Součásti dokumentu 01NUM1
Zdrojový kód
%\wikiskriptum{01NUM1}
\section{Opakování a doplnění znalostí z lineární algebry}
\setcounter{define}{21}
\begin{theorem}
\label{SoucinTrojuhelniku}
Nechť jsou \( \matice A \) a \( \matice B \in \mathbbm C^{n, n} \) dolní (resp. horní) trojúhelníkové matice. Pak matice \( \matice C = \matice {AB} \) je dolní (resp. horní) trojúhelníková. Dále pak platí:
\[ \forall i \in \hat n, \matice C_{ii} = \matice A_{ii} \matice B_{ii} \]
\begin{proof}
Protože jsou matice \( \matice A \) a \( \matice B \) dolní trojúhelníkové, platí \( \matice A_{ik} = 0,\; \forall i < k \) a \( \matice B_{kj} = 0, \; \forall k < j \).
Tudíž:
\[ \matice C_{ij} = \sum_{k = 1}^n \matice A_{ik} \matice B_{kj} = \sum_{k = 1}^i \matice A_{ik} \matice B_{kj} = \sum_{k = j}^i \matice A_{ik} \matice B_{kj} \]
což je rovno 0 pro \( i < j \) a \( \matice A_{ii} \matice B_{ii} \) pro \( i = j \). Důkaz pro horní trojúhelníkové matice je obdobný.
\end{proof}
\end{theorem}
\begin{theorem}
\label{InverzeTrojuhelniku}
Nechť je \( \matice A \in \mathbbm C^{n, n} \) regulární dolní (resp. horní) trojúhelníková matice. Pak matice \( \matice A^{-1} \) je dolní (resp. horní) trojúhelníková. Dále pak platí:
\[ \forall i \in \hat n, \; (\matice A^{-1})_{ii} = (\matice A_{ii})^{-1} = \frac{1}{\matice A_{ii} } \]
\begin{proof}
Označíme \( \matice B = \matice A^{-1} \) a vyjdeme ze vztahu \( \matice A \matice B = \matice I \). Protože je matice \( \matice A \) dolní trojúhelníková a regulární, platí \( \matice A_{ik} = 0,\; \forall i < k \) a \( \matice A_{ii} \neq 0, \; \forall i \in \hat n \). Proto:
\[ \matice I_{ij} = \sum_{k = 1}^n \matice A_{ik} \matice B_{kj} = \sum_{k = 1}^i \matice A_{ik} \matice B_{kj} \]
\begin{enumerate}[(1)]
\item \( \matice B \) dolní trojúhelníková
\\ indukcí přes \( i \) při pevném j
\begin{itemize}
\item \( i = 1 \), \( 1 < j \)
\[ \matice I_{ij} = 0 = \sum_{k=1}^i \matice A_{ik} \matice B_{kj} = \sum_{k = 1}^1 \matice A_{1k} \matice B_{kj} = \underbrace{\matice A_{11}}_{\neq 0} \matice B_{1j} \Rightarrow \matice B_{1j} = 0, \; \forall j > 1 \]
\item \( i \rightarrow i + 1 \), \( i + 1 < j \)
\\Indukční předpoklad: \( \matice B_{kj} = 0, \; \forall k \leq i \)
\[ \matice I_{i + 1, j} = 0 = \sum_{k = 1}^{i + 1} \matice A_{i + 1, k} \matice B_{kj} = \sum_{k = i + 1}^{i + 1} \matice A_{i + 1, k} \matice B_{kj} = \underbrace{\matice A_{i + 1, i + 1}}_{\neq 0} \matice B_{i + 1, j} \Rightarrow \matice B_{i +1, j} = 0, \; \forall j > i + 1 \]
\end{itemize}
\item Prvky na diagonále \( \matice B \)
\\ Jelikož je matice \( \matice B \) dolní trojúhelníková, plyne přímo z \ref{SoucinTrojuhelniku}:
\[ \matice I_{ii} = 1 = \matice A_{ii} \matice B_{ii} \Rightarrow \matice B_{ii} = \frac{1}{\matice A_{ii}} \]
\end{enumerate}
Důkaz pro horní trojúhelníkové matice je obdobný.
