PK2uY @e1i$01_reprezentace_cisel_v_pocitaci.texUT pX?gpX?gux !!Wr6>OKgd:BZ @Nw)8w(pPOoz9AdThl8?R(j@#XU#wcC]QΖh}ndX95S[=4YXA|4+à#ipBuGFo7'H ZY@`␵*U{f1 4Tk ɅZa`:4fur]nwH%5E'_hx9T.Frg*]߰L6+4LC*\6LP4p2Ry(0Z" `!) 5ayg?(Ѿ.pYHߠc˹0Ե'y܋V BduP)RXN2V{]"%[v@Y~o/E !Y309?1C7hݡͣeW&-%/MU)0?v\HzJMh*a*˻LP=Ų87lu%VkŒJ^A!#?S ̱t iZ@WMPHK>~Rj$ GV 5(e,zm$L& \;{hav3/^&LZi&Zg7 Hv|PU* Xj6m.*= Gjؙy /e.c,僁VCw!h`4,SWSI+1^Y0Z7QEجJY F޶eZS6+x9 ƮDw'PK2uY e Y 02_chyby.texUT pX?gpX?gux !!YKo7>ǿ6^ I]a`͞"=%Mi~ݯLLç9䠃{2_׼$;k,V'*}<GՓ'N*Lhg e4XTOr'{ɓcIE"+zGH +Yfy!xVSfw D;!ȔW8+sm8Jן߲,L*,e̕|;󏱺 h4("q6o~%FH4|HѰ\1gNC|ƆʋTwidɨi O}:O\(X7 6ƭԁ o.l1mhʜ@0%2sLyC%ffpWZ?U]}j2M+-7Y+w[ɜasWL^1vYvUѵ FiE̗m ]"1Y{Yop_uHvNju'w4K8l{dG/Ne/k '|$0xpb+@$"P%֟xl=^"O6Hd,a4@1$e](RZMNxҤ-##V3 U8uP*c?3-+%g6)v\t%v=#8"%hZdzusXGDׅ"P H"wngSܾq,;T9wl=m|Ѿh~O6uoG{ H9!6D Q5)~%CsM%҃9)5|iC^56l)* tjvox2(`L4CEL3#/d5Ct..=Z%긲.r0@^q7I6\|]W0U@<"\_3R瑇);.e!P'lMBr VպYppLRjo5T#ryuME%d.Z0z5mtylVnb j/K) B`qi{<@ u΀N¸H%XxP@ |pOW ~! DLJ t 7&y7yurzȶ@2O DoehB}T^LC4v` Tk`іjfʠ251D|휱?SpJ'a~ʔ DC #M:DڞSKC`a13:]_Dt31*ĎUz ggQD6uO=>設 kW+ V_9T/n6[M*~ /z/5kxS9"Q{ʝB^}!\;21i&e- vb1^Yo-=.&ĨzFf93@dG tn4:nO dV7I*1_U U~I:D \eL]]qiZDkLRo qQ:[uc^$2c܀4nO3lьgy݆e!hդ.-椊^vT6\Rm/^{aE2^>ۥNEO]rϊ C!x!D,f{d$ZQ<|ys|{Styn=d{j5L3b!ǻppڂ3fo?bZpRƅWEcsڠ{Z=V]_Dafx4:okNԎ|*3zP2v$튾B!B/ m^% aS}4oEo0$= u?-}Pá|$2vY0+c%Vq\Df!};hCF@c -01l46OʋIwӐQ?iwW,OjF~f=+ H eAm[2c< X`@//Gpgna:PgWϨ?\D}ؼ=(LqȺ{wlN5hKB$"reNti'mr2{iBMf^t8k7JۼoLj9}H H!̡߲n7PK2uY$wN03_ulohy_lin_alg.texUT pX?gpX?gux !!U͎0>ӧi+v.]_ YTn2۸q8eKGS`ŝlߋqe{i<<]B?acE7/NlFS4W2 2ab dgftk.s!_PIh&}H| VV%*#לE0mO;݂_ZrJ`h{ :@$QIGԠs&u!1gW kWK?f뗬 `ʟJ˧pbF!RSvPeǸ*aBB7WGCZmuEIcxU ?w.9uRsV]aUNg3'z_rHlO *;A2s%[|cjRYLO6y&*M)xqFy >|JA#;OXcƅMA Mc>n>86'tZN8ƕL#Ʀ!PYq+2TWd/ >{44%@Klo҇X7tB}o$K^xx|>(B?n7!ze2MTåi\[nfɭV>v2MQv'P*ioeLVW`Ҫ}|00K7M$ `e927rkQwZdR|P]>ǿ{XCZ[% F|H2 &@v.;=#Pjj~R7{ Ud `"U_$Dn\+J[$IӔX1ھ n3k`4^gEv_gwĚ['ȜΖ'XH$Y9|s{s@>6Â^N,Pb՜+9`'k݇`y!޻!MX`$C#֐) v-vlxNՅb1e~~ 5O?