02LIAG:Kapitola6: Porovnání verzí
Z WikiSkripta FJFI ČVUT v Praze
m |
m |
||
Řádka 2: | Řádka 2: | ||
\section{Souvislost Lieových grup a algeber} | \section{Souvislost Lieových grup a algeber} | ||
− | \ | + | \Prl{ |
Souvislá varieta $M$ je jednoduše souvislá$\quad \Leftrightarrow \quad$její fundamentální grupa $\Pi_1(M)\neq \{0\} \quad \Leftrightarrow \quad$všechny 1-cykly jsou hranice$\quad \Leftrightarrow \quad$všechny uzavřené křivky lze hladce zdeformovat do bodu, tj. na konstantní zobrazení $S^1 \to x_0 \in M$. | Souvislá varieta $M$ je jednoduše souvislá$\quad \Leftrightarrow \quad$její fundamentální grupa $\Pi_1(M)\neq \{0\} \quad \Leftrightarrow \quad$všechny 1-cykly jsou hranice$\quad \Leftrightarrow \quad$všechny uzavřené křivky lze hladce zdeformovat do bodu, tj. na konstantní zobrazení $S^1 \to x_0 \in M$. | ||
} | } |
Verze z 8. 7. 2016, 21:17
[ znovu generovat, | výstup z překladu ] | Kompletní WikiSkriptum včetně všech podkapitol. | |
PDF Této kapitoly | [ znovu generovat, | výstup z překladu ] | Přeložení pouze této kaptioly. |
ZIP | Kompletní zdrojový kód včetně obrázků. |
Součásti dokumentu 02LIAG
součást | akce | popis | poslední editace | soubor | |||
---|---|---|---|---|---|---|---|
Hlavní dokument | editovat | Hlavní stránka dokumentu 02LIAG | Hazalmat | 3. 8. 2016 | 20:54 | ||
Řídící stránka | editovat | Definiční stránka dokumentu a vložených obrázků | Hazalmat | 7. 7. 2016 | 06:04 | ||
Header | editovat | Hlavičkový soubor | Hazalmat | 10. 7. 2016 | 21:12 | header.tex | |
Kapitola0 | editovat | Úvod | Hazalmat | 3. 8. 2016 | 21:12 | LIAG_Kapitola0.tex | |
Kapitola1 | editovat | Definice Lieovy grupy a Lieovy algebry | Hazalmat | 5. 8. 2016 | 17:02 | LIAG_Kapitola1.tex | |
Kapitola2 | editovat | Vztah mezi Lieovou grupou a její algebrou | Hazalmat | 5. 8. 2016 | 17:27 | LIAG_Kapitola2.tex | |
Kapitola3 | editovat | Nástin teorie integrabilních distribucí | Hazalmat | 30. 7. 2016 | 14:10 | LIAG_Kapitola3.tex | |
Kapitola4 | editovat | Akce grupy na varietě | Hazalmat | 17. 7. 2016 | 19:23 | LIAG_Kapitola4.tex | |
Kapitola5 | editovat | Reprezentace Lieových grup a algeber | Hazalmat | 4. 8. 2016 | 17:21 | LIAG_Kapitola5.tex | |
Kapitola6 | editovat | Souvislost Lieových grup a algeber | Hazalmat | 4. 8. 2016 | 18:51 | LIAG_Kapitola6.tex | |
Kapitola7 | editovat | Lieovy algebry | Hazalmat | 5. 8. 2016 | 01:06 | LIAG_Kapitola7.tex | |
Kapitola8 | editovat | Cartanova kritéria | Hazalmat | 5. 8. 2016 | 17:29 | LIAG_Kapitola8.tex | |
Kapitola9 | editovat | Klasifikace pomocí kořenů | Hazalmat | 5. 8. 2016 | 17:34 | LIAG_Kapitola9.tex | |
Kapitola10 | editovat | Kořenové diagramy, Cartanova martice | Hazalmat | 31. 7. 2016 | 15:32 | LIAG_Kapitola10.tex | |
Kapitola11 | editovat | Dynkinovy diagramy | Hazalmat | 5. 8. 2016 | 17:39 | LIAG_Kapitola11.tex | |
Kapitola12 | editovat | Reálné formy komplexních poloprostých algeber | Hazalmat | 31. 7. 2016 | 23:39 | LIAG_Kapitola12.tex | |
Kapitola13 | editovat | Význam kompaktních Lieových grup | Hazalmat | 31. 7. 2016 | 23:45 | LIAG_Kapitola13.tex | |
