02LIAG:Kapitola10

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02LIAG

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02LIAGHazalmat 3. 8. 201620:54
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůHazalmat 7. 7. 201606:04
Header editovatHlavičkový souborHazalmat 10. 7. 201621:12 header.tex
Kapitola0 editovatÚvodHazalmat 3. 8. 201621:12 LIAG_Kapitola0.tex
Kapitola1 editovatDefinice Lieovy grupy a Lieovy algebryHazalmat 5. 8. 201617:02 LIAG_Kapitola1.tex
Kapitola2 editovatVztah mezi Lieovou grupou a její algebrouHazalmat 5. 8. 201617:27 LIAG_Kapitola2.tex
Kapitola3 editovatNástin teorie integrabilních distribucíHazalmat 30. 7. 201614:10 LIAG_Kapitola3.tex
Kapitola4 editovatAkce grupy na varietěHazalmat 17. 7. 201619:23 LIAG_Kapitola4.tex
Kapitola5 editovatReprezentace Lieových grup a algeberHazalmat 4. 8. 201617:21 LIAG_Kapitola5.tex
Kapitola6 editovatSouvislost Lieových grup a algeberHazalmat 4. 8. 201618:51 LIAG_Kapitola6.tex
Kapitola7 editovatLieovy algebryHazalmat 5. 8. 201601:06 LIAG_Kapitola7.tex
Kapitola8 editovatCartanova kritériaHazalmat 5. 8. 201617:29 LIAG_Kapitola8.tex
Kapitola9 editovatKlasifikace pomocí kořenůHazalmat 5. 8. 201617:34 LIAG_Kapitola9.tex
Kapitola10 editovatKořenové diagramy, Cartanova marticeHazalmat 31. 7. 201615:32 LIAG_Kapitola10.tex
Kapitola11 editovatDynkinovy diagramyHazalmat 5. 8. 201617:39 LIAG_Kapitola11.tex
Kapitola12 editovatReálné formy komplexních poloprostých algeberHazalmat 31. 7. 201623:39 LIAG_Kapitola12.tex
Kapitola13 editovatVýznam kompaktních Lieových grupHazalmat 31. 7. 201623:45 LIAG_Kapitola13.tex
Kapitola14 editovatReprezentace poloprostých Lieových algeberHazalmat 1. 8. 201612:45 LIAG_Kapitola14.tex
Kapitola15 editovatSpinorové reprezentaceHazalmat 27. 7. 201620:38 LIAG_Kapitola15.tex
Kapitola16 editovatSymetrie v QMHazalmat 27. 7. 201621:21 LIAG_Kapitola16.tex
Kapitola17 editovatCvičeníHazalmat 6. 8. 201603:42 LIAG_Kapitola17.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:liag-1.pdf liag-1.pdf
Image:su3_1.pdf su3_1.pdf
Image:su3_2.pdf su3_2.pdf
Image:su3_3.pdf su3_3.pdf
Image:su3_4.pdf su3_4.pdf
Image:su3_5.pdf su3_5.pdf
Image:su3_6.pdf su3_6.pdf