ػ!YK4/r؜{mϱqcz;`i143QksYhPY C|'QJzm\Zխ,tr̲8'ag8*J jK6iO(QmC\zNM\cA8cr0{}EMHnZy4q;+,%:C9+P6/*p!ߗF]4 exaTT"1tAEfZ 7oj+nՉ,a-|k9cvv7s˕n[; ϲqk YWP,Ygr 4.wo&2]:Y1|&zcع:Sٗy<,gQP6)7ҫ)tߘ_UM*oN ͉Ǒ8@XCc( #4XD \X̯1hE<0x}CX\[ˆNb!M?yY,7݃`CB6(aMc~_=n,Ġz+0I`\3Lie*AEbO AaIeCP@knFnJCPGʾᧆN1\@J.*q|&Qu]M!U% ,lpS(b y,=:"0'$ .#/x,@\9lNİ68*x g/~l2궀f.|M qrNGGڊm Va:! > 8ܥ nnXPp oA |pFY0N"6@1Ő%@ϫXL^ tm0pN*ZHE^Hk/CΫastr{H&e]hjpXѓD;g鉁0̹SmbH}SeeSmr3%;,`%tm"樥j+ɬeTWbf#ɻK>HJ~o$6vU}1!}_Y?zZƂv ÚFb\*(r(ʚ-٥>ZN4>-DlMۘ. d !JP%UmSSs4"y`Hqp_MP5⃸7, (1md$r_Ct;зV4dȁ){sO}뵣ZUԬl$Pͯ bTnOm3ЋbΏB*ԗ:-dWflYo~h˫^TChv)d7x7=FKZ=*y4u"%ңЎ9{a®Gvx]q4$ti3-d@a^b6 'q[Gr<ŃB!R.njS$p $[yX 9??"@[1ut`$Q'cE+x'zXT`u}W8p)gy= :DVeF-f4r 5&Ml(cQyQX\lFA=)虡oBSȦzz"'Xˎ$g⦏14C<<&80au5_sQsHS[r;PZh~oW6fɚ!]聭ZE QnKOfu!_(;Q-O\T̜johny1%ZE3c4*FZJ QE@cL7J@v)d(QCT _y'y6>7aG|=ӕixT񋄨j \/Sztinإ[7uj{@S0CwlD2AIDe'/;x7Zz:WNEVjeZRѴd dN/j>62elZ/͢yQԻ>2-݊FLyͽr}qœyL [Dګt0 aؕOQ`7Ti\:>rGF^5C9u7dzwa񬻙Ob\ݮwg`q?~*jQ~+{Ln/Kyv&3A ځ;8YGIbKWpVdq1[0+ `݁ijֽ6Yy /څ>+IO~[PDdZ][PYΌi7 Nj5X &5[GNZbצ co{t#ǚZARZj<}:9<.MgS&u/@QFy_|S*><9aU.@7iIboHԷ#~w!7U BaT]|~f ekl ׆ֵ>j3_鬀y¾;&)R3GG[Jf/MyM`ޚ:g#/=ָcja_zLng-=wN垓HPK2uY@2 03b_vlastni_cisla.texUT pX?gpX?gux !!Vn0맸ԺhlmRCv%lJز(R֏c[#L:t hUҖ[EpOq@=ߋ 4Ⱦ~|1S;F'Ͼ3' v jnK_A !V,}]ͳݳCtHwlw\,9/fW.NVY1UҁL=dfdG~`!@8N~]ah5{}PK2uYB:P03c_determinant.texUT pX?gpX?gux !!eMN@  5R@].$cIe< 2#U#&$/=K>uO5Vˋe2CrQĚ%ekHzLّzkuv˰us B?y!Xйn oluB2n|p`/.[V Us435g)B*s, ve+y=!g |PK2uYfG$ 04_aproximace_funkci.texUT pX?gpX?gux !!Vn6>O1{haN,z(MS(H$Ұ(ŒVo<@9y"vH֏ml4c|7C<|xϳr4"1si+Qm".[.dE< s,gAXM{\T\v`j 9cۇ9E[_{J%4e̫4ArRۛ ώl4+^MJ1"oi]#NfGeAeW[&d::1ȘRb-<_RVڱf 8𛄮TY`ug⯲◲,8D̖f.m`u1ُ{`QF0,h=\4>l (~}DҳfpG.Vb`as,p0bCMS=iiY~}~H20jU`=dLUu./b.씥|iw C'K3*Xł5}QZw.T#1;6o 4mS"M ءv2_B"Ⱡa"5cMɨdzt+{ ϱc.fr= ^!È69m/2Y#*DV+6T&0JNQp x^(m^pV2) "d * f 1"x$EU0=L:BG4ij}; 7ʦH-Wl$%4Zr-?=?I;5G}!Ξ%my`uغY#iR s-nR'h0jgƀNN5#.NsV Dbd|Ͽ'O(G̍3Pz{AC*]Jxob}K-rz{욋%ٔ//|%Ëbq0-8or"$]߬=봄IL.