01NUM1:Kapitola2: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
(Věta 23)
(Věta 24)
Řádka 4: Řádka 4:
 
\setcounter{define}{21}
 
\setcounter{define}{21}
 
\begin{theorem}
 
\begin{theorem}
 +
\label{SoucinTrojuhelniku}
 
Nechť jsou \( \matice A \) a \( \matice B \in \mathbbm C^{n, n} \) dolní (resp. horní) trojúhelníkové matice. Pak matice \( \matice C = \matice A \matice B \) je dolní (resp. horní) trojúhelníková. Dále pak platí:
 
Nechť jsou \( \matice A \) a \( \matice B \in \mathbbm C^{n, n} \) dolní (resp. horní) trojúhelníkové matice. Pak matice \( \matice C = \matice A \matice B \) je dolní (resp. horní) trojúhelníková. Dále pak platí:
 
\[ \forall i \in \hat n, \matice C_{ii} = \matice A_{ii} \matice B_{ii} \]
 
\[ \forall i \in \hat n, \matice C_{ii} = \matice A_{ii} \matice B_{ii} \]
Řádka 14: Řádka 15:
  
 
\begin{theorem}
 
\begin{theorem}
 +
\label{InverzeTrojuhelniku}
 
Nechť je \( \matice A \in \mathbbm C^{n, n} \) regulární dolní (resp. horní) trojúhelníková matice. Pak matice \( \matice A^{-1} \) je dolní (resp. horní) trojúhelníková. Dále pak platí:
 
Nechť je \( \matice A \in \mathbbm C^{n, n} \) regulární dolní (resp. horní) trojúhelníková matice. Pak matice \( \matice A^{-1} \) je dolní (resp. horní) trojúhelníková. Dále pak platí:
 
\[ \forall i \in \hat n, (\matice A^{-1})_{ii} = \frac{1}{\matice A_{ii} } \]
 
\[ \forall i \in \hat n, (\matice A^{-1})_{ii} = \frac{1}{\matice A_{ii} } \]
 
\begin{proof}
 
\begin{proof}
 +
TODO
 
\end{proof}
 
\end{proof}
 
\end{theorem}
 
\end{theorem}
 +
 +
\begin{theorem}
 +
\label{LDR}
 +
Každou regulární matici \( \matice A \in \mathbbm C^{n, n} \) lze jednoznačně vyjádřit ve tvaru součinu:
 +
\[ \matice A = \matice L \matice D \matice R \]
 +
kde:
 +
\begin{itemize}
 +
\item \( \matice L \) je dolní trojúhelníková matice s jedničkami na diagonále
 +
\item \( \matice D \) je diagonální matice
 +
\item \( \matice R \) je horní trojúhelníková matice s jedničkami na diagonále
 +
\end{itemize}
 +
\begin{proof}
 +
TODO
 +
\end{proof}
 +
 +
\end{theorem}
 +
\begin{remark}
 +
Čísla na diagonále matice \( \matice D \) z \ref{LDR} \textbf{nejsou} vlastními čísly matice \( \matice A \)
 +
\end{remark}

Verze z 12. 11. 2015, 23:28

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 01NUM1

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 01NUM1Dedicma2 3. 6. 202419:49
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůDedicma2 3. 6. 202419:48
Header editovatHlavičkový souborDedicma2 17. 1. 201616:20 header.tex
Kapitola0 editovatZnačeníDedicma2 23. 5. 201721:32 znaceni.tex
Kapitola2 editovatOpakování a doplnění znalostí z lineární algebryDedicma2 3. 6. 202415:41 prezentace2.tex
Kapitola3 editovatÚvod do numerické matematikyDedicma2 3. 6. 202415:51 prezentace3.tex
Kapitola4 editovatPřímé metody pro lineární soustavyDedicma2 3. 6. 202416:47 prezentace4.tex
Kapitola5 editovatIterativní metodyDedicma2 3. 6. 202416:59 prezentace5.tex
Kapitola6 editovatVlastní čísla a vektory maticDedicma2 3. 6. 202417:07 prezentace6.tex
Kapitola7 editovatNelineární rovniceKubuondr 31. 1. 201714:27 prezentace7.tex
Kapitola8 editovatInterpolaceKubuondr 31. 1. 201715:43 prezentace8.tex
Kapitola9 editovatDerivace a integraceKubuondr 31. 1. 201717:33 prezentace9.tex

Zdrojový kód

%\wikiskriptum{01NUM1}
\section{Opakování a doplnění znalostí z lineární algebry}
 
\setcounter{define}{21}
\begin{theorem}
\label{SoucinTrojuhelniku}
Nechť jsou \( \matice A \) a \( \matice B \in \mathbbm C^{n, n} \) dolní (resp. horní) trojúhelníkové matice. Pak matice \( \matice C = \matice A \matice B \) je dolní (resp. horní) trojúhelníková. Dále pak platí:
\[ \forall i \in \hat n, \matice C_{ii} = \matice A_{ii} \matice B_{ii} \]
\begin{proof}
Protože jsou matice \( \matice A \) a \( \matice B \) dolní trojúhelníkové, platí \( \matice A_{ik} = 0 \; \; \forall i < k$ a $\matice B_{kj} = 0 \; \; \forall k < j \). Tudíž:
\[ \matice C_{ij} = \sum_{k = 1}^n \matice A_{ik} \matice B_{kj} = \sum_{k = 1}^i \matice A_{ik} \matice B_{kj} = \sum_{k = j}^i \matice A_{ik} \matice B_{kj} \]
což je rovno 0 pro \( i < j \) a \( \matice A_{ii} \matice B_{ii}$ pro $i = j \). Důkaz pro horní trojúhelníkové matice je obdobný.
\end{proof}
\end{theorem}
 
\begin{theorem}
\label{InverzeTrojuhelniku}
Nechť je \( \matice A \in \mathbbm C^{n, n} \) regulární dolní (resp. horní) trojúhelníková matice. Pak matice \( \matice A^{-1} \) je dolní (resp. horní) trojúhelníková. Dále pak platí:
\[ \forall i \in \hat n, (\matice A^{-1})_{ii} = \frac{1}{\matice A_{ii} } \]
\begin{proof}
TODO
\end{proof}
\end{theorem}
 
\begin{theorem}
\label{LDR}
Každou regulární matici \( \matice A \in \mathbbm C^{n, n} \) lze jednoznačně vyjádřit ve tvaru součinu:
\[ \matice A = \matice L \matice D \matice R \]
kde:
\begin{itemize}
 \item \( \matice L \) je dolní trojúhelníková matice s jedničkami na diagonále
 \item \( \matice D \) je diagonální matice
 \item \( \matice R \) je horní trojúhelníková matice s jedničkami na diagonále
\end{itemize}
\begin{proof}
TODO
\end{proof}
 
\end{theorem}
\begin{remark}
Čísla na diagonále matice \( \matice D \) z \ref{LDR} \textbf{nejsou} vlastními čísly matice \( \matice A \)
\end{remark}