Zdrojový kód

%\wikiskriptum{02LIAG}
 
 
\section{Kořenové diagramy, Cartanova matice}
	Tyto diagramy nám pomohou znázornit strukturu algebry a určit tak, které algebry jsou izomorfní.
\Def{
	$\h := \mrm{span}_\R \{H_\alpha\}_{\alpha \in \Delta}$, $\h^\# :=\mrm{span}_\R\{\alpha\}_{\alpha \in \Delta}$
	}
\Pzn{
	$\braket{\cdot , \cdot}: \h^\# \times \h^\# \to \R :  \braket{\alpha , \beta}=K(H_\alpha , H_\beta)$ je skalární součin.	
	}	
\begin{proof}
	Protože $a_{\beta\alpha} = \beta(T_\alpha) \in \Z,\ a_{\alpha\alpha} =\alpha(T_\alpha) = 2$, platí
	\begin{align*}
		\alpha(H_\alpha) = K(H_\alpha,H_\alpha) = \frac{\left(\alpha(H_\alpha)\right)^2}{4}\sum_{\tilde{\alpha}\in\Delta}a_{\tilde{\alpha}\alpha}^2 > 0 \rimpl \alpha(H_\alpha) = \frac{4}{\sum_{\tilde{\alpha}\in\Delta}a_{\tilde{\alpha}\alpha}^2} > 0
		\end{align*}	
	\begin{align*}
		K(H_\alpha , H_\beta) = \Tr \left(\ad_{H_\alpha}\circ \ad_{H_\beta} \right) = \sum_{\tilde{\alpha} \in \Delta} \tilde{\alpha}(H_\alpha)\tilde{\alpha}(H_\beta) = \Bigg( \frac{1}{4}\sum_{\tilde{\alpha} \in \Delta}a_{\tilde{\alpha}\alpha}\underbrace{a_{\tilde{\alpha}\beta}}_{\in\Z} \Bigg) \underbrace{K(H_\alpha,H_\alpha)}_{= \alpha(H_\alpha)>0}\underbrace{K(H_\beta,H_\beta)}_{=\beta(H_\beta)>0}
		\end{align*}
	$\Rightarrow\quad K(H_\alpha,H_\alpha) \in \R$, tj. $\zuz{K}{\h}$ je reálná symetrická bilineární forma. Pro $H\in\h,\ H=\sum_\alpha c_\alpha H_\alpha,\ c_\alpha \in \R$ máme:
	\begin{align*}
		&K(H,H) = \sum_{\tilde{\alpha} \in \Delta}\tilde{\alpha}(H)\tilde{\alpha}(H) = \sum_{\tilde{\alpha} \in \Delta} \tilde{\alpha}(H)^2 > 0 \\
		&\tilde{\alpha}(H) = c_\alpha \underbrace{\tilde{\alpha}(H_\alpha)}_{\in\R}\in\R
		\end{align*}
	Takže pokud $K(H,H) = 0 \rimpl \forall\tilde{\alpha} \in \Delta,\ \tilde{\alpha}(H) = 0 \rimpl H=0$. K tedy definuje skalární součin na $\h$.	
	\end{proof}	
\Pzn{
	$H \in \h \rimpl iH \notin \h$ neboť $K(iH,iH) = - K(H,H) \rimpl \h_\C = \g_0 \rimpl \dim_\R \h =\dim_\C \g_0$
	}	
\Def{
	\textbf{Kořenový diagram} je zakreslení $\Delta$ v~Euklidově prostoru $\R^l$, kde $l = \dim_\C \g_0$.
	}
\Def{
	\textbf{Zrcadlení podle nadroviny kolmé k~$\alpha$} je $S_\alpha : \h^\# \to \h^\#:S_\alpha(\lambda ) =\lambda - 2\frac{\braket{\alpha,\lambda}}{\braket{\alpha ,\alpha}}\alpha = \lambda-\lambda(T_\alpha)\alpha$.
	}
\Pzn{
	$S_\alpha\left( S_\alpha(\lambda) \right) = S_\alpha \left( \lambda - \lambda(T_\alpha)\alpha \right) = \lambda -\lambda(T_\alpha)\alpha - \lambda(T_\alpha)(\alpha - 2 \alpha) = \lambda \rimpl S_\alpha^2 = \mathbb{1}$
	}	
\Pzn{
	Podle 4. bodu lemmatu \ref{lemma_Koreny} je pro $(\forall \alpha ,\beta \in \Delta)(S_\alpha(\beta ) \in \Delta)$. Proto lze uvažovat $S_\alpha: \Delta \to \Delta,\ \forall \alpha \in \Delta$.
	}	
\Def{
	\textbf{Weylova grupa} $\Ws$ kořenového systému $\Delta$ je grupa lineárních zobrazení generovaná $S_\alpha,\ \forall \alpha \in \Delta$.
	}
\Pzn{
	Weylova grupa je konečná protože je obsažena v~grupě permutací $S_{\# \Delta}$.
	}
	Volbou libovolného $H_0 \in \h$ máme $\forall \alpha \in \Delta$, $\alpha(H_0)\neq 0 \in \R$. Můžeme tak rozdělit kořeny na kladné a záporné. $H_0$ považujeme dále za pevně zvolené.
\Def{
	$\Delta^\pm :=\{\alpha \in \Delta | \alpha (H_0) \gtrless 0 \}$, na $\Delta$ definujeme uspořádaní $\alpha \gtreqqless \beta \Leftrightarrow \alpha (H_0) \gtreqqless \beta (H_0)$. 
	}
	Volba závisí na $H_0$, ale při zakreslení tato klasifikace znamená pouze pootočení nákresu a nemá tak na výsledek podstatný vliv.
\Pzn{
	$\forall \alpha \in \Delta^+:\; -\alpha \in \Delta^-$. $(\forall \alpha , \beta \in \Delta^+):\; (\alpha + \beta \in \Delta )  \Rightarrow (\alpha + \beta \in \Delta^+)$.
	}	
\Def{
	Při zvoleném rozdělení $\Delta = \Delta^+ \cup \Delta^-$ definujeme prosté kořeny	$\Delta^p =\{\alpha \in \Delta^+ | (\forall \beta , \gamma \in \Delta^+)(\beta +\gamma \neq \alpha) \}$.
	}
	%Omezení vlastností kořenového diagramu
\lemma{
	Vlastnosti kořenového diagramu.
	\begin{enumerate}
		\item $\forall \alpha \in \Delta^+,\ \alpha=\sum_{\beta \in \Delta^p}c_\beta \beta$, kde $c_\beta \in \N_0$.
		\item $\forall \alpha, \beta  \in \Delta^p, \alpha \neq \beta:\braket{\alpha , \beta } \leq 0$.
		\item $\Delta^p$ tvoří bázi $\h^\#$.
	\end{enumerate}
\begin{proof}
	\begin{enumerate}
		\item $\alpha \in \Delta^+ \setminus \Delta^p \rimpl \exists \beta,\gamma \in \Delta^+,\ \beta + \gamma = \alpha \rimpl \alpha > \beta, \gamma$. Postup lze opakovat pro $\beta,\ \gamma$ atd., dokud nedostaneme prosté kořeny$\rimpl$ po konečně mnoha krocích máme součet prostých (mohou se opakovat z různých větví výpočtu), dostávame tedy celočíselné nezáporné koeficienty.
		\item Nechť $\alpha,\beta \in \Delta^p,\ \braket{\alpha,\beta} > 0 \rimpl \alpha(T_\beta),\beta(T_\alpha) > 0 \rimpl \alpha - \beta, \beta - \alpha \in \Delta$ přičemž jeden z nich je kladný, druhý záporný. BÚNO $\alpha - \beta \in \Delta^+ \rimpl \alpha = (\alpha - \beta) + \beta \rimpl \alpha \notin \Delta^p$, spor.
		\item Vezmeme $X \in \h^*$ splňující
			\begin{align*}
				x = \sum_{\alpha_i \in \Delta^p}x_i \alpha_i = \sum_{j\in J}p_j\alpha_j - \sum_{k \in K}n_k\alpha_k = 0,\text{ kde } J \cap K = \emptyset,\ p_j \geq 0,\ n_k \geq 0.
				\end{align*}
			$\Rightarrow\quad$protože $\braket{\alpha_j,\alpha_k} \leq 0,\ \forall j \in J,\ \forall k \in K$, platí:
			\begin{align*}
				\widetilde{x} = \sum_{j \in J}\underbrace{p_j}_{\geq\,0}\underbrace{ \alpha_j }_{>\,0}= \sum_{k \in K} n_k \alpha_k \geq 0 \qquad \land \qquad	\braket{\widetilde{x},\widetilde{x}} = \sum_{\substack{j \in J \\ k \in K}}p_j n_k \underbrace{\braket{\alpha_j,\alpha_k}}_{\leq\, 0} \leq 0
				\end{align*}
			$\Rightarrow\quad p_j = n_k = 0,\ \forall j \in J,\ \forall  k \in K \rimpl \{ \alpha_i \} \in \Delta^p$ jsou LN.	
		\end{enumerate}
	\end{proof}	
	}
\Pzn{	
	To znamená, že $\Delta^p$ tvoří tedy i bázi $\g_0^*$ a zakreslujeme do $\#\Delta^p$-dimenzionálního prostoru. Úhel mezi prostými kořeny je tupý. $\Delta^+$ získáváme celočíselnými kombinacemi prostých kořenů.
 