\end{proof}
\end{theorem}
\begin{theorem}
\label{LDR}
Každou regulární matici \( \matice A \in \mathbbm C^{n, n} \) lze jednoznačně vyjádřit ve tvaru součinu:
\[ \matice A = \matice {LDR} \]
kde:
\begin{itemize}
\item \( \matice L \) je dolní trojúhelníková matice s jedničkami na diagonále
\item \( \matice D \) je diagonální matice
\item \( \matice R \) je horní trojúhelníková matice s jedničkami na diagonále
\end{itemize}
\begin{proof}
\begin{enumerate}[(1)]
\item existence
Důkaz indukcí podle \( n \)
\begin{itemize}
\item \( n=1 \)
\\ \( \matice A \in \mathbbm C^{1, 1} \Rightarrow \matice A = ( \matice A_{11} ) = \matice I (\matice A_{11} ) \matice I \)
kde \( \matice L = \matice I \) a \( \matice R = \matice I \)
\item \( n \rightarrow n + 1 \)
\\ \( \matice A \in \mathbbm C^{n+1, n+1} \matice A =
\begin{pmatrix}
\matice A' & \vec v \\
\vec u^T & \alpha \\
\end{pmatrix}
\Rightarrow \matice A' \in \mathbbm C^{n, n} \Rightarrow \matice A' = \matice {L' D' R'}
\\ \matice A = \matice {LDR} \) a hledám \( \vec l \), \( \vec r \) a \( d_{n+1} \) tak, aby platil rozklad:
\[ \begin{pmatrix}
\matice L' & \vec 0 \\
\vec l^T & 1 \\
\end{pmatrix}
\begin{pmatrix}
\matice D' & \vec 0 \\
\vec 0^T & d_{n+1} \\
\end{pmatrix}
\begin{pmatrix}
\matice R' & \vec r \\
\vec 0^T & 1 \\
\end{pmatrix} =
\begin{pmatrix}
\matice {L' D'} & \vec 0 \\
\vec l^T \matice D' & d_{n+1} \\
\end{pmatrix}
\begin{pmatrix}
\matice R' & \vec r \\
\vec 0^T & 1 \\
\end{pmatrix} =\]
\[=
\begin{pmatrix}
\matice {L' D' R'} & \matice {L' D'} \vec r \\
\vec l^T \matice {D' R'} & \vec r \vec l^T \matice D' + d_{n+1} \\
\end{pmatrix} =
\begin{pmatrix}
\matice A' & \vec v \\
\vec u^T & \alpha \\
\end{pmatrix}\]\(
\\ \matice {L' D'} \vec r = \vec v \Rightarrow \vec r = (\matice {L' D'})^{-1} \vec v
\\ \vec l^T \matice {D' R'} = \vec u^T \Rightarrow \vec u = (\matice {D' R'})^T = \vec l \Rightarrow \vec l = ((\matice {D' R'})^T)^{-1} \vec u
\\ d_{n+1} = \alpha - \vec r \vec l^T \matice D'
\)
\end{itemize}
\item jednoznačnost
\\ Důkaz sporem, předpokládáme, že existují 2 různé rozklady
\\ \( \matice A =\matice L_1 \matice D_1 \matice R_1 = \matice L_2 \matice D_2 \matice R_2
\\ \matice D_1 \matice R_1 = (\matice L_1)^{-1} \matice L_2 \matice D_2 \matice R_2
\\ \matice D_1 \matice R_1 (\matice R_2)^{-1} = (\matice L_1)^{-1} \matice L_2 \matice D_2 \)
kde \( \matice D_1 \matice R_1 (\matice R_2)^{-1} \) je horní trojúhelníková matice a \( (\matice L_1)^{-1} \matice L_2 \matice D_2 \) je dolní trojúhelníková matice podle \ref{SoucinTrojuhelniku} a \ref{InverzeTrojuhelniku}.
\\ \( \Rightarrow (\matice L_1)^{-1} \matice L_2 \) je diagonální a má jedničky na diagonále, tzn. \( (\matice L_1)^{-1} \matice L_2 = \matice I
\\ (\matice L_1)^{-1} \matice L_2 = \matice I \Rightarrow \matice L_1 = \matice L_2
\\ \matice R_1 (\matice R_2)^{-1} = \matice I \Rightarrow \matice R_1 = \matice R_2
\\ \matice D_1 = \matice D_2 \)
\end{enumerate}
\end{proof}
\end{theorem}
\begin{remark}
Čísla na diagonále matice \( \matice D \) z \ref{LDR} \textbf{nejsou} vlastními čísly matice \( \matice A \)
\end{remark}
\setcounter{define}{33}
\begin{theorem}
\label{HouseholderHermUnit}
Householderova reflekční matice je hermitovská a unitární.
\begin{proof}
\begin{enumerate}[(1)]
\item Hermitovskost (\( \matice H^*( \vec w ) = \matice H( \vec w ) \))
\[ \matice H^*( \vec w ) = ( \matice I - 2 \vec w \vec w^*) = \matice I^* - 2 ( \vec w \vec w^* )^* = \matice I - 2 \vec w \vec w^* = \matice H ( \vec w ) \]
\item Unitarita (\( \matice H^*( \vec w ) = \matice H^{-1}( \vec w ) \))
\\ Díky hermitovskosti matice a vztahu \( \vec w^* \vec w = \braket{\vec w | \vec w } = {\lVert \vec w \rVert}^2 = 1 \) platí:
\[ \matice H( \vec w ) \matice H^*( \vec w ) = \matice H( \vec w ) \matice H( \vec w ) = \matice I - 4 \vec w \vec w^* + 4 \vec w \vec w^* \vec w \vec w^* = \matice I \]
\end{enumerate}
\end{proof}
\end{theorem}
\begin{theorem}
\label{HouseholderReflekcni}
\( \matice H( \vec w )\) je Householderova reflekční matice a \( \vec w \) je libovolný vektor z \( \mathbbm C^n \).