Kapitola14 | editovat | Reprezentace poloprostých Lieových algeber | Hazalmat | 1. 8. 2016 | 12:45 | LIAG_Kapitola14.tex | |
Kapitola15 | editovat | Spinorové reprezentace | Hazalmat | 27. 7. 2016 | 20:38 | LIAG_Kapitola15.tex | |
Kapitola16 | editovat | Symetrie v QM | Hazalmat | 27. 7. 2016 | 21:21 | LIAG_Kapitola16.tex | |
Kapitola17 | editovat | Cvičení | Hazalmat | 6. 8. 2016 | 03:42 | LIAG_Kapitola17.tex |
Vložené soubory
soubor | název souboru pro LaTeX |
---|---|
Image:liag-1.pdf | liag-1.pdf |
Image:su3_1.pdf | su3_1.pdf |
Image:su3_2.pdf | su3_2.pdf |
Image:su3_3.pdf | su3_3.pdf |
Image:su3_4.pdf | su3_4.pdf |
Image:su3_5.pdf | su3_5.pdf |
Image:su3_6.pdf | su3_6.pdf |
Zdrojový kód
%\wikiskriptum{02LIAG} \section{Souvislost Lieových grup a algeber} \Prl{ Souvislá varieta $M$ je jednoduše souvislá$\quad \Leftrightarrow \quad$její fundamentální grupa $\Pi_1(M)\neq \{0\} \quad \Leftrightarrow \quad$všechny 1-cykly jsou hranice$\quad \Leftrightarrow \quad$všechny uzavřené křivky lze hladce zdeformovat do bodu, tj. na konstantní zobrazení $S^1 \to x_0 \in M$. } \Def{ Buďte $M$, $\overline{M}$ souvislé variety. $\overline{M}$ je \emph{nakrytí} $M$ právě, když $\exists$ $\pi : \overline{M} \to M$ splňující \begin{itemize} \item $\forall x \in M,\ \exists U = U^\circ,\ \pi^{(-1)}(U)=\bigcup_{\alpha \in \mathcal{I}}U_\alpha,\ U_\alpha = U_{\alpha}^\circ \subset \overline{M},\ U_\alpha \cap U_\beta = \emptyset,\ \forall \alpha\neq\beta$, \item $\left. \pi \right\rvert_{U_\alpha}: U_\alpha \to U$ je difeomorfismus. \end{itemize} } \Pzn{ Pojem nakrytí je podrobněji rozebrán ve Feckovi, kapitola 13.3. } \Prl{ $M=S^1,\ \overline{M}=S^1,\ \Pi(\e^{i\varphi})=\e^{2i\varphi}$ } \Prl{ $M=S^1,\ \overline{M}=\R,\ \Pi(\varphi)=\e^{i\varphi}$ } \Def{ Nakrytí $\overline{M}$ variety $M$ je \textbf{univerzální} právě, když $\overline{M}$ je jednoduše souvislá. } %\Pzn{ Protože je nakrytí lokální difeomorfismus platí pro Lieovy grupy $G$ a nakrytí $\overline{G}$ vztah $\g \simeq \overline{\g}$. } \Pzn{ Všechna univerzální nakrytí souvislé variety jsou izomorfní. } \vspace{1cm} \textbf{Konstrukce univerzálního nakrytí} \\ \Pzn{ Pro křivky $\gamma_1:\langle 0,1 \rangle \to M,\ \widetilde{\gamma} : \langle 0,1 \rangle \to M,\ \gamma_1(1) = \widetilde{\gamma}(0)$ definujeme: \begin{align*} \gamma_1 \circ \widetilde{\gamma}: \langle 0,1 \rangle \to M:\gamma_1 \circ \widetilde{\gamma}(t) &= \gamma _1(2t) & 0 \leq t \leq \frac{1}{2} \\ &= \widetilde{\gamma}(2t) & \frac{1}{2} \leq t \leq 1 \\ \gamma^{-1}(t) : \langle 0,1 \rangle \to M : \gamma^{-1}(t) &= \gamma(1-t) & 0 \leq t \leq1 \end{align*} } $x_0 \in M$ fixní, pak $\overline{M} = \left\{ [\gamma] \middle| \gamma:\langle 0,1 \rangle \to M,\ \gamma(0) = x_0 \right\},\ \gamma \sim \widetilde{\gamma} \Leftrightarrow \left( \gamma(1) = \widetilde{\gamma}(1) \land \gamma \circ \widetilde{\gamma}^{-1}\right.