01FA1:Kapitola2: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
Řádka 19: Řádka 19:
  
 
\begin{define}
 
\begin{define}
Buď $X$ množina, $\tau \subset \Pc(X)$. Pak $\tau$ nazýváme {\bf topologií na $X$} $\leftrightarrow$
+
Buď $X$ množina, $\tau \subset \Pc(X)$. Pak $\tau$ nazýváme {\bf topologií na $X$} $\Leftrightarrow$
 
\begin{enumerate}
 
\begin{enumerate}
 
\item $\emptyset$, $X \in \tau$;
 
\item $\emptyset$, $X \in \tau$;
Řádka 31: Řádka 31:
 
Je-li $A$ konečná, pak označme $\vert A \vert$ počet prvků množiny $A$.  
 
Je-li $A$ konečná, pak označme $\vert A \vert$ počet prvků množiny $A$.  
  
Vlastnost  
+
Vlastnost 3 stačí ověřit pro $$
 
\end{remark}
 
\end{remark}

Verze z 4. 10. 2016, 23:32

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01FA1

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01FA1Mazacja2 12. 10. 201619:00
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůMazacja2 12. 10. 201620:10
Header editovatHlavičkový souborMazacja2 12. 10. 201622:20 header.tex
Kapitola0 editovatPředmluvaMazacja2 5. 10. 201618:40 uvod.tex
Kapitola1 editovatZnačení a úvodMazacja2 5. 10. 201619:33 znaceni.tex
Kapitola2 editovatTopologieMazacja2 18. 1. 201720:27 topologie.tex
Kapitola3 editovatMetrické prostoryMazacja2 20. 1. 201700:20 metrika.tex

Zdrojový kód

%\wikiskriptum{01FA1}
\chapter {Opakování pojmů z topologie}
V téhle kapitole připomene pojmy z topologie, které by měly být známé z MAA3. Je možné, že některé pojmy
budou nové, jiné jinak zavedeny, proto doporučuji tuhle kapitolu nevynechávat.
 
\begin{define}
Buď $X$ množina. Množinu $\Pc(X) :=\{ A \vert A \subset X \} nazýváme {\bf potenční množinou množiny $X$}.
\end{define}
 
\begin{remark}
Někdy se stkáme se značením $\Pc(X) = 2^X$. Toto značení vychází z algebry, kde je definován objekt $Y^X := \{ f: X \rightarrow Y \}$, tj. množina všech zobrazení z X do Y.
Ztotožníme-li dvouprvkovou množinu $\{0,\ 1 \}$ s označením 2, pak máme  $\{0,\ 1 \}^X = 2^X$. Pokud nyní máme $M\in \Pc (X)$, pak charakteristická funkce množiny 
$\chi_M \in 2^X$ je bijekcí. Odtud můžeme pochopit, odkud se vzala tahle na první pohled nezvyká notace. 
\end{remark}
 
\begin{remark}
$\Pc(\emptyset) = \{\emptyset \}$
\end{remark}
 
\begin{define}
Buď $X$ množina, $\tau \subset \Pc(X)$. Pak $\tau$ nazýváme {\bf topologií na $X$} $\Leftrightarrow$
\begin{enumerate}
\item $\emptyset$, $X \in \tau$;
\item $\forall \G \subset \tau$ systém podmonžin, $\displaystyle \bigcup _{G\in\G} G \in \tau$;
\item $\forall \G \subset \tau$ konečný systém podmonžin, $\displaystyle \bigcap _{G\in\G} G \in \tau$.
\end{enumerate}
Prvky $\tau$ nazývme {\bf otevřené množiny} a jejich doplňky {\bf uzavřené množiny}, tj. $A \subset X$ je uzavřená $\Leftrightarrow X \backslash A \in \tau$
\end{define}
 
\begin{remark}
Je-li $A$ konečná, pak označme $\vert A \vert$ počet prvků množiny $A$. 
 
Vlastnost 3 stačí ověřit pro $$
\end{remark}