|֋hG'!F']'du_"af_iwyNpD2% +rK x2ۼzҘx4جxi9iWN 7cqq֍`C,Dz\rP$Sr_woHyGhqBQ׫[Y$E8 y#X t"4,7%jbz}͊|gKܧte\X~k # .\bץl.c{z5%)K# J-? !-bd+\\[e }_a1&ַST! J XIPE$՚rp K#N XTYw~IGd6dp LJyf/HV$?@ELo@18|?ZrвPS*5::.+1bZk@ws8nIl$FW8[9Mgxq&ɝh#oNA,kp&IE,یdPP_?_`vhfnE `\IAz83oiHLa$NТKdgY+=_ۯF⸥_|kCmj ܳݞ27~#_"1P,\,{̈XB=n8%uRe^86 6[yN (iF^< /ҧ6:“)x)ͻ djFcÛo Wv)802BI3VZ$ ,A~d e))-)E,VU)惷~ 4D4퀑16+ty`avmՠdM˺0'mdS'Ty%_)R˻T-$d~2k|EpǢҀ_ !<[Q=Uϑ"6i{4+zGTc=r8"%W .CIf*"s>Emy5y6BD$p,}=ɵ<n}ݾ`;VvQ183V1Bķ_0P+># &Iw)\+dlT!vC,]V!QF"fZ0^ɐ!&`LX~v):w}Civ *215 Ka4CtRe?˳FQQhDH$.0^,GG&dcBJ) |W|{8R}0h-O-ЧS iм XϩQ@Eu]g=X WazI`! Μ1wӸ9*P>l/I^$e );@@*>X:>H*VM  iyD]G!f}.{lzQU4IyMqz[;PNHYaEsATgLNx,OWJ E<3Ii?JEeV2F:} 8h\+@P.;ձZka1L K/χ]=[ۥ`;^n쳐 45 OBU0Ccc*%neʄ.$v%$K ,.^>V^:OWxGiSzqD!W) IÆ/!Tzt XtX֨谎Ej =xMLI nȽ*ѡ{22|Pw~<#@jbD.z|sɟz0މXP[u{H'U/Uu X|5yG~Y7OHO1&Gkzsjn{ԞC}m*7ZVR)C3ޠ ƐJإJ՗ %U'5pCr`cx/~S%~ֶ>"5A[_+Z S1'V+@8 &DOtDHPK2uYfM: 04b_cebysevovy_aproximace.texUT pX?gpX?gux !!Vr6㯸M2X*=t..2Jeh5 `@d?J6+$5qRD<98 ~G<Ouw|32$݌yKQn`ja,Vx%d2e .JY\|G_J.yB=VyqH.|b.XBW,jC{E3ڈ湈<+4Sk\HACb6?+@DpDcFPd]mb7:/X[ggЋd>ϑ k 7WDع~cӆ89k;Y,YlY*ml`T)K*_^m~E׻? B*<3o%l>^Qcx^`ZM4fh{lNw,ób2Chq>G;m'Q=1gL*} D@ʈquuH9d? * JU ,$z +hEE6*D?'>jwV@ʨm)"czl]>-{~}(⴫QwSY8ĕKdWСCBanki9獸u{&Y)e7*C's%( mF$=^<;]|bZ.`2i̊QbvwfV^r2Mz=ݧ'io׷fzjh]Ef2o/J˅M/7AAyاȔ$]r4\~w װ yS!h"m\R{&֛3d!O|}Ztql \^ɬ ?̧,B)Ԝ9ѡ p.fCQ5w7 NA.a28x0Fpdm <t||_yV5p=L.G Yc޴Cmv|[ KXVݢ1>Axq4I(C<Y>`F D ,3mj;= ū${kiAc=}580!#:1J;XjPcmaAV)=\C )vV5cAk<{džOhObZ}~-S뇾U)5ڰe.oqM킴[(/:6o- TE͟dFSofSH|)ɮщr18GoBZO. uz@g7]q獌4s2pDpDTgcqZ=| J$R p""4}܇um WcWω][ 9i8Xk!q SEI|#4\=ٽ8NhPoK`*|~s#xX{r/:t1װ!S]Z"N TIH~˶SģgkvQ;+-6Sy]ld𠛆*;"VIwlԐ(m؍h{Ϋʻx(i*~(x`&%`f5uW=bPU ZsnǗPK2uYs@!05_reseni_nelinearnich_rovnic.texUT pX?gpX?gux !!uS0&m &H|VOR(!&}T.SSnGΑc;k+2sU|i:k@ymaC~ф"JٚtbKM-+1Lml 5w;BRQ!(F7p6ƨInCxmExfCllpDH:EPQ{4 )At[pp?XPjc~)!u.yʷ30*vesv%Bȕv͟~b$&:HC?,h3u" xasw-6b,Zjc07k90L 8 xo0"gh, avr7wJ.tYo=ۗXInha$.