02GR:Kapitola3: Porovnání verzí
Z WikiSkripta FJFI ČVUT v Praze
(Oprava důkazu lemmatu k J– H.) |
(část důkazu.) |
||
Řádka 462: | Řádka 462: | ||
\begin{lemma} | \begin{lemma} | ||
− | Nechť $G$ je grupa, $M,N$ její normální podgrupy, $M\neq N$, $G/M$ a $G/N$ jednoduché. Potom $G=NM$ a platí $M/(M\ | + | Nechť $G$ je grupa, $M,N$ její normální podgrupy, $M\neq N$, $G/M$ a $G/N$ jednoduché. Potom $G=NM$ a platí $M/(M\cap N)\cong G/N$ a $N/(M\cap N)\cong G/M$. |
\begin{proof} | \begin{proof} | ||
$M$ není podgrupa $N$ (a obráceně), protože jinak by $N/M$ byla podgrupa $G/M$ různá od $G/M$ a $\{e\}$ ($M\neq N$), což je spor s jednoduchostí.\\ | $M$ není podgrupa $N$ (a obráceně), protože jinak by $N/M$ byla podgrupa $G/M$ různá od $G/M$ a $\{e\}$ ($M\neq N$), což je spor s jednoduchostí.\\ | ||
− | Definujeme–li $K=M\ | + | Definujeme–li $K=M\cap N$, pak $K$ je normální podgrupa $M$ a $N$ (2. VOI \ref{2.VOI}), tudíž i $G$ (vše komutuje).\\ |
− | + | Nyní dokážeme $G=MN$: Protože $M,N\npg G$, pak i $NM\npg G$ (všichni reprezentanti komutují se vším). Tudíž platí, že $NM/M\npg G/M$. Protože je ale $G/M$ jednoduchá, musí $NM/M$ být buď $G/M$ nebo $\{e\}$. Druhá varianta však nenastává, protože jinak by $MN=M$ a $N\leq M$. Tudíž $MN/M=G/M$ a $MN=G$. Potom závěry $M/(M\cap N)\cong G/N$ a $N/(M\cap N)\cong G/M$ plynou z 2. VOI \ref{2.VOI}. | |
\end{proof} | \end{proof} | ||
\end{lemma} | \end{lemma} | ||
Řádka 472: | Řádka 472: | ||
\begin{proof}[Důkaz J–H druhá část] | \begin{proof}[Důkaz J–H druhá část] | ||
Důkaz provedeme úplnou indukcí v $r$: Pokud je $r=1$, pak i $s=1$, protože $\{e\}\npg G$ je jediný přípustný řetěz. | Důkaz provedeme úplnou indukcí v $r$: Pokud je $r=1$, pak i $s=1$, protože $\{e\}\npg G$ je jediný přípustný řetěz. | ||
− | Nyní indukční krok $r=1,\ | + | Nyní indukční krok $r=1,\ldots n-1\rightarrown$: Mějme dva řetězy normálních podgrup |
\[e=N_0 \le N_1 \le \ldots \le N_r = G,\quad e=M_0 \le M_1 \le \ldots \le M_s = G.\] | \[e=N_0 \le N_1 \le \ldots \le N_r = G,\quad e=M_0 \le M_1 \le \ldots \le M_s = G.\] | ||
− | Pokud $N_{r-1}=M_{s-1}$, pak je věta splněna z indukčního předpokladu, takže nadále předpokládáme $N_{r-1}\neq M_{s-1}$. Pro zkrácení zápisu si označím $M_{s-1}=M$ a $N_{r-1}=N$ | + | Pokud $N_{r-1}=M_{s-1}$, pak je věta splněna z indukčního předpokladu, takže nadále předpokládáme $N_{r-1}\neq M_{s-1}$. Pro zkrácení zápisu si označím $M_{s-1}=M$ a $N_{r-1}=N$ a definuji $K=M\cap N$. Díky indukčnímu předpokladu má $K$ kompozitní řadu a protože stejně jako v lemmatu je $K$ normální podgrupa $M$ a $N$, Máme kompozitní řadu pro $M$ a $N$. Dodělat. |
\end{proof} | \end{proof} | ||
Verze z 2. 12. 2018, 11:49
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu 02GR
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu 02GR | Maresj23 | 23. 12. 2012 | 21:49 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Admin | 7. 9. 2015 | 13:51 | ||
Header | editovat | Hlavičkový soubor | Nguyebin | 26. 12. 2015 | 16:53 | header.tex | |
Kapitola0 | editovat | Předmluva | Nguyebin | 26. 12. 2015 | 16:55 | kapitola0.tex | |
Kapitola1 | editovat | Grupy | Kubuondr | 5. 1. 2019 | 10:03 | kapitola1.tex | |
Kapitola2 | editovat | Podgrupy | Kubuondr | 25. 12. 2018 | 14:30 | kapitola2.tex | |
Kapitola3 | editovat | Faktor grupy | Kubuondr | 7. 1. 2019 | 22:00 | kapitola3.tex | |
Kapitola4 | editovat | Přímý a polopřímý součin grup | Kubuondr | 6. 1. 2019 | 13:45 | kapitola4.tex | |
Kapitola5 | editovat | Reprezentace | Kubuondr | 6. 1. 2019 | 17:50 | kapitola5.tex | |
KapitolaA | editovat | Literatura | Maresj23 | 21. 12. 2012 | 16:45 | literatura.tex |
Vložené soubory
soubor | název souboru pro LaTeX |
---|---|
Soubor:02GR_trojuhelnik.jpg | trojuhelnik.jpg |
Soubor:02GR_usporadani.jpg | usporadani.jpg |
Soubor:02GR_mrizka.PNG | mrizka.PNG |
Soubor:02GR_vlakna.PNG | vlakna.PNG |
Soubor:02GR_nasobeni_reprezentanti.PNG | nasobeni_reprezentanti.PNG |
Zdrojový kód
%\wikiskriptum{02GR} % **************************************************************************************************************************** % KAPITOLA: Faktor grupy % **************************************************************************************************************************** \chapter{Faktor grupy} \begin{remark} Studium faktor grup dané grupy $G$ nám umožňuje zkoumat její strukturu a je ekvivalentní zkoumání homomorfismů $G$. \end{remark} \begin{define} Mějme homomorfismus $\varphi : G \rightarrow H$. \textbf{Vláknem} homomorfismu $\varphi$ příslušejícím prvku $x \in H$ nazýváme množinu $\{y \in G|\varphi(y)=x\}$, tedy množina všech prvků, které se zobrazí na $x$. (Obr. \ref{fig:vlakna}). \end{define} \begin{figure}[!htbt] \centering \includegraphics[scale=.8]{vlakna.PNG} \caption{Znázornění vláken homomorfismu. Převzato z \cite{AA}.