\\ Pak vektor \( \matice H( \vec w ) \vec v \) je zrcadlový obraz vektoru \( \vec v \) podle nadroviny \[ L = \{ \vec x \in \mathbbm C^n \; | \; \vec w^* \vec x = \braket{ \vec x | \vec w } = 0 \} \] v tom smyslu, že splňuje
\begin{itemize}
\item \(\lVert \matice H( \vec w )\vec v \rVert = \lVert \vec v \rVert\)
\item \(\matice H( \vec w )\vec v + \vec v \in L\)
\item \((\matice H( \vec w )\vec v - \vec v) \perp L\)
\end{itemize}
\begin {proof}
\begin{enumerate}[(1)]
\item \(\lVert \matice H( \vec w )\vec v \rVert = \lVert \vec v \rVert\) plyne z faktu, ze \(\matice H( \vec w )\) je unitární.
\item \(\matice H( \vec w )\vec v + \vec v \in L \Leftrightarrow \braket{\matice H( \vec w )\vec v + \vec v | \vec w} = 0 \) \[ \braket{\matice H( \vec w )\vec v + \vec v | \vec w} = 0 \Leftrightarrow \braket{(\matice I - 2\vec w \vec w^*)\vec v + \vec v| \vec w} = \braket{(2\vec v - 2\vec w \vec w^* \vec v | \vec w )} = \] \[ = 2\braket{\vec v|\vec w} - 2\braket{\vec w \vec w^* \vec v|\vec w} = 2\braket{\vec v|\vec w} - 2\underbrace{\vec w^* \vec w}_{\lVert \vec w \rVert = 1} \vec w^* \vec v = 2\braket{\vec v| \vec w} - 2\underbrace{\vec w^* \vec v}_{2\braket{\vec v| \vec w}} = 0 \]
\item \( (\matice H( \vec w )\vec v - \vec v) \perp L \Leftrightarrow \forall \vec x \in L, \braket{\matice H( \vec w )\vec v - \vec v | \vec x} = 0 \)
\[ \braket{\matice H( \vec w )\vec v - \vec v | \vec x} = \braket{ ( \matice I - 2 \vec w \vec w^* )\vec v - \vec v | \vec x} = -2 \braket{ \vec w \vec w^* \vec v | \vec x} = -2 \underbrace{\vec x^* \vec w}_{ = 0} \vec w^* \vec v = \]
\end{enumerate}
\end{proof}
\end{theorem}
\begin{theorem}
\label{HouseholderEigenvalue}
Nechť \(\lambda\) je vlastní číslo matice \(\matice A\), pak existuje Houholderova matice \(\matice H(\vec w)\) taková, že
\[\matice H(\vec w)\matice A\matice H(\vec w)\vec e^{(1)}=\lambda\vec e^{(1)}\] kde \( \vec e^{(1)} \) je vlastní vektor matice \(\matice A\).
\begin{proof}
Volíme \[ \vec w = \frac{\vec e^{(1)}-\frac{\vec x}{\lVert \vec x \rVert_2}}{\lVert \vec e^{(1)}-\frac{\vec x}{\lVert \vec x \rVert_2}\rVert_2} \]
a vezmeme \(\vec x\) jako normovaný:
\[ \vec w = \frac{\vec e^{(1)}-\vec x}{\lVert \vec e^{(1)} - \vec x \rVert_2} \]
\[\matice H (\vec w)\vec e^{(1)} = \vec x\]
\[\matice A \matice H (\vec w)\vec e^{(1)} = \matice A \vec x = \lambda \vec x\]
\[\matice H (\vec w)\matice A \matice H (\vec w)\vec e^{(1)} = \lambda \matice H(\vec w)\vec x=\lambda \vec e^{(1)}\]
\end{proof}
\end{theorem}
\begin{remark}
\(\matice M \vec e^{(1)} = \lambda \vec e^{(1)} \Rightarrow \matice M = \begin{pmatrix}
\lambda & \multirow{4}{*}{\text{\Huge ?}} \\
0 & \\
\vdots & \\
0 & \\
\end{pmatrix}\)
\end{remark}
\begin{remark}
\(\matice M = \matice H (\vec w)\matice A \matice H (\vec w)\) je podobnostní transformace.
\end{remark}