+dLG$\yKҩ"--ZF(.gcpTš ټ%2Awh) gKJIo ppy|3PK2uYəsN05a_bisekce.texUT pX?gpX?gux !!eQ;N@)AE"%ԤA ZcX{=k(v|@"1k),y͛k`[ kQZW4OU;1b+5`vb|Ox^aaB*qC7t *&1;@O$svn8%},Kwת 8d!p(7z,H?D6L»%Z¿&NTR7#70m³Ryb_Z2<گ=2?p8I K#8h?ѝF6"oe΁KvGRA3sA PK2uY[$P05b_metoda_secen.texUT pX?gpX?gux !!TAn0<ǯX 1`Խ~ JZ %R(G'EOy4R-Z :9'!E&Hml}OeyahV;:xJ^U/~9`. `9`n rmj E tTP?}Ty[,c` ,Z%4.MހChrxjȬw.l: ZkyFՊ&v'%ZЋR0Ɉ}]mv0zO.mΈP3ݵ+1s*vh|Wp}*'J` | LqACݖYq_כdMr^;C::f㒴Jz+PuTkBE\VI9)t2BiD=4KY^hw_Gn|J=1j+͠'&Dm_uN}Z+Ppe蝯9$D'ִqNy Wbpќ4eP7PK2uYЧ*N 05d_newton_raphsonova_metoda.texUT pX?gpX?gux !!U͒F>[O>"Vjw蘣Tn;Z Q:{p ,dQ Cӟ?z z4:eb2Co])u =#  Z{Wl{}:mݱkƘ agXr*w6<ޯn!+#zO~v#,nl-q>g .d1x`#yrke4ޟhցv"3ev!dϘkʭqQK杘3lX'v4*!}gqJxB\0Q|f+2#KR$I>/kER[J#c=e l@P9nWC= eBÝ]%\Vӱ yNpoi忰.t n5fLF";21c&3,F*']Ox!9uy;i(d_j{xBB*ϪKT;XGxcy*~|~ 1ALt bLG.4{:IՉkP.,۹*@Zu+:<PK2uYd[505e_hledani_korenu_polynomu.texUT pX?gpX?gux !!TAn0Hj>ܡ:R['l+X䄅KkÕ vZnG0>Wt`2Ӷ >Oa'^Ä(@- (肫ףoI}|v G$ J.%uoAnMBKƻs"^2Ͷ_`VKC+-bFRKMXZl4< df$+]YP"AM&VB#2\sYJ)X-c8Gw$_d| 5q" (4zte'P/tNG2` rXx6Ї4#:iPdSU0MdIV\{SX iGh g@[̝NeԇN 1&bYk{l']w˴j719x,D#PxR"hiC[*1&n2m"eԏtMma@k2nSX߃H7+-._ &H)zLrvn4$FϞ$5~D %yMgOK:xà$/PK2uY a05f_mullerova_metoda.texUT pX?gpX?gux !!VnF>GO1@$R{2c dkaI5]jd${PcF ,dJQ4^H3/HdɓO/v4bYed*8$hTyx#d% &D;z_AǢo!ç;!U~({ hn4Ss_3Sx.-D9_Ҁu,$VJ~HF;hP%%IY;yBt 10^1.9zk6  h?n\Tx;vQ\-a `nT+CTl9#lv/Ze#Mf@;YTLE~y0֙L;-]ۍ:<woGq>gOczXVֶ_҄q.ks8M+۷cN22HvZT+J⿋"\/b%q#b.RXP*t|U1fS`F7=4S͋pI/n9qZN= IZ:O2=|sDOs~^!?㋈ :Z7~0ta/f󀸵E[ m5=i+`$Ҷ3Ů.x]&4\kZ̖v™{,MXѦ߹oVKMisXriT{X0,T*R*Csv7Z|XoI@­j0ȻOwnᡵgX[g`y:s&3 JcqtG3]Qs߿ PK2uY9#*05g_prosta_iterace.texUT pX?gpX?gux !!}Rn0"(lAZ` Y=T՜oTLIzaz mʚ1&C|iZWA23ϥo*bf&1YYzETR|kDG A|; 6<:LJ#˅B)KHQP9}Mŭf\h(<S͇mm`_YCb2-44v%2" k"]bv7K vWhyMb7$fGQz`BOownѵHKd?)б_G8|(nZN {2ow搴'ԃSFNб#7s7rRaO{{XvYWT԰Uz]T]~޵|lY1GzS.Ұ|P '0?.HmH{XgO@ t_ 'r&>_@Bf`d4,k|P?k#40u{^ ş%[?PK2uYa{l06_hledani_extremu_funkci.texUT pX?gpX?gux !!Tr@Sl&!$I23)ӤٚCZ,ݝ|:ɀ#2(]x= OFt}N" m*>E*aPU8|Ͽa/T\XbE猹#KU& բ=F_m %ŒBp XL?DR !!X9y.3%TI;y%벙Ttf1 &D6Xwҝ.轁ʊ+-Xe<6o! ,Y޵nHFډb\Ndp?o#1?