} \label{fig:vlakna} \end{figure} \begin{corollary} Pro homomorfismus $\varphi$ : $G \rightarrow H$ platí: \begin{enumerate} \item $\varphi(e_G)=e_H$ \item $\varphi(g^{-1})=\varphi(g)^{-1}$ \item $\varphi(g^{n})=\varphi(g)^{n}$ \item $\Ker\varphi \le G$ \item $\varphi(G) \le H$ \end{enumerate} \end{corollary} \begin{define} Mějme homomorfismus $\varphi : G \rightarrow H$ s jádrem $\Ker\varphi=K$. Potom \textbf{faktor grupa} $G/K$ ($G$ mod $K$) je grupa na vláknech $\varphi$ s operací definovanou pomocí reprezentantů: pokud $X$ je vlákno nad $a$ a $Y$ je vlákno nad $b$, pak prvek $XY \in G/K$ je vlákno nad $ab$. \end{define} \begin{remark} To, že faktor grupa má skutečně vlastnosti grupy, se lehce ověří z platnosti těchto vlastností v $G$. \end{remark} \section{Levé a pravé třídy} \begin{theorem} \label{v:tridy} Mějme homomorfismus $\varphi : G \rightarrow H$ s jádrem $\Ker\varphi=K$ a nechť $X_a \in G/K$ je vlákno nad $a \in H$, tedy $X_a=\varphi^{-1}(a)$. Potom platí: \begin{enumerate} \item $\all u \in X_a$ je $X_a=\{uk|k \in K\}$, \item $\all u \in X_a$ je $X_a=\{ku|k \in K\}$. \end{enumerate} \begin{proof} Dokážeme pouze první bod (druhý se dokazuje analogicky). Označme $uK = \{uk|k \in K\}$, mějme $u \in X_a$ (tedy $\varphi(u)=a$) a ukážeme, že $uK \subset X_a$: $\varphi(uk)=\varphi(u)\varphi(k)=\varphi(u)e=a$. (Využili jsme nejprve toho, že $\varphi$ je homomorfismus a pak toho, že $k$ je z jádra.) Pro důkaz opačné inkluze mějme libovolné $g \in X_a$ a vezměme $k=u^{-1}g$. Jelikož $\varphi(k)=\varphi(u^{-1}g)=\varphi(u^{-1})\varphi(g)=a^{-1}a=e$, $k$ patří do jádra. Dále zřejmě $g=uk$, tedy $g \in uK$. \end{proof} \end{theorem} \begin{remark} Právě dokázaná věta nás opravňuje považovat vlákna a množiny $uK=Ku$ za třídy ekvivalence vzhledem k ekvivalenci $a\sim b\Leftrightarrow a=k b$ pro nějaké $k \in K$. (Triviální ověření vlastností ekvivalence je přenecháno čtenáři.) \end{remark} \begin{define} Pro libovolnou $H \le G$ a libovolné $g \in G$ nazýváme množiny $gH=\{gh|h \in H\}$ respektive $Hg=\{hg|h \in H\}$ \textbf{levé} respektive \textbf{pravé třídy} $H$ v $G$. Libovolný prvek třídy nazýváme jejím \textbf{reprezentantem}. \end{define} \begin{theorem} Buďte $G$ grupa a $K$ jádro nějakého homomorfismu $\varphi$ z $G$ do nějaké grupy. Potom množina levých tříd $K$ v $G$ s operací definovanou jako $aK \otimes bK = (ab)K$ je grupa $G/K$. Tedy tato operace je dobře definovaná (nezávisí na výběru reprezentanta). (Obr. \ref{fig:nasobeni_reprezentanti}) \begin{proof} Mějme $X,Y \in G/K$, $X=\varphi^{-1}(a)$, $Y=\varphi^{-1}(b)$ a $Z=XY \in G/K$. Podle definice operací v $G/K$ je $Z=\varphi^{-1}(ab)$. Z věty \ref{v:tridy} víme, že prvky $G/K$ jsou levé třídy $K$. Je třeba ukázat, že i operace, kterou zde definuje pomocí reprezentantů odpovídá původní definici násobení v $G/K$ bez ohledu na výběr reprezentanta. Mějme $u \in X$ a $v \in Y$, tedy $\varphi(u)=a$, $\varphi(v)=b$ a $X=uK$ a $Y=vK$. Určíme, zda $uv \in Z$. \begin{align} \varphi(uv)=\varphi(u)\varphi(v)=ab \nonumber \end{align} Odtud tedy plyne, že $uv \in Z$, a tedy $Z=uvK$. \end{proof} \end{theorem} \begin{figure} \centering \includegraphics[scale=0.6]{nasobeni_reprezentanti.PNG} \caption{Znázornění násobení v $G/K$ pomocí reprezentantů levých tříd. Převzato z \cite{AA}.} \label{fig:nasobeni_reprezentanti} \end{figure} \begin{theorem} Nechť $N \le G$, potom množina levých tříd $N$ v $G$ tvoří rozklad $G$ (jejich sjednocením je $G$ a jednotlivé třídy mají prázdný průnik). Dále $\all u,v \in G $ platí $uN=vN$ právě tehdy, když $u^{-1}v \in N$, tedy když $u$ a $v$ jsou reprezentanty stejné třídy. \begin{proof} Nejprve ukážeme, že sjednocením levých tříd je celé $G$. Jelikož $N$ je grupa, pak $e \in N$, a tedy platí: \begin{align} \bigcup_{g \in G} gN \subset \bigcup_{g \in G} ge = G. \nonumber \end{align} Pro důkaz druhé části vezmeme $uN \cap vN \neq \emptyset$ a ukážeme, že potom platí $uN = vN$. Vezměme $x \in uN \cap vN$, tedy $x$ můžeme napsat jako $x= un_1 = vn_2$ pro nějaká $n_1,n_2 \in N$. Rovnost vynásobíme zprava $n_1^{-1}$ a dostaneme $u = vn_2 n_1^{-1} = vn_3$ pro nějaké $n_3 \in N$. Tedy vidíme, že $u \in vN$. Dále pro libovolné $t \in uN$ platí $t = un_4 = (vn_3)n_4 = vn_5$, takže $t \in vN$ pro $\all t \in uN$, tedy $uN \subset vN$. Opačnou inkluzi dostaneme záměnou role $u$ a $v$. Jelikož víme, že $u=vn_3$, pak platí $v^{-1}u=n_3$, tedy $v^{-1}u \in N$ a to platí pro libovolné reprezentanty tříd. \end{proof} \end{theorem} \begin{remark} Právě dokázaná věta říká, že levé třídy jsou třídy ekvivalence vzhledem k ekvivalenci $a\sim b\Leftrightarrow a=n b$ pro nějaké $n \in N$ a $G$ je tedy rozloženo do tříd ekvivalence. \end{remark} \begin{theorem} \label{v:normalni} Buď $G$ grupa a $N \le G$. Potom: \begin{enumerate} \item Operace na levých třídách definovaná jako $uNvN=(uv)N$ je dobře definovaná právě tehdy, když $(gng^{-1} \in N)(\all g \in G $ a $ \all n \in N)$. \item Je-li výše uvedená operace dobře definovaná, pak je množina levých tříd $N$ grupou s jednotkou $eN$ a inverzním prvkem $(gN)^{-1}=g^{-1}N$. \end{enumerate} \begin{proof} \begin{enumerate} \item \begin{enumerate} \item[$\ra$)] Nechť je operace na levých třídách dobře definovaná, tedy \begin{align} (\all u,v \in G)(u,u_1 \in uN \text{ a } v,v_1 \in vN \ra uvN=u_1v_1N). \end{align} Nechť $g \in G$ a $n \in N$ libovolné. Položíme $u = e$, $u_1 = n$ a $v = v_1 = g^{-1}$ a z předpokladu dostaneme \begin{align} g^{-1}N=ng^{-1}N \end{align} Protože $e \in N$, $ng^{-1} \in g^{-1}N$. Tedy $ng^{-1}=g^{-1}n_1$, pro nějaké $n_1 \in N$. Vynásobením $g$ zleva dostáváme požadovanou rovnost $gng^{-1}=n_1 \in N$. \item[$\la$)] Předpokládáme $(gng^{-1} \in N)(\all g \in G$ a $\all n \in N)$ a vezmeme $u,u_1 \in uN$ a $v,v_1 \in vN$. Pak můžeme psát $u_1=un$ a $v_1=vm$ pro nějaké $n,m \in N$. Musíme ukázat, že $u_1v_1 \in uvN$: \begin{align} u_1v_1=(un)(vm)=u(vv^{-1})nvm=(uv)(v^{-1}nv)m=(uv)(n_1)m=uvn_2 \in uvN, \end{align} kde $n_1=v^{-1}nv=(v^{-1})n(v^{-1})^{-1} \in N$ z předpokladu a $n_2 = n_1m \in N$ z definice. Protože $u_1v_1 \in uvN \cap u_1v_1N$, plyne z předchozí věty rovnost $uvN = u_1v_1N$. \end{enumerate} \item Je-li operace na levých třídách dobře definovaná, axiomy grupy se přenášejí z $G$. Asociativita: \begin{align} (uN)(vNwN)=uN(vwN)=u(vw)N=(uv)wN=(uNvN)(wN),\quad \all u,v,w \in G \end{align} Z definice násobení je vidět že jednotka v $G/N$ je $N$ a $g^{-1}N$ je inverze $gN$. \end{enumerate} %str 81/95 \end{proof} \end{theorem} %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxxxxx %\begin{define} % Operce na levých třídách (na pravých obdobně) $N$ v $G$ je \textbf{dobře definovaná}, pokud $(\all u,u_1 \in uN)(\all v,v_1 \in vN)$ platí $(uvN=u_1v_1 N)$. %\end{define} % % %\begin{theorem} % Máme-li $N \le G$, potom: % \begin{enumerate} % \item Operace na levých třídách je dobře definovaná $\lra$ $(\all n \in N)(\all g \in G)(gng{-1}N)$. % \item Je-li operace dobře definovaná, pak množina tříd s touto operací tvoří grupu. (Tedy jsem schopen vytvořit faktor grupu.) % \end{enumerate} % \begin{proof} % \begin{enumerate} % \item $\la)$ Nechť ($u=e, u_1 \in N, v=v_1=g^{-1} \in G) \le (eg^{-1}N=u_1g^{-1}) \le (N=gug^{-1}N)$.\\ % $\ra) (\all n\in N, \all g \in G)(gng^{-1}\in N).$ Mějme $u_1,u_2 \in u_1 N$ a $v_1,v_2 \in v_1 N$ ?????????? % \item $eN=N$ (jednotka je $N$), $(gN)^{-1}=g^{-1}N$, asociativita. % \end{enumerate} % \end{proof} %\end{theorem} %____________________________________________________________________________________________ \section{Normální podgrupy} \begin{define} Prvek $m=gng^{-1}$ se nazývá \textbf{konjugovaný} k $n$ prvkem $g$. \end{define} \begin{define} Buď $A \subset G$ libovolná podmnožina grupy. Množina $M=gAg^{-1}$ se nazývá \textbf{konjugovaná} k $A$ prvkem $g$. \end{define} %\begin{define} % Buď $\emptyset \neq A \subset G$. Množinu $C_G(A)=\{g\in G|(gag^{-1}=a )(\all a \in A)\}$ nazveme \textbf{centralizátor} $A$ v $G$. %\end{define} % %\begin{theorem} % $C_G(A) \le G$. % \begin{proof} % $e \in C_G(A), g_1 g_2 = a, g_1^{-1} g_2^{-1} = a$ % \end{proof} %\end{theorem} % % %\begin{define} % \textbf{Centrum} grupy je $Z_G=\{z \in G|gzg^{-1}=z \all g \in G\}=C_G(G)$. (Neboli $gz=zt$ - všechny prvky, které komutují s celou grupou. Je to množina, kterou centralizuje celá grupa.) %\end{define} % %\begin{define} % Množinu $N_G(A)=\{g\in G|gAg^{-1}=A\}$ nazveme \textbf{normalizátor} $A$ v $G$. %\end{define} % %\begin{remark} % $C_G(A) \le N_G(A)$. %\end{remark} \begin{define} Pokud pro $N \le G$ platí $N_G(N)=G$ (normalizátor $N$ v $G$), pak $N$ nazýváme \textbf{normální} podgrupa. Značíme $N \npg G$ \end{define} \begin{remark} Pro ověření, zda podgrupa $N \le G$ je normální, stačí ověřit, že komutuje s generátory množiny $G \setminus N$ (množinový rozdíl), pokud tyto generátory známe. \end{remark} \begin{theorem} \label{v:ekvivalence_normalni} Nechť $N \le G$, potom následující tvrzení jsou ekvivalentní: \begin{enumerate} \item $N \npg G$ \item $N_G(N)=G$ \item $gN=Ng$ pro $\forall g \in G$. \item Operace na třídách je dobře definovaná. \item $gNg^{-1} \subset N$ pro $\forall g \in G$. \end{enumerate} \begin{proof} Přepsání definic a věta \ref{v:normalni}. \end{proof} \end{theorem} \begin{theorem} Nechť $N \le G$, potom $N \npg G$ právě tehdy když $\exists$ homomorfismus $\varphi$ takový, že $N=\Ker\varphi$. \begin{proof} \begin{enumerate} \item[$\la$)] Podle věty \ref{v:tridy} víme, že levé a pravé třídy jsou stejné ($gN = Ng$), což je podle věty \ref{v:ekvivalence_normalni} ekvivalentní normálnosti grupy. \item[$\ra$)] Nyní máme $N \npg G$ a označíme $H = G/N$ (podle věty \ref{v:ekvivalence_normalni} je operace na levých třídách pro normální grupu dobře definovaná). Definujeme zobrazení $\pi: G \rightarrow G/N$ jako $\pi(g) = gN$ pro $\all g \in G$. Z definice operací v $G/N$ platí pro $\all f,g \in G$: $\pi(fg) = (fg)N = fNgN = \pi(f)\pi(g)$, tedy $\pi$ je homomorfismus. Jeho jádro je: $\Ker(\pi) = \{g \in G | \pi(g) = eN\} = \{g \in G | gN = eN \} = \{g \in G | g \in N\} = N$. \end{enumerate} \end{proof} \end{theorem} \begin{remark} Nyní můžeme faktorizovat podle normální podgrupy $G/N$, aniž bychom měli homomorfismus. \end{remark} \begin{define} Buď $N \npg G$, pak zobrazení $\pi:G \rightarrow G/N: \pi(g)=gN$ nazýváme \textbf{přirozená projekce} $G$ na $G/N$. \end{define} %____________________________________________________________________________________________ \section{Index grupy, Lagrangeova věta} \begin{theorem}[Lagrange] \label{v:lagrange} Nechť $G$ je konečná, $H \le G$, potom $|H|$ dělí $|G|$. Navíc počet levých tříd $H$ v $G$ je roven $\frac{|G|}{|H|}$. \begin{proof} Nejprve ukážeme, že všechny levé třídy mají stejně prvků. Označme $|H|=n$ a $k$ počet levých tříd a pro $\all g \in G$ definujme zobrazení z $H$ do $gH$ přiřazující $h \rightarrow gh$. Podle definice levých tříd je toto zobrazení surjektivní a jelikož $gh_1=gh_2$ právě, když $h_1 = h_2$, je i injektivní. Odtud plyne $|gH|=|H|$. Jelikož je tedy $G$ rozděleno na $k$ levých tříd o $n$ prvcích, platí $|G|=kn$, a tedy $k=\frac{|G|}{n}$. \end{proof} \end{theorem} \begin{remark} První část důkazu (všechny levé třídy mají stejně prvků) platí i pro nekonečné grupy. \end{remark} \begin{remark} Komutativní grupa prvočíselného řádu nemůže mít netriviální normální podgrupu. \end{remark} \begin{define} Buď $G$ grupa (i nekonečného řádu) a $H \le G$. Potom počet levých tříd $H$ v $G$ nazýváme \textbf{index} $H$ v $G$ a značíme $|G:H|$. \end{define} \begin{remark} Pro konečné grupy tedy platí $|G:H|=\frac{|G|}{|H|}$. \end{remark} \begin{dusl} Pro konečnou grupu $G$ a $x \in G$ platí $|x|$ dělí $|G|$. \end{dusl} \begin{dusl} Grupa prvočíselného řádu je cyklická. \end{dusl} \begin{define} Grupu $G$, jejíž jediné normální podgrupy jsou triviální ($e$ a $G$), nazýváme \textbf{prostá}. \end{define} \begin{remark} Opačné tvrzení k Lagrangeově větě neplatí. Tedy konečná grupa $G$, jejíž řád má dělitele $n$, nemusí mít podgrupu řádu $n$. (Platí to pro konečné abelovské grupy.) \end{remark} %____________________________________________________________________________________________ \section{Součinová podgrupa} \begin{define} Zavádíme \uv{součin} podgrup $K,H \le G$ jako: $KH= \{kh | k \in K, h \in H \}$. \end{define} %A další věci od strany 93... nevím, co z toho se dělalo na přednášce. \begin{theorem} Nechť $H$ a $K$ jsou podgrupy konečné grupy $G$, pak \begin{align} |HK|=\frac{|H||K|}{|H \cap K|}. \end{align} \begin{proof} $HK$ můžeme napsat jako sjednocení levých tříd $K$, \begin{align} HK = \bigcup_{h \in H}hK. \end{align} Protože všechny levé třídy mají stejný počet prvků $|K|$, stačí zjistit počet různých levých tříd tvaru $hK, h \in H$. Ale $h_1K = h_2K$ pro $h_1,h_2 \in H$, právě když $h_2^{-1}h_1 \in K$. Tedy \begin{align} h_1K=h_2K \Leftrightarrow h_2^{-1}h_1 \in H \cap K \Leftrightarrow h_1(H \cap K) = h_2(H \cap K). \end{align} To znamená, že počet různých levých tříd tvaru $hK, h \in H$ je stejný jako počet levých tříd tvaru $h(H \cap K), h \in H$. A to je, z Lagrangeovy věty, rovno $\frac{|H|}{|H \cap K|}$ . Tedy $HK$ obsahuje $\frac{|H|}{|H \cap K|}$ různých levých tříd K, kde každá má $|K|$ prvků, čímž dostáváme tvrzení věty. \end{proof} \end{theorem} \begin{theorem} Nechť $H,K \le G$, pak $HK \le G$ právě tehdy, když $HK = KH$. \begin{proof} \begin{enumerate} \item[$\la$)] Nechť $HK = KH$ a $a,b \in HK$. Ukážeme, že $ab^{-1} \in HK$, takže $HK$ je podgrupa. Můžeme psát $a = h_1k_1$ a $b = h_2k_2$ pro nějaké $h_1,h_2 \in H$ a $k_1,k_2 \in K$. Tedy \begin{align} ab^{-1}=h_1k_1k_2^{-1}h_2^{-1}=h_1k_3h_2^{-1} \end{align} kde $k_3 = k_1k_2^{-1} \in K$. Užitím předpokladu můžeme napsat $k_3h_2^{-1}=h_4k_4$ a dostáváme \begin{align} ab^{-1}=(h_1h_4)k_4 \in HK. \end{align} \item[$\ra$)] Když $HK \le G$, pak protože $K \le HK$ a $H \le HK$, platí $KH \subset HK$. Pro důkaz opačné inkluze vezmeme $hk \in HK$. Protože $HK$ je podgrupa, můžeme psát $hk = a^{-1}$ pro nějaké $a \in HK$. Ale taky $a = h_1k_1$ pro nějaké $h_1 \in H$, $k_1 \in K$. Dostáváme tedy \begin{align} hk=(h_1k_1)^{-1}=k_1^{-1}h_1^{-1} \in KH. \end{align} \end{enumerate} \end{proof} \end{theorem} \begin{dusl} Nechť $H,K \le G$ a $H \le N_G(K)$, pak $HK \le G$. Speciálně pokud $K \npg G$, pak $HK \le G$ pro libovolnou $H \le G$. \begin{proof} Ukážeme že $HK = KH$. Nechť $h \in H$, $k \in K$. Z předpokladu máme $hkh^{-1} \in K$, tudíž \begin{align} hk=(hkh^{-1})h \in KH. \end{align} Ukázali jsme tedy, že $HK \subset KH$. Opačná inkluze se ukáže analogicky a z předchozí věty už plyne, co jsme chtěli dokázat. \end{proof} \end{dusl} %____________________________________________________________________________________________ \section{Věty o isomorfismech} \begin{theorem}[1. VOI] Pokud $\varphi : G \rightarrow H$ je homomorfismus, pak $\Ker\varphi \npg G$ a $G/\Ker \varphi \cong \varphi(G)$. \begin{proof} Cvičení. \end{proof} \end{theorem} \begin{dusl} Buď $\varphi : G \rightarrow H$ homomorfismus. Potom platí: \begin{enumerate} \item $\varphi$ je monomorfní, právě když $\Ker \varphi = e$, \item $|G:\Ker\varphi| = |\varphi(G)|$. \end{enumerate} \end{dusl} \begin{theorem}[2. VOI, \uv{diamantová}] \label{2.VOI} Buď $G$ grupa a $A \le G$, $B \le G$ a $A \le N_G(B)$. Potom $AB \le G$, $B \npg AB$, $A \cap B \npg A$ a $AB/B \cong A/A \cap B$. \begin{proof} Z předchozího důsledku plyne, že $AB \le G$. Protože $A \le N_G(B)$ z předpokladu a $B \le N_G(b)$ triviálně, je taky $AB \le N_G(B)$, tedy $B \npg AB$ a faktorgrupa $AB/B$ je dobře definována. Definujeme proto homomorfismus $\varphi :A \rightarrow AB/B$ předpisem $\varphi(a)= aB$: \begin{align} \varphi(a_1a_2)=(a_1a_2)B=a_1Ba_2B=\varphi(a_1)\varphi(a_2). \end{align} Z definice je vidět, že $\varphi$ je surjektivní. Jednotkový prvek v $AB/B$ je $B$, tedy $\Ker\varphi = \{a \in A,\ aB = B\} = A \cap B$. Z 1. VOI už plyne, že $A \cap B \npg A$ a $A/A \cap B \cong AB/B$. \end{proof} \end{theorem} \begin{theorem} [3. VOI] Buď $G$ grupa a $H \npg G$, $K \npg G$ a $H \le K$. Potom $K/H \npg G/H$ a $(G/H)/(K/H)\cong G/K$. Označíme-li faktor grupu podle $H$ pruhem, tvrzení lze přepsat ve tvaru $\bar{G}/\bar{K} \cong G/K$. \begin{proof} Definujeme homomorfismus $\varphi : G/H \rightarrow G/K$ předpisem $\varphi(gH) = gK$. Abychom ukázali že $\varphi$ je dobře definované, vezmeme $g_1H = g_2H$. Potom $g_1 = g_2h$ pro nějaké $h \in H$. Protože $H \le K$, je taky $h \in K$, proto $g_1K = g_2K$. Tudíž $\varphi(g_1H) = \varphi(g_2H)$ a $\varphi$ je dobře definované. Protože $g$ může být libovolné, je $\varphi$ taky surjektivní. Dále \begin{align} \Ker\varphi = \{gH \in G/H | \varphi(gH) = K\} = \{gH \in G/H | gK = K\} = \{gH \in G/H | g \in K \} = K/H, \end{align} z 1. VOI už plyne $(G/H)/(K/H) \cong G/K$. \end{proof} \end{theorem} \begin{remark} Následují věta hovoří o vztahu struktury podgrup původní grupy $G$ a faktorgrupy $G/N$. Vlastně říká, že struktura podgrup faktorgrupy je stejná jako struktura podgrup $G$, které obsahují $N$. \end{remark} \begin{theorem}\label{4.VOI} [4. VOI, \uv{mřížková}] Buď $G$ grupa a $N \npg G$. Potom existuje bijekce z množiny podgrup $G$ obsahujících $N$ na množinu podgrup $G/N$, která každé podgrupě $A$ z první množiny přiřazuje podgrupu $A/N$ ze druhé. \begin{proof} Nejprve ověříme, že zobrazení $\theta$ definované pomocí $A\mapsto A/N$ je bijekce: Nejprve prostota. Nechť $A/N=B/N$. Pak $\forall a\in A$ platí $aN=bN$ pro nějaké $b\in N$, tj. $a^{-1}b\in N$ a $A\subset B$. Druhá inkluze se dokáže stejně. Nyní surjektivita: Je–li $S$ podgrupa $G/N$, a $\phi:G\rightarrow G/N$, pak $\phi^{-1}(S)=\{s\in G|sN\in S\}$ je podgrupa $G$ obsahující $N=\phi^{-1}(\{e\})$ a $\theta(\phi^{-1}(s))=\{sN|sN\in S\}=S$, což dokazuje větu surjektivitu a zároveň větu. \end{proof} \end{theorem} %____________________________________________________________________________________________ \section{Kompoziční řady} \begin{theorem}\label{v: cauchy abel} Je-li $G$ konečná Abelovská grupa a $p$ prvočíslo, které dělí $|G|$, pak $G$ obsahuje prvek řádu $p$. \begin{proof} Důkaz se provádí pomocí takzvané úplné indukce podle řádu $G$. Tedy se předpokládá, že tvrzení platí pro všechny grupy řádu ostře menšího než $|G|$ a ukáže se platnost pro $|G|$. Pro $|G|=1$ je tvrzení triviální. Mějme $|G|>1$, tedy existuje $x \in G, x \neq e$. Pokud $|G|=p$ je v důsledku Lagrangeovy věty \ref{v:lagrange} $G$ cyklická a tedy generovaná nějakým prvkem řádu $|G|$. Dále tedy předpokládejme $|G|>p$. Pokud bychom vzali prvek, jehož řád je dělitelný číslem $p$ (tedy $|x|=pn$), pak stačí vzít prvek $x^n$, který je řádu $|x^n|=p$. Dále tedy uvažujeme $p \nmid |x|$. Buď $N = \cycl x$. Jelikož $G$ je abelovská, pak $N \npg G$ a z Lagrangeovy věty máme $|G/N| = \frac{|G|}{|N|}$, respektive $|G/N||N|=|G|$. Protože $|N|>1$, musí platit $|G/N|<|G|$. Dále jelikož $p \mid |G|$, ale $p \nmid |N|$, musí platit $p \mid |G/N|$. Z indukčního předpokladu pak $G/N$ obsahuje prvek $\bar{y} = yN$ řádu $p$. Jelikož $y \notin N$, ale $y^p \in N$, musí být $\cycl{y^p} \neq \cycl y$, a tedy $|y^p|<|y|$. Podle věty \ref{v:rady} tedy platí $p \mid |y|$ a dostáváme se k předchozímu případu. \end{proof} \end{theorem} \begin{define} Grupa $G$ (konečná i nekonečná) se nazývá \textbf{jednoduchá}, pokud $|G|>1$ a jejími jedinými normálními podgrupami jsou $e$ a $G$. \end{define} \begin{define} V grupě $G$ řadu podgrup (řetěz) $e=N_0 \le N_1 \le \ldots \le N_{k-1} \le N_k = G$ nazýváme \textbf{kompoziční řada}, pokud $(\all i, 0\le i\le k-1)(N_i \npg N_{i+1})$ a $N_{i+1}/N_i$ je jednoduchá. Faktor grupy $N_{i+1}/N_i$ se pak nazývají \textbf{kompoziční faktory} $G$. \end{define} \begin{theorem} [Jordan-Hölder] Buď $G \neq e$ konečná grupa. Pak: \begin{enumerate} \item $G$ má kompoziční řadu, \item kompoziční faktory této řady jsou dány jednoznačně. Konkrétně pokud $e=N_0 \le N_1 \le \ldots \le N_r = G$ a $e=M_0 \le M_1 \le \ldots \le M_s = G$ jsou dvě kompoziční řady $G$, pak $r=s$ a existuje permutace $\pi$ $r$-tice $(1, 2, \ldots, r)$ taková, že \begin{equation} M_{\pi(i)}/M_{\pi(i)-1} \cong N_i/N_{i-1} \quad 1 \le i \le r. \end{equation} \end{enumerate} \begin{proof}[Důkaz J–H první část.] Mějme nejdelší možný řetěz normálních podgrup podgrup \[e=N_0 \npg N_1 \npg \ldots \npg N_r = G.\] Sporem dokážeme, že $N_{i+1}/N_i$ je jednoduchá: Kdyby $N_{i+1}/N_i$ nebyla jednoduchá, pak existuje $H\npg N_{i+1}/N_i$, $H\neq \{e\}, H\neq N_{i+1}/N_i.$ Vezmu–li $\pi^{-1}(H)$, tj. vzor $H$ při projekci $\pi:N_{i+1}\rightarrow N_{i+1}/N_i$, pak ze 4.VOI \ref{4.VOI} plyne $N_i\npg \pi^{-1}(H)\npg N_{i+1}$, takže by bylo možné $\pi^{-1}(H)$ \uv{vřadit} do řetězu a vytvořili bychom delší řetěz, což je spor s předpokládanou maximalitou. \end{proof} \end{theorem} Pro důkaz druhé části nejprve vyslovíme a dokážeme následující lemma: \begin{lemma} Nechť $G$ je grupa, $M,N$ její normální podgrupy, $M\neq N$, $G/M$ a $G/N$ jednoduché. Potom $G=NM$ a platí $M/(M\cap N)\cong G/N$ a $N/(M\cap N)\cong G/M$. \begin{proof} $M$ není podgrupa $N$ (a obráceně), protože jinak by $N/M$ byla podgrupa $G/M$ různá od $G/M$ a $\{e\}$ ($M\neq N$), což je spor s jednoduchostí.\\ Definujeme–li $K=M\cap N$, pak $K$ je normální podgrupa $M$ a $N$ (2. VOI \ref{2.VOI}), tudíž i $G$ (vše komutuje).\\ Nyní dokážeme $G=MN$: Protože $M,N\npg G$, pak i $NM\npg G$ (všichni reprezentanti komutují se vším). Tudíž platí, že $NM/M\npg G/M$. Protože je ale $G/M$ jednoduchá, musí $NM/M$ být buď $G/M$ nebo $\{e\}$. Druhá varianta však nenastává, protože jinak by $MN=M$ a $N\leq M$. Tudíž $MN/M=G/M$ a $MN=G$. Potom závěry $M/(M\cap N)\cong G/N$ a $N/(M\cap N)\cong G/M$ plynou z 2. VOI \ref{2.VOI}. \end{proof} \end{lemma} \begin{proof}[Důkaz J–H druhá část] Důkaz provedeme úplnou indukcí v $r$: Pokud je $r=1$, pak i $s=1$, protože $\{e\}\npg G$ je jediný přípustný řetěz. Nyní indukční krok $r=1,\ldots n-1\rightarrown$: Mějme dva řetězy normálních podgrup \[e=N_0 \le N_1 \le \ldots \le N_r = G,\quad e=M_0 \le M_1 \le \ldots \le M_s = G.\] Pokud $N_{r-1}=M_{s-1}$, pak je věta splněna z indukčního předpokladu, takže nadále předpokládáme $N_{r-1}\neq M_{s-1}$. Pro zkrácení zápisu si označím $M_{s-1}=M$ a $N_{r-1}=N$ a definuji $K=M\cap N$. Díky indukčnímu předpokladu má $K$ kompozitní řadu a protože stejně jako v lemmatu je $K$ normální podgrupa $M$ a $N$, Máme kompozitní řadu pro $M$ a $N$. Dodělat. \end{proof} \begin{theorem} Existuje 18 (nekonečných) rodin jednoduchých grup a 26 jednoduchých grup, které nepatří do žádné z těchto skupin (sporadické jednoduché grupy) takových, že každá konečná jednoduchá grupa je isomorfní s některou z výše uvedených. \begin{proof} Výsledek cca 100 let práce mnoha matematiků na 5000-10000 stránkách odborných časopisů. Ponecháno čtenáři jako snadné cvičení. \end{proof} \end{theorem} \begin{theorem} Je-li $G$ jednoduchá grupa prvočíselného řádu, pak $G \cong \mathbb{Z}_p$ pro nějaké prvočíslo $p$. \begin{proof} 255 stran... \end{proof} \end{theorem} % **************************************************************************************************************************** % KAPITOLA: akce grupy na množině % **************************************************************************************************************************** \chapter{Akce grupy na množině} \begin{define} \textbf{Akcí grupy $G$ na množině $A$} nazveme zobrazení $\cdot:G\times A \rightarrow A$ (značíme $g\cdot a$), které splňuje: \begin{enumerate} \item $(\all g_1,g_2 \in G)(\all a \in A)(g_1\cdot(g_2\cdot a)=(g_1 g_2)\cdot a),$ \item $(\all a \in A)(e\cdot a = a)$. \end{enumerate} \end{define} \begin{theorem}\label{akce a permutace} Buď $\cdot$ akce grupy $G$ na množině $A$. Zaveďme pro pevně zvolené $g \in G$ zobrazení $\sigma_g:A \rightarrow A$ vztahem $(\sigma_g(a)=g\cdot a) (\all a \in A)$. Potom platí: \begin{enumerate} \item $(\all g \in G)$ je zobrazení $\sigma_g$ permutací množiny $A$, \item zobrazení $\varphi: G \rightarrow S_A$ (permutace množiny $A$) definované $\varphi(g) = \sigma_g$ je homomorfismus. \end{enumerate} \begin{proof} 1) Dokážeme, že $\sigma_g$ má oboustrannou inverzi, a to konkrétně $(\sigma_g)^{-1}=\sigma_{g^-1}$. Z vlastností akce platí: $(\sigma_{g^-1}\circ \sigma_g)(a) = g^{-1}\cdot(g\cdot a) = (g^{-1}g)\cdot a = e \cdot a = a$. Záměnou $g$ za $g^{-1}$ dostaneme, že také $(\sigma_g\circ \sigma_{g^-1})(a) = a$. 2) Z bodu 1) víme, že skutečně $\sigma_g \in S_A$. Nyní jen ukážeme, že $\all a \in A$ a $\all f,g \in G$ platí $(\varphi(f)\circ \varphi(g))(a) = \sigma_f (\sigma_g(a)) = f\cdot (g \cdot a) = (fg) \cdot a = \sigma_{fg}(a) = \varphi(fg)(a)$. \end{proof} \end{theorem} \begin{corollary} Pro každou grupu $G$ a neprázdnou množinu $A$ existuje bijekce mezi akcemi $G$ na množině $A$ a homomorfismy $G$ do symetrické grupy $S_A$. \end{corollary} \section{Stabilizátory a orbity} \begin{define} Mějme grupu $G$ a její akci $\cdot: G\times S \rightarrow S$ na množinu $S$ a nechť $s \in S$ je pevně zvolený prvek. Potom \textbf{stabilizátor} $s$ v $G$ je: $G_s = \{g \in G | g\cdot s = s\}$. \textbf{Orbita} $s$ v $G$ je $O_s = \{ g \cdot s | g \in G \}$, občas značeno též $G\cdot s$. \end{define} \begin{theorem} Platí $G_s \le G$. \begin{proof} Víme, že $e \in G_s$ z axiomu akce ($e\cdot s = s$). S využitím akce pak máme pro libovolné $y \in G_s$: $s = e\cdot s = (y^{-1}y)\cdot s = [$axiom akce$] = y^{-1}\cdot(y\cdot s) = y^{-1}\cdot s$, tedy $y^{-1} \in G_s$. Konečně pro $x,y \in G_s$ platí: $(xy)\cdot c = x\cdot(y\cdot s) = x \cdot s = s$, tedy i součin $xy$ patří do $G_s$. \end{proof} \end{theorem} \begin{define} Definujeme \textbf{jádro} akce jako: $\Ker(\cdot) = \{g \in G | g\cdot s = s $ pro $ \all s \in S\}$. \end{define} \begin{corollary} Platí, že $\Ker(\cdot) \le G$, navíc je průnikem všech stabilizátorů, tedy \begin{align} \Ker(\cdot)=\bigcap_{a\in A}G_a. \end{align} \end{corollary} \begin{define} Řekneme, že akce je \textbf{věrná}, pokud $\Ker(\cdot)=e$, respektive \textbf{tranzitivní}, existuje-li právě jedna orbita. \end{define} \begin{theorem} Buď $H\leq G$, akce $G$ působí na levých třídách ${g_iH}_i=A$ a $\pi_H$ permutační reprezentace. Potom \begin{enumerate} \item $G$ působí tranzitivně na $A$, \item stabilizátor $eH$ v $A$ je roven $H$, \item jádro akce je největší normální podgrupa $H$, tj. $$\Ker(\pi_H)=\bigcap_{x\in G}xHx^{-1}.$$ \end{enumerate} \begin{proof} $ \Ker(\pi_H)=\{g\in G\mid gxH=xH, \all x\in G\}=\{g\in G\mid x^{-1}gxH=H\}, $ kde $x^{-1}gx\in H$, tj. $g\in xHx^{-1}$. \end{proof} \end{theorem} \begin{theorem}[Cayley] Každá grupa je isomorfní nějaké podgrupě grupy permutací. \begin{proof} Bez důkazu. \end{proof} \end{theorem} \begin{dusl} Buď $p$ nejmenší prvodělitel $|G|$ ($G$ konečná) a podgrupa $H\leq G$ taková, že $|G:H|=p$. Potom $H\npg G$. \begin{proof} Pro řád G platí $|G|=p^sm$, kde $p\nmid m$. Definujme akci grupy $G$ na levých třídách $H$ předpisem $x\cdot(gH)=xgH$. Tato akce indukuje homomorfismus $G$ na $S_p$ (viz věta \ref{akce a permutace}) a nechť $K$ je jeho jádro. Díky 1.VOI je $G/K$ izomorfní podgrupě $S_p$, tudíž $|G/K|$ dělí $p!$ Protože ale zároveň musí dělit $|G|$ a $p$ je nejmenší prvodělitel, pak $|G/K|=p$. Díky 3.VOI platí $|G/K|/|G/H|=|K/H|$, z čehož plyne $p=|G/K|=|G/H||K/H|=p|K/H|.$ $|K/H|=1$ však znamená $H=K$, což je normální podgrupa $G$. \end{proof} \end{dusl} \begin{remark} Buďte $G$ grupa a $S=\mathcal{P}(G)$. Pak $G$ působí na $S$ konjugací, tedy přiřazuje $B \mapsto gBg^{-1}$ pro $\all B \in S$ a $g \in G$. \end{remark} \begin{remark} Normalizátor $N_G(A)$ je tedy stabilizátor konjugace $A$ v $G$. \end{remark} %___________________________________________________Rovnice trid____________________________________________________ \section{Rovnice tříd} \begin{theorem}\label{v: pocet trid ekvivalence} Nechť $G$ je grupa, $A$ neprázdná množina. Pak platí: \begin{enumerate} \item Relace na $A$ definovaná přes akci G jako $a \sim b \lra a = g \cdot b$ pro $g \in G$ je ekvivalence. \item $\all a \in A$ je počet prvků ve třídě ekvivalence obsahující $a$ roven $|G:G_a|$ (indexu stabilizátoru $a$). \end{enumerate} \begin{proof} \begin{enumerate} \item Reflexivita je jasná, pro ověření symetrie nechť $a \sim b$. Pak $a = g \cdot b$, takže $g^{-1} \cdot a = g^{-1} \cdot g \cdot b = b$, tedy $b \sim a$. Nakonec pro důkaz tranzitivity mějme $a \sim b$ a $b \sim c$, tedy $a = g \cdot b$ a $b = h \cdot c$ pro nějaké $g, h \in G$. Dostáváme $a = g \cdot b = g \cdot (h \cdot c) = (gh) \cdot c$, proto $a \sim c$. \item Sestrojíme bijekci mezi levými třídami $G_a$ v $G$ a třídami ekvivalence $a$ (orbitami $a$). Nechť tedy $O_a = \{ g \cdot a | g \in G \}$. Pak zobrazení $g \cdot a \mapsto gG_a$ zobrazuje $O_a$ do množiny levých tříd $G_a$ v $G$ a je očividně surjektivní. Protože $g \cdot a = h \cdot a \lra h^{-1}g \in G_a \lra gG_a = hG_a$ je taky prosté. \end{enumerate} \end{proof} \end{theorem} \begin{remark} Konjugace splňuje axiomy akce a platí $G_s = C_G(s) = N_G({s})$ pro akci $G$ na $S, s \in S$. \end{remark} \begin{remark} Dále budeme pod pojmem orbita rozumět příslušnou třídu ekvivalence konjugace. \end{remark} \begin{theorem} [rovnice tříd] Nechť $G$ je konečná grupa a $g_1, g_2, \dots g_r$ reprezentanti různých orbit neobsažených v $Z(G)$. Pak \begin{align*} |G| = |Z(G)| + \sum_{i=1}^{r}|G:C_G(g_i)|. \end{align*} \begin{proof} Orbita $x$ obsahuje jenom jeden prvek právě tehdy, když $x \in Z(G)$, protože $gxg^{-1} = x$ pro $\all g \in G$. Nechť $Z(G) = \{e, z_2, \dots, z_m\}$ a $\{O_1, O_2, \dots, O_r\}$ buď orbity neobsažené v centru a $g_i$ reprezentant $O_i$ pro $\all i$. Potom všechny orbity (třídy ekvivalence) jsou: \begin{align*} \{e\}, \{z_2\}, \dots, \{z_m\}, O_1, O_2, \dots, O_r. \end{align*} Protože třídy ekvivalence tvoří disjunktní rozklad $G$, máme díky předchozí větě \begin{align*} |G|=\sum_{i=1}^{m}1+\sum_{i=1}^{r}|O_i|=|Z(G)|+\sum_{i=1}^{r}|G:C_G(g_i)|. \end{align*} \end{proof} \end{theorem} % **************************************************************************************************************************** % KAPITOLA: Sylowova věta % **************************************************************************************************************************** \chapter{Sylowova věta} \begin{define} Buďte $G$ grupa a $p$ prvočíslo. \begin{enumerate} \item Grupu řádu $p^\alpha$ pro nějaké $\alpha \geq 1$ se nazývá \textbf{p-grupa}. Podgrupy $G$ řádu $p^\alpha$ nazýváme \textbf{p-podgrupy} $G$. \item Je-li $G$ řádu $p^\alpha m$ a $p \nmid m$, pak podgrupu řádu $p^\alpha$ nazýváme \textbf{Sylowova p-podgrupa} $G$. \item Množinu všech Sylowových $p$-podgrup značíme $Syl_p(G)$ a počet těchto podgrup $n_p(G)$ (nebo jen $n_p$, je-li grupa jasná z kontextu). \end{enumerate} \end{define} \begin{lemma} Nechť $P \in Syl_p(G)$ a $Q$ libovolná $p$-podgrupa $G$, pak $N_G(P) \cap Q= P \cap Q$. \begin{proof} Nechť $H = N_G(P) \cap Q$. Protože $P \le N_G(P)$, je jasné že $P \cap Q \le H$, musíme tedy ukázat opačnou inkluzi. Z definice je $H \le Q$, stačí proto ukázat, že $H \le P$. Protože $H \le N_G(P)$, je $PH$ podgrupa a platí \begin{align*} |PH|=\frac{|P||H|}{|P \cap H|}. \end{align*} Všechny členy na pravé straně jsou mocniny $p$, proto $PH$ je $p$-podgrupa a protože $P \le PH$ je p-podgrupa maximálního řádu, musí platit $|PH| = |P| = p^\alpha$, tedy $PH =P$ a $H \le P$. \end{proof} \end{lemma} \begin{theorem} [Sylow] Buď $G$ grupa řádu $p^\alpha m$, kde $p$ je prvočíslo a $p \nmid m$. Pak: \begin{enumerate} \item Existuje Sylowova $p$-podgrupa, tedy $Syl_p(G) \neq \emptyset$. \item Je-li $P$ Sylowova $p$-podgrupa $G$ a $Q$ libovolná $p$-podgrupa $G$, pak existuje $g \in G$ takové, že $Q \le gPg^{-1}$, tedy $Q$ je obsažena v nějakém sdružení $P$. Speciálně každé dvě Sylowovy $p$-podgrupy $G$ jsou vzájemně sdružené v $G$. \item Počet Sylowových $p$-podgrup je tvaru $1+kp$, tedy $n_p \equiv 1\mod p$. Dále $n_p$ je index grupy $N_G(P)$ v $G$ pro každou Sylowovu $p$-podgrupu $P$, a tedy $n_p | m$. \end{enumerate} \begin{proof} \begin{enumerate} \item Důkaz provedeme úplnou indukcí na $|G|$, přičemž pro $|G| = 1$ není co dokazovat. Nechť tedy existuje Sylowova $p$-podgrupa pro všechny grupy menšího řádu než $|G|$. Když $p \mid |Z(G)|$, pak podle věty \ref{v: cauchy abel} existuje $N \le Z(G)$ řádu $p$. Pak $|\overline{G}| = |G/N| = p^{\alpha-1}m$ a z indukčního předpokladu existuje $\overline{P} \le \overline{G}$ řádu $p^{\alpha -1}$. Takže pro $P$ podgrupu $G$ obsahující $N$ takovou, že $P/N = \overline{P}$, platí $|P| = |P/N||N| = p^{\alpha}$ a $P$ je Sylowova $p$-podgrupa G. Omezíme se proto na případ $p \nmid |Z(G)|$. Nechť $g_1, g_2, \dots, g_r$ jsou reprezentanti různých tříd neobsažených v centru G, pak platí rovnice tříd \begin{align} |G| = |Z(G)| + \sum_{i=1}^{r}|G:C_G(g_i)|. \end{align} Pokud by platilo $p \mid |G:C_G(g_i)|, \all i$, pak by platilo taky $p \mid |Z(G)|$, protože $p \mid |G|$. Proto pro nějaké $i$ musí platit $p \nmid |G:C_G(g_i)|$. Označíme $H = C_G(g_i)$ pro dané $i$ a máme \begin{align} |H| = p^\alpha k, \quad \text{kde }p \nmid k, \end{align} a jelikož $g_i \notin Z(G), |H| < |G|$. Z indukčního předpokladu má $H$ Sylowovu $p$-podgrupu $P$, která je taky podgrupou $G$. Navíc $|P| = p^\alpha$, takźe $P$ je Sylovova $p$-podgrupa $G$. \item Nechť $Q$ je libovolná $p$-podgrupa G a nechť \begin{align} \mathcal{S} = \{ gPg^{-1} | g \in G\} \overset{ozn.}{=} \{ P_1, P_2, \dots, P_r \} = \mathcal{S}. \end{align} Z definice $\mathcal S$ může $G$, tedy taky $Q$, působit na $\mathcal{S}$ konjugací. $\mathcal{S}$ lze proto zapsat jako sjednocení orbit akce $Q$: \begin{align} \mathcal{S} = O_1 \cup O_2 \cup \dots \cup O_s \end{align} kde $r = |O_1|+|O_2|+\dots+|O_s|$. Je potřeba si uvědomit, že $r$ nezávisí na $Q$, ale počet orbit $s$ ano ($G$ má z definice jenom jednu orbitu na $\mathcal{S}$, ale $Q$ jich může mít víc). Přeuspořádáme prvky $\mathcal{S}$ tak, aby prvních $s$ bylo reprezentanty $Q$-orbit: $P_i \in O_i, 1 \le i \le s$. Pak z věty \ref{v: pocet trid ekvivalence} plyne $|O_i| = |Q: N_Q(P_i)|$. Z definice platí $N_Q(P_i) = N_G(P_i) \cap Q$ a podle předchozího lemmatu, $N_G(P_i) \cap Q = P_i \cap Q$. Celkem tedy máme \begin{align} |O_i| = |Q : P_i \cap Q|,\quad 1 \le i \le s. \end{align} Teď můžeme ukázat, že $r \equiv 1\mod p$. Díky libovolnosti $Q$ můžeme položit $Q = P_1$, takže \begin{align} |O_1| = 1, \end{align} a $\all i > 1, P_1 \neq P_i$, tedy $P_1 \cap\ P_i < P_1$ , proto \begin{align} |O_i| = |P_1 : P_1 \cap P_i| > 1,\quad 2 \le i \le s. \end{align} Protože $P_1$ je $p$-grupa, $|P_1 : P_1 \cap P_i|$ musí být mocnina $p$, tedy \begin{align} p \mid |O_i|, \quad 2 \le i \le s. \end{align} Odtud \begin{align} r = |O_1| + (|O_2|+ \dots +|O_s|) \equiv 1 (mod\ p) \end{align} Nyní buď $Q$ libovolná $p$-podgrupa G. Kdyby $Q \notin P_i, \all i \in \hat{r}$, pak $Q \cap P_i < Q, \all i$, tedy \begin{align} |O_i| = |Q:Q \cap P_i| > 1, \quad 1 \le i \le s. \end{align} Tudíž $p \mid |O_i|, \all i$ a $p \mid r$, což je spor s $r \equiv 1\mod p$. Proto $Q \le gPg^{-1}$, pro nějaké $g \in G$. Pro důkaz ekvivalence Sylowových $p$-podgrup stačí za $Q$ volit libovolnou Sylowovu $p$-podgrupu. Pak $Q \le gPg^{-1}$ a zároveň $|gPg^{-1}| = |Q| = p^\alpha$, proto $gPg^{-1} = Q$. \item Stačí si uvědomit že $\mathcal{S} = Syl_p(G)$ protože každá Sylowova $p$-podgrupa je konjugovaná k $P$, tedy $n_p = r \equiv 1\mod p$. Nakonec díky \ref{v: pocet trid ekvivalence} a tomu, že všechny Sylowovy $p$-podgrupy jsou konjugované, dostáváme \begin{align} n_p = |G:N_G(P)|, \quad \all P \in Syl_p(G). \end{align} \end{enumerate} \end{proof} \end{theorem} \begin{dusl} Buď $P$ Sylowova $p$-podgrupa grupy $G$. Potom následující tvrzení jsou ekvivalentní: \begin{enumerate} \item $P$ je jediná Sylowova $p$-podgrupa v $G$, tedy $n_p = 1$, \item $P \npg G$. \end{enumerate} \end{dusl}