	Strategie při kreslení kořenového diagramu je tedy začít prostými kořeny a aplikací operací zrcadlení a celočíselných součtů kořenů získávat další kořeny, přičemž kladné získáme pouze nezápornou kombinací kladných. Navíc se může hodit tvrzení \ref{posloupnost korenu} lemmatu \ref{lemma_Koreny}.  %Kořenové diagramy není jednoduché zakreslit ve vícerozměrném prostoru.
	}
\Def{
	\textbf{Cartanova matice} je $a_{ij}=\frac{2\braket{\alpha_i ,\alpha_j}}{\braket{\alpha_j,\alpha_j}},\ \alpha_i , \alpha_j \in \Delta^p$.
	}	
\Pzn{ Vlastnosti Cartanovy matice $a$:
	\begin{itemize}
		\item $a_{ii}=2$, $a_{ij}\le 0$ pro $i \neq j$,
		\item $a_{ij}a_{ji} = \frac{4|\braket{\alpha_i,\alpha_j}|^2}{\braket{\alpha_i,\alpha_i}\braket{\alpha_j,\alpha_j}} = 4 \underbrace{\cos^2\sphericalangle(\alpha_i,\alpha_j)}_{<\, 1\text{ díky LN}} \rimpl a_{ij}a_{ji} \in \{ 0,1,2,3 \} \rimpl \\
		\rimpl \cos\sphericalangle(\alpha_i,\alpha_j) \in \left\{ 0,-\frac{1}{2},-\frac{1}{\sqrt{2}},-\frac{\sqrt{3}}{2} \right\} \rimpl \sphericalangle(\alpha_i,\alpha_j) \in \left\{ \frac{\pi}{2},\frac{2\pi}{3},\frac{3\pi}{4},\frac{5\pi}{6} \right\}$.
	\end{itemize}
	}