~{=r@Q`NlQgU%=;*5o" ΕX嘄ͽ*A򹐩|}o#\-2&ۚV.?*>xL-7諢%+qîmmm:"ӺWTTE k!_ƙ+Qs8 d؏D}Sc565{Td7'"Ҋ`DiEBw!!a8h~=0 =bHL.^I$G'U:zZ͞)<Ў mtQ(h H?Tj Up8jj&T|{3\,΋3bnXGGNL#ZYG0ߣMGlxS*Q#PK2uYDɈ/ 06a_metoda_zlateho_rezu.texUT pX?gpX?gux !!VMn8^ǧx5 8Me$:b$D !(2 'h65Q%;Ài};`_e$(^N˅oVCsS?vDiĭT+iD"KQ -!ͤe i-޽ڠމD@굁UQuYB!<kg+ـ !\{2y6"bG77voy,*دudR$'b똢NMH3fA,[ƀwdKO DK%VRXB[0EK"ʛj5ب|k%M~*)[/ r#T z9S_X*v/p%` %b,fSwph~,: ɍp zy3#J z/#;Qa F }ʝ+{7\ϥ#Z*;y{KxQE{`"Ԫ*v0Ֆx5YFA^6:(:̐P6A5#O1DF YHC(glwT tf8أ#6lytqAIo"t]e+5(c" 8 b^U-NOTnn[! Xbǁj"UÛB_+6 N|'0aJtISf!cO?`sɷ%y?8G@7ڕc6a}fV*`#NOơsAe̶Na8oe~ztde wm^P@[}d(R) WPK2uYċya06d_gradientni_metody.texUT pX?gpX?gux !!W͎6>gbrH`5Rh.i.)LD۴$R(em\c ߫CJCuإIp曟=x$EH&|\B2y`Z,b UL9IdDwΛ[N-,2xd1!9 (ĉoch+ eC"\ i$b$jѰUW{F; }RՇr+q7Ӛ9́{F" DqBs/SF{`@cf02YRkojBt-0d%/M<40&خ[D3y]Hh;Ӄ{MPo`,]:֪gxdaΒE[g01`RS0I> ; ,qbR%0Vp3K518uFp#1h\܍B`Ì+wWQ=tmHa *WtW%Zh:`ɤ)mgv k\'1EF9>N};ߵ|Xª29kymPt4E</$EE9/}m6BןGa W^0}7wwk=j=L[>bIz5}?${, _L5qg ;gkC-)]>niaL_iE_gKݎ;y^"QǾF)2XgKB:Xe򏜮V!l&'[BТ%oiu]տk j(?EYPyrϩtj|WVmq|7o;0y.w~FH]4hDΒ%}[z#Xe xlĖRHxwPK2uY" E07_numericka_integrace.texUT pX?gpX?gux !!n0)n1v`gI]S(@ċL"Ud, z@c O,ޫڮ<}wq fɴ0%Kf oVT 1eb3;BFLdz{ZIQ &Z-X/p,IޞqWy7 ]{ W*;B51VRiL<\d⧟7s|\ǨP#u: U8BlQ(W&IYo@Iߔ t<Kj5HSG? B(Q{-VTYC2X~x\qKc`MFJj Z݄R풸Ɨ %~ "Ǯ r V__8oWsfsww­\bo@2[SMH]G=g=1.q~ &S+fdl5n6-ʺGI77PK2uY_ p"07a_kvadraturni_vzorce.texUT pX?gpX?gux !!ZOo?7b Yf cEmhӓi9i*`ᓏ{0^ H^}ofH"i("̙y>?$~̳0/4>Om7yD;2ġ5c?}NC¯dҜKOtuS̖ה?t,nD6.#4 3b`,i wOA,;vEc[aVNYFIS I䧡}\"adE.M?GՙI{ vJPiu;N? CIm ;-oV;T׎uD[W;:W"~1wGDc`[ohְSE~%:E+kPTiP0ڊ|`o5.$va ﬇,9E 9zj\A67R"YX)J/3EAQ?aѫ oiBy!/L7f[ʳz'Ҩ!TCuAeLYĦƞḪS(&SǓEy ! ,E,PRfC,slJe!ЂÎ~g4#AO2ſŒK0t.(#{јB>Ctܑ+8M U 3Gc' sC/MD~ÖZ?T:aK8_P7bnE'pq c!xDKc) i\I@}@[5gyef} =*w]JЈ6|]mk2&-2+z㋆Eu Ov:zBWGGW):vfJ.TUGBSmJG>1&rpXOvJ B (T⩕wj۱eH){j9W*Hd{oZuL}K%$Pig}@q[J)2X鄆kb.Ge5٫\ZH0Hy=w-[V75\{R`ˆ]Q7*_%YdX2τƚ5W,d̦2,dՏS`uHw@.&3+a̟Dَ/@fc }6/dJ->.a֮oȭP5l_:c}I%bdz%۸_9ʲ3y}-Բ(sqC;,Z4Jo*S?wt=dNG O @*&@\$S68C^kQ࣊:J;IfJL?{;fWv*0NRN/=z?1 7elה6sMzKFlUuҀt"0>_s_Z$l.o pa(K†42նC?̜a@hðFtlVfRDJ X~!b~=.|_KG@:- ,]_Vv;Jnh Njɵæ__Fj=:x]DiD4"#h2{j[]*T+ `X0gm`Ŀǎ9 ;p|~ b;b~Y`0܃CRygu%yq*%y{yD] Doȁ"@M@uݷN{_C^ Ȉ|6d<W ?fq<\2J652UasJX L@r&(#˰z+W?zၮSEwjMu$y4[Edy utq@t+h>Ӽ71;#^I_ )bMƩ-W; 8K((v7}s([mOwՋPK2uYhJN"07b_integraly_se_singularitami.texUT pX?gpX?gux !!Sr0HdFR)R$EZ#ҀI ʤ0'K|P/Hɦyp`wb.y*tXFhe(Ӵz%dP\T aN`,V:S)dPWTwڟ7[=rEWkGImhV\N0>812fo[/PK2uY`07c_gaussovy_kvadratury.texUT pX?gpX?gux !!MRKn0]WMp]E6' jPbďʟAs"+-0zd߫C;6{wbAsU1jF/<8g}>1WƍIxTs'tk sx#R%P$WpTIbݳ{`AhИʈ)<-9Ys07!V8D^m(1#\ϧׇM'N*>޴Lq5\>گ?R whaW( "S+1VI>e >BZBbxٙp{w ̰ǿ/z19"Gm 8a$ 7[\y1h<Ǔby'J?ĒZ{5nQa!I#HQ~R1}kPK2uY%07d_integrace_monte_carlo.texUT pX?gpX?gux !!Tn@>EJR FQKC!KDk{ ]zC'H/,k}og؃=IEb8|tmtiP2G)n-O#eÑ09' E #fcOū8pи|2cLRe(# ,^@yFTQY&L#!1OR!}"Dg\,M9,d s/k֐GsInwM5G/q\-$Vp {w #Y5{.Pb`ǁb,D5S3 rfD`>M6E?\T\?Y(_ĠP~3l܁Ie>x (5gسd( k/iIaJ\ZB17ϣ2$R-{$r];-|N%qdsSL8¡{9cIȥQq>?58RKh>[p@kBkΗS=G=7Έ]j*zLy*RCl=Ne$@jXHA}OZv VQ,[vQae@O i2v_PeiCoZ' kOCq{u{C1R{|mthdrι(ƎPK2uYl !08_obycejne_diferencialni_rce.texUT pX?gpX?gux !!VnFO1+|U`]K Hc%?2K"~*. $gN@rgvf=A" &.<:Rjdqo<3xb.]Q#Ym Q./,υ,X#u1uȡ/R6.MicR﷌x ɋz{֚="QNT=%\ubT¢Ț 7xqa+1b%8{ZA}1 ҈{*cO|$]ZxPm\|]>l„*^4|z2İZ|E$Qj`$@]0ldޮ띈F "t3A Fˋ܌ >qsEIHX= ˸V}`2}5 39_K_' ,r| #]٩=58,J 6b--_'wEpOb==o4f+\HQJoPֈq]eX|l_MFb""c.G։jUk0y '暐zjs+|_9$a%a;F=~Mnrat1D;5kBeoi?۩NWƐkȃ 9vhVY##y8[سD[64c8Ӥ.%JTwWV<$t>)v}=:jɽ J+5]tY~)B ;f<(z8h0 ~y"1ܣ-α|nfAgs>FNC`afO ;=y=]ۡ"i@:9DʽVD %%rSg~P_I4v?ls[e7sVZ@#|V!!z5@NN ԼJP%M{y)b`n- eW?_G`+n0̈́ԪCH~7Zgе#``H9{حWiFO|WhyqΈ7EJLRXZ"?&EbH0j_iPK2uYR. "08b_metoda_stredniho_bodu.texUT pX?gpX?gux !!S=n0S@Tۀtj4K0(٢% Xt䱃EBʲk:DD|?Pfa*շLJѸv}גTLP6 Hp I!F\Jj k)$LGx#L9 omr iz4[(Ed wTIsTUǞ,WH*H'5#`XH!3͕ -K<"vk  @BBWאo[kX䳞XP\bX v:(@M VFVpȆgǓּNc:F:<& 3 ~a|=$!!{N‰,'cbl|  <1yHؐ12vdu3XYyWUҸLw;>@68;zM+39n$&F"SV܀^,S\7^C Ңޤz*S7bxhQmX~?PK2uYX08d_runge_kuttovy_metody.texUT pX?gpX?gux !!Xn6>b.ݵ׈ݞӶEk5hHEU>H'{ zr^?ɶ@WH`Y3|o|k#$~姫 H,s"=wRrBtS= KvE bn05U ?k {_xRRQ(#ˈb[s$V8iݘ7$y|]q#})=`"_-8W 9NL@.#ӟirφ1[R]zQn!CdT5ϥ;5UD3Lt9d@v𦜙n+a6{7iqPWM%2cJ~ZFDA}~'7kVaɭ}8zF2}W> +3>t6`1Zv`U~EӀqa9|!Lk6)bQ#>[FS?ǤGd.OuH*Xh0بG}1%`Ҝ^֦x|p\CNӂ ,Qy}}ݒW?)QpVXdyzD5-®{x@@ay{ԆFɹ`~1:2CӍf9K؁UofpqeK:UI$~4"4SGsNUɍ81 8[q3a:}0Rl&c# dN,ol>s+Qsgzc/捏+%goSw]o8_ m)H"\Ae'?rKo!PK2uYTd08e_metoda_leap_frog.texUT pX?gpX?gux !!Sn0UFlȘhI@g1(J%h2AYUʶZ;Mw{ Wfqyy,͂JZ\H]J,z]BʚzkH4?`ih y<yE2-($SL*{==n XPM2wG38s%E'aa  Yؙ .憇et3q7'1QUG7>0vv1침r-C)(\븵H#h[CTKjFøCݣ(wB cM0~Qʾo/uv1B&5jGA: Up'hg )7p)W#\~G!ܞAbRIBQs*Qs`cy()]A>_|8@LI%t[#]͟PK2uY.!08f_metoda_prediktor_korektor.texUT pX?gpX?gux !!TKn0]ǧM q:*@I/%#Z)Xx . d^%%˖e4@+hA{3 ,g:W4}ɄhäȔB0e* MHOL`&$.%Ē]5+Jf?S ϐ+W7 h= [&.i5k[XL`}Ş2C$f4X`S+yYUkT У$j!2 I* ,y[`ܘúwk,ה[|NEU m73W0ֳ:^O|:mJ^gvӣ}=U]V`"xax.ppuV|qq+%%&圦3qqšo/*wlڰ* {6'̃`g( AFX,~h~H*BKPwú H_VPK2uY.(|o08g_metoda_strelby.texUT pX?gpX?gux !!V6=_1Vts-)0]P"RDq$X Ş|?%{m˛E 5Ero `#*.kispc`G_,N@Ed<?W Kp5LmS, 㷣(S Ij%Kj6=Q#5C,So[ - %I B#HHJ,4 AeH7KO4*)4V}, X=jTPO[UTmoѭIk9bx=]$E1EXZ+Qa:(QNQbz{+nuJX Š|CRQ!ݭ{-:t#W+븯hu{߭ޓz')ԉ܆V(֨A.YцsN6ZWx"/zWe:­_B`gd_1$jsYQt¸NG3h:|X},8I2XnFPRvEb.I~0PK2uYY䃸d"08h_metoda_konecnych_diferenci.texUT pX?gpX?gux !!WMr6^GxԘJ%-3u) bdsp K-ѽ4i}}k y7QS]hD6ۅ1_DL Q"؏/!K15" vE%[;FL{ V,`E Eqv%qȍɸVf (HR!Ey(K"ԝ㞭+0ġz_|جT47Z=ٍ d;Y4Y|$)z̨_2p2 ǪB0PWD35I4j70ǯ>*8\ot+&dY]L\a#JE X)4l0!''yv<@ld`[>esƎ{.5_@#;eN$0PY1Fhq/@\@>pa"c΀d&܎ܙӐHm83`ZG(iʃn# .2Wgum`+o`Qׅ\S .'3ex\sFZM^o@r&Ǣ=> /?3^g2@j!ƫ:D򊵇 ģGѼRHA Ԑ5~ie xG0cN~A$wRV /eD2!oYpM#pkH Zt@]M6:6ۥ&o-`i$y' Q"EN)afkQ$ɪ ~(ztk+TUEM9 <&l:\t=Q٭f=ZvO\D c=zՎ ˅ZNv ~Y0YLW Ž5/+dP;3"aѭ$6 81y=Ѹs{[;RPK2uYEz7 header.texUT pX?gpX?gux !!Un8>OE )EaP@{:!H*39b;F"0` fD^2SS]5>YٌVL~W l!x3z(Z,6&SCnP??:с`笰!X6Z؆ީ V`5wK;Jdz]SI("sFB*Y:k[.o4O߂j*'ZTQTʜpZXh퍒6_!2adm۩2lKR2DarZ S`| 5<>8uݩ[ ۶Tkxɚ*OQ8gw8L,`rbqlF 0U'˸Ex#7XץizSki cqP'A!x}{`pmv@Ư.E!{ c~.ů#^x:DQ'5#+avg&p5-xDG)UNEm"1Aq=our: -0it4nҥU}Rkрep5G)׾K|XM;  siC\.Wbʊ;H}:;MJ2@GTRm C¥鍎qà |)| %=b\nk\'װ{PK2uY @e1i$01_reprezentace_cisel_v_pocitaci.texUTpX?gux !!PK2uY e Y 02_chyby.texUTpX?gux !!PK2uY$wN03_ulohy_lin_alg.texUTpX?gux !!PK2uYk?D03a_reseni_soustav_Ax-b.texUTpX?gux !!PK2uY@2 v&03b_vlastni_cisla.texUTpX?gux !!PK2uYB:P)03c_determinant.texUTpX?gux !!PK2uYfG$ *04_aproximace_funkci.texUTpX?gux !!PK2uYѫWL$[0/04a_interpolace.texUTpX?gux !!PK2uYfM: I>04b_cebysevovy_aproximace.texUTpX?gux !!PK2uYXK5 !B04c_metoda_nejmensich_ctvercu.texUTpX?gux !!PK2uYs@!NG05_reseni_nelinearnich_rovnic.texUTpX?gux !!PK2uYəsNI05a_bisekce.texUTpX?gux !!PK2uY[$PCK05b_metoda_secen.texUTpX?gux !!PK2uY'^!N05c_regula_falsi.texUTpX?gux !!PK2uYЧ*N P05d_newton_raphsonova_metoda.texUTpX?gux !!PK2uYd[5uT05e_hledani_korenu_polynomu.texUTpX?gux !!PK2uY abW05f_mullerova_metoda.texUTpX?gux !!PK2uY9#*D[05g_prosta_iterace.texUTpX?gux !!PK2uYB3Q]05h_newton_raphsonova_metoda_pro_systemy_rovnic.texUTpX?gux !!PK2uYa{l`06_hledani_extremu_funkci.texUTpX?gux !!PK2uYDɈ/ c06a_metoda_zlateho_rezu.texUTpX?gux !!PK2uY١8Rh06b_parabolicka_iterpolace.texUTpX?gux !!PK2uYrk06c_nelder_meadova_metoda.texUTpX?gux !!PK2uYċyal06d_gradientni_metody.texUTpX?gux !!PK2uY" Er07_numericka_integrace.texUTpX?gux !!PK2uY_ p"t07a_kvadraturni_vzorce.texUTpX?gux !!PK2uYhJN"~07b_integraly_se_singularitami.texUTpX?gux !!PK2uY`607c_gaussovy_kvadratury.texUTpX?gux !!PK2uY%C07d_integrace_monte_carlo.texUTpX?gux !!PK2uYl !608_obycejne_diferencialni_rce.texUTpX?gux !!PK2uY؊$G08a_eulerova_metoda.texUTpX?gux !!PK2uYR. ",08b_metoda_stredniho_bodu.texUTpX?gux !!PK2uY6)08c_heunova_metoda.texUTpX?gux !!PK2uYXu08d_runge_kuttovy_metody.texUTpX?gux !!PK2uYTd08e_metoda_leap_frog.texUTpX?gux !!PK2uY.!ؙ08f_metoda_prediktor_korektor.texUTpX?gux !!PK2uY.(|o908g_metoda_strelby.texUTpX?gux !!PK2uYY䃸d"08h_metoda_konecnych_diferenci.texUTpX?gux !!PK2uYHe08i_variacni_metody.texUTpX?gux !!PK2uYJ}NME01_Kapitola29_e4ae701e.texUTpX?gux !!PK2uYEz7 header.texUTpX?gux !!PK))n