$ je možno deformovat do $\gamma(t) =x_0 \left. \right)$. Vezmeme jednoduše souvislé okolí $x \in M,\ U_x = U_x^\circ \rimpl \forall y \in U,\ \exists \gamma_{xy}:\langle 0,1 \rangle \to M:\ \gamma_{xy}(0)=x,\ \gamma_{xy}(1) = y,\ \gamma_{xy}(t) \in U_x,\ \forall t \in \langle 0,1 \rangle$. Všechny takové $\gamma_{x,y}$ spojující $x$ a $y$ uvnitř jednoduše souvislého okolí jsou ekvivalentní. Definujeme $\overline{U} \in \overline{M}$ okolí $[\gamma]$ jako $\overline{U} = \left\{ [\gamma \circ \gamma_{xy}] \middle| y \in U_x \right\}$ . Platí tedy $\gamma\circ\gamma_{xy}(0) = x_0,\ \gamma\circ\gamma_{xy}(1) = y. \rimpl$Definujeme-li $\Pi([\gamma]) = \gamma(1) \in M$, pak takto definované $\overline{U}$ je homeomorfní $U_x$. $\Pi$ definujeme jako hladké zobrazení, pomocí $\left( \zuz{\Pi}{\overline{U}} \right)^{-1}$ přeneseme hladkou strukturu a ukážeme že tímto lze definovat hladkou strukturu na $\overline{M}$. O $M$ lze pak dokázat, že je jednoduše souvislé. Je-li $G$ souvislá Lieova grupa, pak na $\overline{G}$ můžeme definovat strukturu Lieovy grupy následovně: $x_0 \equiv e,\ \forall g \in G,\ \gamma_g: \langle 0,1 \rangle \to G,\ \gamma_g(1) = g$, \begin{itemize} \item $\left[ \gamma_g \right] \cdot \left[ \gamma_h \right] \equiv \left[ \gamma_g \cdot L_g(\gamma_h) \right], \ \forall g,h \in G$, kde $L_g(\gamma_h)(t) = g \cdot \gamma_h(t),\ \forall t$ \item $\overline{e} = \left[ \gamma_e \right],\ \gamma_e(t) = e,\ \forall t$ \item $\left[ \gamma_g \right]^{-1} = \left[ L_{g^{-1}} \left( \gamma_g^{-1} \right) \right]$ \item $\Pi \left( \left[ \gamma_g \right] \cdot \left[ \gamma_h \right] \right) = g \cdot h$, tj. $\Pi$ je homomorfizmus grup \end{itemize} $\Rightarrow \quad \g \cong \overline{\g}$, protože okolí počátků jsou difeomorfní \Vet{ Ke každé konečněrozměrné Lieově algebře $\g$ existuje právě jedna souvislá a jednoduše souvislá Lieova grupa $G$ taková, že $\g$ je její Lieova algebra. Všechni ostatní souvislé Lieovy grupy s touto algebrou $g$ jsou nakrývány $G$ a mohou být proto zapsány jako $G/D$, kde D je diskrétní normální podgrupa. Bez důkazu. } \Pzn{ $D$ normální $\Leftrightarrow gDg^{-1} = D,\ \forall g \in G \rimpl$ pro pevně zvolené $d_0 \in D$ a $\phi : G \to D \subset G : \phi(g) = g_0 d_0 g_0^{-1} \in D$, je $\phi(G)$ souvislá díky tomu, že $G$ je souvislá a $\phi$ hladké. A protože $D$ je diskrétní podmnožina $G \rimpl \phi(g) = d_0,\ \forall g \in G \rimpl gd_0 = d_0g \forall g \in G \rimpl D \subset \Zs (G) = \left\{ h \in G \middle| hg = gh,\ \forall g \in G \right\} \rimpl D$ je Abelovská. } Pomocí předchozích vět máme vyřešen problém všech souvislých $G$ se stejnou $\g$. Teoreticky můžu vždy nalézt univerzální nakrytí a následně ho faktorizovat podle možných $D$ a tím získám všechny $G$. \Prl{ Pro $su(2)$ existují právě 2 souvislé Lieovy grupy $SU(2)$ a $SO(3) = SU(2)/_{\{ \mathbb{-1}, \mathbb{1} \}}$. } \Pzn{ $\rho$ reprezentace $\g$ na $V,\ \mrm{dim}\,V < +\infty \rimpl \rho$ je reprezentace jednoduše souvislé grupy $G$. Zároveň ale pokud $\rho(D) \neq \{ \mathbb{1} \}$, pak nelze skonstruovat $\rho : G/D \to GL(V)$, tj.: \begin{itemize} \item $\rho (D) = \{ 1 \}$ a máme tedy reprezentaci $G/D$, \item nebo $\rho_G (D) \neq \{ 1 \}$ a reprezentaci nemáme (víceznačná reprezentace). \end{itemize} }