Rightarrow
+
| ***
\rightarrow \rightarrow
+
|-
\Leftarrow \Leftarrow
+
|\alpha   ||  \alpha  
\leftarrow \leftarrow
+
|-
\Leftrightarrow \Leftrightarrow
+
|\beta   ||  \beta  
\vec{x} \vec{x}
+
|-
***
+
|\gamma   ||  \gamma  
( \left(
+
|-
) \right)
+
|\delta   ||  \delta  
[ \left[
+
|-
] \right]
+
|\epsilon   ||  \epsilon  
\{ \left{
+
|-
\} \right}
+
|\zeta   ||  \zeta  
\textstyle {n \choose k} {n \choose k}
+
|-
***
+
|\eta   ||  \eta  
\Box \Box
+
|-
\forall \forall
+
|\theta ||  \theta  
\exists \exists
+
|-
\in \in
+
|\vartheta ||  \vartheta  
\not\in \not\in
+
|-
***
+
|\kappa   ||  \kappa  
\mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
+
|-
\mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi
+
|\lambda   ||  \lambda  
 +
|-
 +
|\mu   ||  \mu  
 +
|-
 +
|\xi   ||  \xi  
 +
|-
 +
|\pi   ||  \pi  
 +
|-
 +
|\rho   ||  \rho  
 +
|-
 +
|\sigma   ||  \sigma  
 +
|-
 +
|\tau   ||  \tau  
 +
|-
 +
|\phi   ||  \phi
 +
|-
 +
|\varphi   ||  \varphi
 +
|-
 +
|\chi   ||  \chi
 +
|-
 +
|\psi   ||  \psi
 +
|-
 +
|\omega   ||  \omega  
 +
|-
 +
| ***
 +
|-
 +
|\Rightarrow   ||  \Rightarrow  
 +
|-
 +
|\rightarrow ||  \rightarrow  
 +
|-
 +
|\Leftarrow ||  \Leftarrow  
 +
|-
 +
|\leftarrow   ||  \leftarrow  
 +
|-
 +
|\Leftrightarrow ||  \Leftrightarrow  
 +
|-
 +
|\vec{x} ||  \vec{x}  
 +
|-
 +
| ***
 +
|-
 +
|(   ||  \left(  
 +
|-
 +
|)   ||  \right)  
 +
|-
 +
|[   ||  \left[  
 +
|-
 +
|]   ||  \right]  
 +
|-
 +
|\{   ||  \left{  
 +
|-
 +
|\}   ||  \right}  
 +
|-
 +
|\textstyle {n \choose k} || {n \choose k}  
 +
|-
 +
| ***
 +
|-
 +
|\Box || \Box
 +
|-
 +
|\forall || \forall
 +
|-
 +
|\exists || \exists
 +
|-
 +
|\in || \in
 +
|-
 +
|\not\in || \not\in
 +
|-
 +
| ***
 +
|-
 +
|\mbox{Taylor} || f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
 +
|-
 +
|\mbox{Euler}^1 || e^{i \varphi } := \cos \varphi   + i \sin \varphi  
 +
|}

Aktuální verze z 2. 9. 2009, 15:30

\textstyle \frac{x}{y} \frac{x}{y}
\textstyle \sum_x^n \sum_{x=1}^{n}
\textstyle \prod_x^n \prod^{x=1}_{n}
\textstyle \int_a^b \int_{a}^{b} f (x)\,dx
\textstyle \frac{\partial x}{\partial y} \frac{\partial x}{\partial y}
\textstyle \sqrt x \sqrt{x}
\textstyle \sqrt[3]{x} \sqrt[3]{x}
\textstyle f(x) f(x)
\lim \lim_{x\to\infty}
***
\sin \sin (x)
\cos \cos (x)
\tan \tan (x)
\log \log (x)
\ln \ln (x)
***
\le \le
\ge \ge
\neq \neq
\approx \approx
\equiv \equiv
\propto \propto
\infty \infty
***
\alpha \alpha
\beta \beta
\gamma \gamma
\delta \delta
\epsilon \epsilon
\zeta \zeta
\eta \eta
\theta \theta
\vartheta \vartheta
\kappa \kappa
\lambda \lambda
\mu \mu
\xi \xi
\pi \pi
\rho \rho
\sigma \sigma
\tau \tau
\phi \phi
\varphi \varphi
\chi \chi
\psi \psi
\omega \omega
***
\Rightarrow \Rightarrow
\rightarrow \rightarrow
\Leftarrow \Leftarrow
\leftarrow \leftarrow
\Leftrightarrow \Leftrightarrow
\vec{x} \vec{x}
***
( \left(
) \right)
[ \left[
] \right]
\{ \left{
\} \right}
\textstyle {n \choose k} {n \choose k}
***
\Box \Box
\forall \forall
\exists \exists
\in \in
\not\in \not\in
***
\mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
\mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi