02LIAG:Kapitola2: Porovnání verzí

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
m
 
(Není zobrazeno 30 mezilehlých verzí od stejného uživatele.)
Řádka 1: Řádka 1:
 
%\wikiskriptum{02LIAG}
 
%\wikiskriptum{02LIAG}
\section{Vztah mezi Lieovou grupou $G$ a její algebrou $\g$}
+
\section{Vztah mezi Lieovou grupou a její algebrou}
 
   
 
   
 
\Def{ (Homomorfismus Lieových grup $G$ a $H$)
 
\Def{ (Homomorfismus Lieových grup $G$ a $H$)
 
\begin{itemize}
 
\begin{itemize}
\item \emph{Homomorfismus $G$ a $H$} je libovolné hladké $\phi :G \to H$, $\phi(g\cdot_G h)=\phi(g) \cdot_H \phi(h)$, $\forall g,h \in G$.
+
\item \textbf{Homomorfismus $G$ a $H$} je libovolné hladké $\phi :G \to H$, $\phi(g\cdot_G h)=\phi(g) \cdot_H \phi(h)$, $\forall g,h \in G$.
\item \emph{Izomorfismus $G$ a $H$} je bijektivní homomorfismus s~hladkou inverzí.
+
\item \textbf{Izomorfismus $G$ a $H$} je bijektivní homomorfismus s~hladkou inverzí.
 
\end{itemize}
 
\end{itemize}
 
}
 
}
 
\Def{
 
\Def{
\emph{Jednoparametrická podgrupa v~$G$} je homomorfismus $\varphi: (\R,+) \to G$.
+
\textbf{Jednoparametrická podgrupa v~$G$} je homomorfismus $\varphi: (\R,+) \to G$.
 
}
 
}
 
\Dsl{
 
\Dsl{
Takže platí $\varphi(s+t)=\varphi(s)\varphi(t)=\varphi(t)\varphi(s)$, tedy nutně $\varphi (0)=e$
+
Platí $\varphi(s+t)=\varphi(s)\varphi(t)=\varphi(t)\varphi(s)$, tedy nutně $\varphi (0)=e$.
 
}
 
}
 
\Prl{
 
\Prl{
$G$ Maticová grupa $\Rightarrow \dot{g}(t)=g(t)\cdot\underbrace{\dot{g}(0)}_{konst.}=\dot{g}(0)\cdot g(t)=L_{g(t)*}\left(\dot{g}(0)\right)=R_{g(t)*}\left(\dot{g}(0)\right) $
+
$G$ Maticová grupa:
 +
\begin{align*}
 +
\dot{g}(t) = g(t)\cdot\underbrace{\dot{g}(0)}_{konst.} &= L_{g(t)*}\left(\dot{g}(0)\right) \\
 +
&= \dot{g}(0)\cdot g(t) = R_{g(t)*}\left(\dot{g}(0)\right)
 +
\end{align*}
 
}
 
}
 
\Pzn{
 
\Pzn{
Obecně: $g(s+t)=g(t)g(s)\equiv L_{g(t)}g(s) \Rightarrow \underbrace{\dot{g}(t)}_{T_{g(t)}G}=\zuz{\td{}{s}}{0}\left(L_{g(t)}g(s)\right)=L_{g(t)*}\underbrace{\dot{g}(0)}_{T_{\e} G}$
+
Obecně:  
Označíme-li pro $X\in \g$, $\zuz{X}{e}=\dot{g}(0)$, pak $\dot{g}(t)=L_{g(t)*}(\zuz{X}{e})=Xg(t)$
+
\begin{align*}
 +
g(s+t) = g(t)g(s)\equiv L_{g(t)}g(s) \rimpl \underbrace{\dot{g}(t)}_{T_{g(t)}G} = \zuz{\td{}{s}}{0}\left(L_{g(t)}g(s)\right) = L_{g(t)*}\underbrace{\in \dot{g}(0)}_{T_{\e} G}
 +
\end{align*}
 +
Označíme-li pro $X\in \g$, $\zuz{X}{e}=\dot{g}(0)$, pak $\dot{g}(t)=L_{g(t)*}(\zuz{X}{e})=\zuz{X}{g(t)}$.
 
}
 
}
 
\Dsl{
 
\Dsl{
Jednoparametrickě podgrupy jsou integrální křivky levoinvariantních vektorových polí, tj. elementů Lieovy algebry, vycházející z~$e$.
+
Jednoparametrické podgrupy jsou integrální křivky levoinvariantních vektorových polí, tj. elementů Lieovy algebry, vycházející z~$e$.
 
}
 
}
+
\subsubsection*{Exponenciální zobrazení}
+
\subsection{Exponenciální zobrazení}
 
% Jak jsem zmínili ve větě \ref{ztotozneni g a TeG}, odpovídá prostor levoinvariatních vektorových polí Lieově algebře $T_eG$. Pokud chceme z~daného levoinvariantního pole $X$ získat vektor z~$T_eG$ stačí toto pole vyhodnotit v~$e$, tj. získáme $X|_e \in T_eG$.
 
% Jak jsem zmínili ve větě \ref{ztotozneni g a TeG}, odpovídá prostor levoinvariatních vektorových polí Lieově algebře $T_eG$. Pokud chceme z~daného levoinvariantního pole $X$ získat vektor z~$T_eG$ stačí toto pole vyhodnotit v~$e$, tj. získáme $X|_e \in T_eG$.
 
Na základě integrálních křivek můžeme definovat zobrazení $\g \to G$, které danému vektoru $X|_e \in \g$ přiřadí nějaký bod na příslušné integrální křivce levoinvariantního vektorového pole $X$, ke kterému je $X|_e$ tečným vektorem.
 
Na základě integrálních křivek můžeme definovat zobrazení $\g \to G$, které danému vektoru $X|_e \in \g$ přiřadí nějaký bod na příslušné integrální křivce levoinvariantního vektorového pole $X$, ke kterému je $X|_e$ tečným vektorem.
 
\Def{
 
\Def{
$\exp : \g \to G$ definujeme $\exp (X) =\varphi (1)$, kde $\varphi$ je integrální křivka $X \in \g$.
+
$\exp : \g \to G$ definujeme $\exp (tX) =\varphi (t),\ \exp (X) =\varphi (1)$, kde $\varphi$ je jednoparametrická podgrupa generovaná $X \in \g$ (integrální křivka $X \in \g$).
 
}
 
}
 
\Pzn{
 
\Pzn{
$\exp =:\e$ tedy splňuje $\varphi(t)=\e^{tX}$, $\varphi(t+s)=\e^{(t+s)X}=\varphi (t) \varphi (s) =\e^{tX}\e^{sX}$.
+
$\exp =:\e$ tedy splňuje $\varphi(t+s)=\e^{(t+s)X}=\varphi (t) \varphi (s) =\e^{tX}\e^{sX}$.
 
}
 
}
 
\Prl{
 
\Prl{
 
Exponenciela $\mfrk{af}(1) \to Af(1)$.
 
Exponenciela $\mfrk{af}(1) \to Af(1)$.
 
}
 
}
Hledáme integrální křivky vektorového pole z~příkladu \ref{grupa Af(1)}. Pro libovolné levoinvariantní pole jsou rovnice integrálních křivek $\dot{x}(t)=\alpha x(t)$ a $\dot{y}(t)=\beta x(t)$ s~počátečními podmínkami\\ $(x(0),y(0))=(1,0)$, řešením je $(x(t),y(t))=(\e^{\alpha t}, \frac{\beta}{\alpha}(\e^{\alpha t}-1))$. Exponencielu získáme dosazením $t=1$, tj. $\e^X=\e^{\alpha x \partial_x + \beta x\partial_y}=(\e^{\alpha}, \frac{\beta}{\alpha}(\e^{\alpha}-1))$ (pro $\alpha=0$ vyjde výsledek stejně jako provedením $\lim_{\alpha \to 0}$).
+
Hledáme integrální křivky vektorového pole z~příkladu \ref{grupa Af(1)}. Pro libovolné levoinvariantní pole jsou rovnice integrálních křivek $\dot{x}(t)=\alpha x(t)$ a $\dot{y}(t)=\beta x(t)$ s~počátečními podmínkami $(x(0),y(0))=(1,0)$, řešením je $(x(t),y(t))=\left( \e^{\alpha t}, \frac{\beta}{\alpha}(\e^{\alpha t}-1) \right)$. Exponencielu získáme dosazením $t=1$, tj. $\e^X=\e^{\alpha x \partial_x + \beta x\partial_y}=(\e^{\alpha}, \frac{\beta}{\alpha}(\e^{\alpha}-1))$ (pro $\alpha=0$ vyjde výsledek stejně jako provedením $\lim_{\alpha \to 0}$).
+
 
V~maticovém vyjádření je pole
 
V~maticovém vyjádření je pole
 
$\left( \begin{smallmatrix}
 
$\left( \begin{smallmatrix}
Řádka 76: Řádka 83:
 
\dot{\gamma}^i_j(t)=\gamma^i_k(t)X^k_j(e), \quad \gamma^i_j(0)=\delta^i_j \,,
 
\dot{\gamma}^i_j(t)=\gamma^i_k(t)X^k_j(e), \quad \gamma^i_j(0)=\delta^i_j \,,
 
&& \Leftrightarrow &&
 
&& \Leftrightarrow &&
\dot{\gamma}(t)= \gamma (t) X(e), \quad \gamma (0)=\mathbbm{1} \,.
+
\dot{\gamma}(t)= \gamma (t) X(e), \quad \gamma (0)=\mathbb{1} \,.
 
\end{align}
 
\end{align}
 
Z~maticového zápisu vidíme, že řešením je maticová exponenciela $\gamma(t)=\e^{t X(e)}$, výsledkem je $\e^{X}=\gamma (1)=\e^{X(e)}$.  
 
Z~maticového zápisu vidíme, že řešením je maticová exponenciela $\gamma(t)=\e^{t X(e)}$, výsledkem je $\e^{X}=\gamma (1)=\e^{X(e)}$.  
 
\Vet{
 
\Vet{
$A \in \gl(n,\C)$, potom $\det \e^A=\e^{\Tr A}$.
+
Pro libovolnou čtvercovou matici $A$ platí: $\in \gl(n,\C)$, potom $\det \e^A=\e^{\Tr A}$.
 
}
 
}
 
\begin{proof}
 
\begin{proof}
Předpokládame, že $\exists B$, tak, že $D=BAB^{-1}$ diagonální (diagonalizovatelné matice jsou husté v množine všech matic a obě strany rovnice jsou spojité $\Rightarrow$ platí obecně).
+
Předpokládame, že $\exists B$, tak, že $D=BAB^{-1}$ diagonální (diagonalizovatelné matice jsou husté v množine všech matic a obě strany rovnice jsou spojité$\rimpl$platí obecně).
 
\begin{align*}
 
\begin{align*}
 
\Tr D = \Tr BAB^{-1} = \Tr AB^{-1}B = \Tr A
 
\Tr D = \Tr BAB^{-1} = \Tr AB^{-1}B = \Tr A
 
\end{align*}
 
\end{align*}
Platí $\e^{BAB^{-1}} = B\e^AB^{-1}$ z definice pomocí řady, proto $\det\,\e^{D} = \det\,B\det\,B^{-1}\det\,\e^A = \det\,\e^{A}$, a protože $D = \mrm{diag}(\lambda_1,\dots,\lambda_n) \Rightarrow \e^D = \mrm{diag}(\e^{\lambda_1},\dots,\e^{\lambda_n})$, tedy  
+
Platí $\e^{BAB^{-1}} = B\e^AB^{-1}$ z definice pomocí řady, proto $\det\,\e^{D} = \det\,B\det\,B^{-1}\det\,\e^A = \det\,\e^{A}$, a protože $D = \mrm{diag}(\lambda_1,\dots,\lambda_n) \rimpl \e^D = \mrm{diag}(\e^{\lambda_1},\dots,\e^{\lambda_n})$, tedy  
 
\begin{align*}
 
\begin{align*}
 
\det\,\e^D =\prod_{k=1}^{n}\e^{\lambda_k} = \e^{\sum_k \lambda_k} = \exp(\Tr D).
 
\det\,\e^D =\prod_{k=1}^{n}\e^{\lambda_k} = \e^{\sum_k \lambda_k} = \exp(\Tr D).
Řádka 93: Řádka 100:
 
\end{proof}
 
\end{proof}
 
\Vet{
 
\Vet{
Buď $G$ Lieova grupa, pak $\exp: \g \to G:X\to \e^{X}$ je lokální difeomorfismus okolí $\vec{0}\in\g$ \emph{na} okolí $\e\in G$. (Toto zobrazení není obecně surjektivní ani injektivní na celé $G$).
+
Buď $G$ Lieova grupa, pak $\exp: \g \to G:X\to \e^{X}$ je lokální difeomorfismus okolí $0 \in\g$ na okolí $e\in G$. (Toto zobrazení není obecně surjektivní ani injektivní na celé $G$).
 
}
 
}
 
\begin{proof}
 
\begin{proof}
$\g$ jako vektorový prostor lze chápat jako varietu, $T_0\g\cong\g \Rightarrow \exp$ je hladké zobrazení variet. $\left.\exp_*\right|_0:T_0\g\equiv\g \to \g\equiv T_{\e} G, \exp (tX)$ je integrálí křivka procházející $e$, s tečným vektorem $X\Rightarrow \zuz{\exp_*}{0} = \text{identita}\Rightarrow$ podle věty o inverzní funkci je $\exp$ lokální difeomorfismus.
+
$\g$ jako vektorový prostor lze chápat jako varietu, $T_0\g\cong\g \rimpl \exp$ je hladké zobrazení variet. $\left.\exp_*\right|_0:T_0\g\equiv\g \to \g\equiv T_{e} G, \exp (tX)$ je integrálí křivka procházející $e$, s tečným vektorem $X \rimpl \zuz{\exp_*}{0} = \text{identita}\rimpl$podle věty o inverzní funkci je $\exp$ lokální difeomorfismus.
 
Detailně: $\exp:X \to \e^X$
 
Detailně: $\exp:X \to \e^X$
 
\begin{align*}
 
\begin{align*}
\exp_*(\left.X\right|_0)f = \lim_{t \to 0}\frac{f(\e^{tX+0})-f(\e^0)}{t} = \lim_{t \to 0}\frac{f(\e^{tX})-f(\e)}{t} \overset{\mrm{def.}}{=} \left.Xf\right|_\e \quad\Rightarrow \\
+
\exp_*(\left.X\right|_0)f = \lim_{t \to 0}\frac{f(\e^{tX+0})-f(\e^0)}{t} = \lim_{t \to 0}\frac{f(\e^{tX})-f(e)}{t} \overset{\mrm{def.}}{=} \left.Xf\right|_e
\Rightarrow\quad \exp_*(\left.X\right|_0) = \left.\exp_*(X)\right|_\e = \left.X\right|_\e
+
\end{align*}
\end{align*}
+
$\Rightarrow\quad \exp_*(\left.X\right|_0) = \left.\exp_*(X)\right|_e = \left.X\right|_e$.
 
\end{proof}
 
\end{proof}
 
\Pzn{
 
\Pzn{
Pro matice platí: $\exp_*(X)=\left.\td{}{t}(\e^{tX})\right|_{t=0} = \left.\td{}{t}\left(1+tX+O(t^2)\right)\right|_{t=0}$
+
Pro matice platí: $\exp_*(X)=\left.\td{}{t}(\e^{tX})\right|_{t=0} = \left.\td{}{t}\left(1+tX+O(t^2)\right)\right|_{t=0} = X$.
 +
}
 +
\Pzn{
 +
Je zřejmé, že $\exp$ nemůže být surjektivní pro grupy s~více komponentami souvislosti (nelze spojit křivkou body z~různých komponent). $\exp$ není obecně surjektivní ani pro souvislé $G$, pouze v~případě, že je $G$ kompaktní.
 
}
 
}
%SURJEKTIVITA V~RÁMCI OKOLÍ???
 
Je zřejmé, že $\exp$ nemůže být \emph{surjektivní} pro grupy s~více komponentami souvislosti (nelze spojit křivkou body z~různých komponent). $\exp$ není obecně \emph{surjektivní} ani pro souvislé $G$, pouze v~případě, že je $G$ kompaktní.
 
 
   
 
   
\subsubsection*{Vyšetřování souvislosti variet}
+
\subsection{Vyšetřování souvislosti variet}
 
\Def{
 
\Def{
Buďte $V^k \subset M^n$ dif. variety ($V^k$ podvarieta $M^n$). $V^k$ je \textbf{deformační retrakt} $M^n$ právě tehdy, když $\exists$ $r: \langle 0,1 \rangle \times M^n \to M^n$ spojité, takové že
+
Buďte $V \subset M$ dif. variety ($V$ podvarieta $M$). $V$ je \textbf{deformační retrakt} $M$ právě tehdy, když $\exists$ $r: \langle 0,1 \rangle \times M \to M$ spojité, takové že
 
\begin{itemize}
 
\begin{itemize}
 
\item $\forall m \in M$, $r(0,m)=m$,
 
\item $\forall m \in M$, $r(0,m)=m$,
Řádka 126: Řádka 134:
 
}
 
}
 
\Vet{
 
\Vet{
$V^k$ je deformační retrakt $M^n$, pak
+
$V$ je deformační retrakt $M$, pak
 
\begin{itemize}
 
\begin{itemize}
 
\item $M$ souvislá $\Leftrightarrow$ $V$ souvislá,
 
\item $M$ souvislá $\Leftrightarrow$ $V$ souvislá,
Řádka 133: Řádka 141:
 
}
 
}
 
\begin{proof}
 
\begin{proof}
Sami.  
+
Souvislost zřejmá. Jednoduchá souvislost plyne z toho, že pro křivky platí $\gamma_V(t) = r(1,\gamma_M(t))$.  
 
\end{proof}
 
\end{proof}
 
\Pzn{
 
\Pzn{
Řádka 142: Řádka 150:
 
}
 
}
 
\Prl{
 
\Prl{
$Sl(2,\R) = \left(\begin{smallmatrix}
+
$SL(2,\R) = \left(\begin{smallmatrix}
 
x & y \\
 
x & y \\
 
z & w  
 
z & w  
 
\end{smallmatrix}\right),\ xw-zy=1$ není jednoduše souvislá.
 
\end{smallmatrix}\right),\ xw-zy=1$ není jednoduše souvislá.
}
+
 
Lze ji zdeformovat na $SO(2)$: Nejprve definujeme $V_1$ tak, aby  
 
Lze ji zdeformovat na $SO(2)$: Nejprve definujeme $V_1$ tak, aby  
 
\begin{align*}\forall \begin{pmatrix}
 
\begin{align*}\forall \begin{pmatrix}
Řádka 159: Řádka 167:
 
\alpha(t)x & \frac{1}{\alpha(t)}y \\
 
\alpha(t)x & \frac{1}{\alpha(t)}y \\
 
\alpha(t)z & \frac{1}{\alpha(t)}w
 
\alpha(t)z & \frac{1}{\alpha(t)}w
\end{smallmatrix}\right)$ , kde $\alpha(0) = 1$ a pro $\alpha(1)$ platí $\alpha^2(1) \left( x^2+z^2 \right) = 1$. Zvolime proto $\alpha(t) = \frac{1}{\left( x^2 + z^2 \right)^{t/2}}$ a $V_1 = \mrm{Im}\, r_1\left( 1,. \right) \subset Sl(2,\R)$ už splňuje požadavky.
+
\end{smallmatrix}\right)$ , kde $\alpha(0) = 1$ a pro $\alpha(1)$ platí $\alpha^2(1) \left( x^2+z^2 \right) = 1$. Zvolime proto $\alpha(t) = \frac{1}{\left( x^2 + z^2 \right)^{t/2}}$ a $V_1 = \mrm{Im}\, r_1\left( 1,. \right) \subset SL(2,\R)$ už splňuje požadavky. Dále zdeformujeme $V_1$ tak, aby sloupce byly ortonormální vektory:
Dále zdeformujeme $V_1$ tak, aby sloupce byly ortonormální vektory:
+
 
\begin{align*}
 
\begin{align*}
 
r_2\left( t,\begin{pmatrix}
 
r_2\left( t,\begin{pmatrix}
Řádka 185: Řádka 192:
 
\cos\theta & -\sin\theta \\
 
\cos\theta & -\sin\theta \\
 
\sin\theta & \cos\theta
 
\sin\theta & \cos\theta
\end{smallmatrix}\right)\middle|\theta \in  \langle 0,2\pi \rangle \right\}$ souvislá a topologicky eqvivalentní $S^1$. $Sl(2,\R)$ je tedy souvislá, ale není jednoduše souvislá. Podíváme se ještě na $\exp: sl(2,\R) \to Sl(2,\R)$.
+
\end{smallmatrix}\right)\middle|\theta \in  \langle 0,2\pi \rangle \right\}$ souvislá a topologicky eqvivalentní $S^1$. $SL(2,\R)$ je tedy souvislá, ale není jednoduše souvislá.  
 +
 
 +
Podíváme se ještě na $\exp: \mfrk{sl}(2,\R) \to SL(2,\R)$.
 
\begin{align*}
 
\begin{align*}
sl(2,\R) = \left\{A = \begin{pmatrix}
+
\mfrk{sl}(2,\R) = \left\{A = \begin{pmatrix}
 
x & y \\
 
x & y \\
 
z & -x
 
z & -x
\end{pmatrix}\middle| x,y,z \in \R \right\} \\ \Rightarrow A^2 = \begin{pmatrix}
+
\end{pmatrix}\middle| x,y,z \in \R \right\} \Rightarrow A^2 = \begin{pmatrix}
 
x & y \\
 
x & y \\
 
z & -x
 
z & -x
Řádka 196: Řádka 205:
 
x^2 + yz & 0 \\
 
x^2 + yz & 0 \\
 
0 & zy + x^2
 
0 & zy + x^2
\end{pmatrix} = -\det A \cdot \mathbbm{1}
+
\end{pmatrix} = -\det A \cdot \mathbb{1}
 
\end{align*}
 
\end{align*}
 
\begin{align*}
 
\begin{align*}
\e^A = \left\{ \begin{array}{llllll}
+
\e^A = \left\{ \begin{array}{lllllll}
\cos\det A \cdot \mathbbm{1} + \frac{1}{\sqrt{\det A}}\sin\sqrt{\det A}\cdot A &\det A > 0 &  \Rightarrow & \Tr\, e^A = 2\cos \sqrt{\det A} %\in \langle -2,2 \rangle  
+
\cos\det A \cdot \mathbb{1} + \frac{1}{\sqrt{\det A}}\sin\sqrt{\det A}\cdot A & \det A > 0 & &  \Rightarrow & & \Tr\, e^A = 2\cos \sqrt{\det A} \in \langle -2,2 \rangle \\  
\\  
+
\cosh \sqrt{|\det A|}\cdot \mathbb{1} + \frac{1}{\sqrt{|\det A|}} \sinh \sqrt{|\det A|}\cdot A & & \det A < 0 & & \Rightarrow & & \Tr\, e^A = 2\cosh \sqrt{|\det A|} \geq 2 \\
\cosh \sqrt{|\det A|}\cdot \mathbbm{1} + \frac{1}{\sqrt{|\det A|}} \sinh \sqrt{|\det A|} & \det A < 0 & \Rightarrow & \Tr\, e^A = 2\cosh \sqrt{|\det A|} %\leq 2  
+
\mathbb{1}+A & & \det A = 0 & & \Rightarrow & & \Tr\, \e^A = 2  
\\
+
\mathbbm{1}+A & \det A = 0 & \Rightarrow & \Tr\, \e^A = 2  
+
 
\end{array}\right.
 
\end{array}\right.
 
\end{align*}
 
\end{align*}
$\Rightarrow\quad \Tr\,\e^A \leq -2 \forall A \in sl(2,\R)\rimpl$ např. $\left(\begin{smallmatrix}
+
$\Rightarrow\quad \Tr\,\e^A \geq -2,\ \forall A \in \mfrk{sl}(2,\R)\rimpl$ např. $\left(\begin{smallmatrix}
 
-2 & 0 \\
 
-2 & 0 \\
0 & \frac{1}{2}
+
0 & -\frac{1}{2}
\end{smallmatrix}\right) \in G \setminus \exp(\g) \rimpl G$ neusí být celé pokryté exponenciélou, pokud je jen souvislé. Pro $G$ jednoduše souvislé to už platí. Bez důkazu.
+
\end{smallmatrix}\right) \in SL(2,\R) \setminus \exp\big( \mfrk{sl}(2,\R) \big)$.
 +
}
 +
\Dsl{
 +
$G$ nemusí být celé pokryté exponenciélou, pokud je jen souvislé. Pro $G$ jednoduše souvislé to už platí. Bez důkazu.
 +
}
 
\Pzn{
 
\Pzn{
Lze ukázat, že $Sl(n,\R)$ není jednoduše souvislá $\forall n \in \N$.
+
Lze ukázat, že $SL(n,\R)$ není jednoduše souvislá $\forall n \in \N$.
 
}
 
}
 
%\Vet{$G$ souvislá Lieova grupa, $\varphi: 0\in U=U^\circ \subset \g \to \varphi(U)=(\varphi (U))^\circ \subset G$ ($e \in \varphi (U)$) difeomorfismus. Pak libovolný $g \in G$ lze zapsat vepsat ve tvaru konečného součinu $g=g_1g_2 \cdots g_k$, kde $g_j\in \varphi (U)$. (V~případě $\varphi =\exp$ umí Vysouš ukázat, že $k=2$.)}
 
%\Vet{$G$ souvislá Lieova grupa, $\varphi: 0\in U=U^\circ \subset \g \to \varphi(U)=(\varphi (U))^\circ \subset G$ ($e \in \varphi (U)$) difeomorfismus. Pak libovolný $g \in G$ lze zapsat vepsat ve tvaru konečného součinu $g=g_1g_2 \cdots g_k$, kde $g_j\in \varphi (U)$. (V~případě $\varphi =\exp$ umí Vysouš ukázat, že $k=2$.)}
Řádka 219: Řádka 230:
 
}
 
}
 
\begin{proof}
 
\begin{proof}
Mějme $e\in U_0 = U_0^\circ \subset G$. Předpokládame $(.)^{-1}: U_0 \to U_0$ (jinak bereme $\tilde{U}_0 = U_0 \cap U_0^{-1}$, kde $U_0^{-1} = \{ g^{-1}| g \in U_0 \}$). Konstruujeme $U_i = \bigcup_{g \in U_{i-1}} gU_0$, zřejmě $U_i \subset U_i+1$ a protoźe $L_g(U_0) = \left( L_g(U_0)\right)^\circ$, je taky $U_i = U_i^\circ$. Označme $U=\bigcup_{i \in \N_0}U_i$, pak $U = U^\circ$ a pro $V = G \setminus U$ platí $V = \overline{V}$. Chceme ukázat že $g \in V,\ gU_0 = L_g(U_0) = \left(L_g(U_0)\right)^\circ \subset V$.
+
Mějme $e\in U_0 = U_0^\circ \subset G$. Předpokládame $(.)^{-1}: U_0 \to U_0$ (jinak bereme $\tilde{U}_0 = U_0 \cap U_0^{-1}$, kde $U_0^{-1} = \{ g^{-1}| g \in U_0 \}$). Konstruujeme $U_i = \bigcup_{g \in U_{i-1}} gU_0$, zřejmě $U_i \subset U_i+1$ a protože $L_g(U_0) = \left( L_g(U_0)\right)^\circ$, je taky $U_i = U_i^\circ$. Označme $U=\bigcup_{i \in \N_0}U_i$, pak $U = U^\circ$ a pro $V = G \setminus U$ platí $V = \overline{V}$. Chceme ukázat, že $\forall g \in V,\ gU_0 = L_g(U_0) = \left(L_g(U_0)\right)^\circ \subset V$.
 
Sporem: $L_g(U_0) \cap U \neq \emptyset \rimpl \exists u_0 \in U_0,\ gu_0 \in U \rimpl g \in Uu_0^{-1} \subset U$, protože $U_iu_0^{-1} \subset U_iu_0 \subset U_{i+1} \subset U$, spor.$\rimpl V=V^\circ \rimpl U = \overline{U},\ e \in U \rimpl U \neq \emptyset \rimpl U = G$
 
Sporem: $L_g(U_0) \cap U \neq \emptyset \rimpl \exists u_0 \in U_0,\ gu_0 \in U \rimpl g \in Uu_0^{-1} \subset U$, protože $U_iu_0^{-1} \subset U_iu_0 \subset U_{i+1} \subset U$, spor.$\rimpl V=V^\circ \rimpl U = \overline{U},\ e \in U \rimpl U \neq \emptyset \rimpl U = G$
 
\end{proof}
 
\end{proof}
\subsubsection*{Tok levoinvariantního vektorového pole}
+
 
Pro $X \in \g$ je $X|_e \in T_eG$ a $\e^{tX|_e}$ je integrální křivka procházející $e$. Integrální křivka tohoto pole procházející $g$ je $g \e^{t X|_e}$ ($\left.\frac{\dd}{\dd t}\right|_{t=0}g \e^{t X|_e}=L_{g*}\left.\frac{\dd}{\dd t}\right|_{t=0} \e^{t X|_e}=L_{g*}X|_e=X_g$).
+
\subsection{Tok levoinvariantního vektorového pole}
 
\Vet{
 
\Vet{
Tok generovaný levoinvariatním $X$ (tj. $X \in \g =T_eM$) je jednoparametrická grupa pravých translací, tj.
+
Tok generovaný levoinvariatním $X$ (tj. $X \in \g \cong T_eG$) je jednoparametrická grupa pravých translací, tj.
 
\begin{align*}
 
\begin{align*}
 
\Phi^t_X(g)=g\e^{tX} \quad \Leftrightarrow \quad  \Phi^t_X=R_{\e^{tX}} \,.
 
\Phi^t_X(g)=g\e^{tX} \quad \Leftrightarrow \quad  \Phi^t_X=R_{\e^{tX}} \,.
Řádka 231: Řádka 242:
 
}
 
}
 
\begin{proof}
 
\begin{proof}
$X \in \g,\ \dot{\gamma}(t)=X(\gamma(t))$:
+
Pro $X \in \g$ je $X|_e \in T_eG$ a $\e^{tX}$ je integrální křivka procházející $e$. Ukážeme, že integrální křivka tohoto pole procházející $g$ je $g \e^{t X}$:
 +
\begin{align*}
 +
\zuz{ \frac{\dd}{\dd t} }{t=0}g \e^{tX}=L_{g*}\zuz{\frac{\dd}{\dd t}}{t=0} \e^{tX}=L_{g*} \zuz{X}{e} = \zuz{X}{g},
 +
\end{align*}
 +
tj. $\dot{\gamma}(t)=X(\gamma(t))$.
 
\begin{align*}
 
\begin{align*}
 
\gamma(0) = e &\rimpl \gamma(t) = \e^{tX} \\
 
\gamma(0) = e &\rimpl \gamma(t) = \e^{tX} \\
\gamma(0) = g &\rimpl \gamma(t) = g\e^{tX} = L_g\left( \e^{tX} \right) = R_{\e^{tX}}(g) \text{, neboť } \dot{\gamma}(t) = L_{g*}\zuz{\td{}{t}}{t=0}\e^{tX} = L_{g*}(X) = X
+
\gamma(0) = g &\rimpl \gamma(t) = g\e^{tX} = L_g\left( \e^{tX} \right) = R_{\e^{tX}}(g)
 
\end{align*}
 
\end{align*}
$\Rightarrow \quad \Phi_X^t = R_{\e^tX}$
+
$\Rightarrow \quad \Phi_X^t = R_{\e^{tX}}$
 
\end{proof}
 
\end{proof}
 
\Dsl{
 
\Dsl{
Řádka 250: Řádka 265:
 
$M$ dif. varieta, $X,Y \in \Xs (M)$, $\Phi_t^X$, $\Phi_t^Y$ jejich toky, $p\in M$. Potom
 
$M$ dif. varieta, $X,Y \in \Xs (M)$, $\Phi_t^X$, $\Phi_t^Y$ jejich toky, $p\in M$. Potom
 
\begin{align*}
 
\begin{align*}
\left.([X,Y]f)\right|_p=\lim_{t \to 0}\frac{f(\sigma (t))-f(p)}{t^2}\,,
+
([X,Y]f)(p) = \lim_{t \to 0}\frac{f(\sigma (t))-f(p)}{t^2}\,,
 
\end{align*}
 
\end{align*}
$\sigma(t)=(\Phi_{-t}^Y \circ \Phi_{-t}^X \circ \Phi_t^Y \circ \Phi_t^X \ )(p)$, tedy $\sigma(0) = p$.
+
kde $\sigma(t)=(\Phi_{-t}^Y \circ \Phi_{-t}^X \circ \Phi_t^Y \circ \Phi_t^X \ )(p)$, tedy $\sigma(0) = p$.
 
}
 
}
 
\begin{proof}
 
\begin{proof}
 +
Pro jednoduchost zavedeme následující značení:
 +
\begin{figure}[!h]
 +
\centering
 +
\includegraphics[pdf]{liag-1.pdf}
 +
\end{figure}
 
\begin{align*}
 
\begin{align*}
 
f(4) - f(0) = \big( f(4) - f(3) \big) + \big( f(3) - f(2) \big) + \big( f(2) -f(1) \big) + \big( f(1) - f(0) \big)
 
f(4) - f(0) = \big( f(4) - f(3) \big) + \big( f(3) - f(2) \big) + \big( f(2) -f(1) \big) + \big( f(1) - f(0) \big)
Řádka 280: Řádka 300:
 
\end{proof}
 
\end{proof}
 
\Dsl{
 
\Dsl{
$X,Y \in \g \rimpl [X,Y]f(p) = \lim_{t \to 0^+}\frac{1}{t^2}\big(f\left( R_{\e^{-tY}}R_{\e^{-tX}}R_{\e^{tY}}R_{\e^{tX}}(p) \right) - f(p) \big)$
+
$X,Y \in \g \rimpl [X,Y]f(p) = \lim_{t \to 0^+}\frac{1}{t^2}\Big(f\big( R_{\e^{-tY}}R_{\e^{-tX}}R_{\e^{tY}}R_{\e^{tX}}(p) \big) - f(p) \Big)$
 
}  
 
}  
 
\Dsl{
 
\Dsl{
Pro maticové grupy tak platí $[X,Y]|_e=XY-YX$, $\forall X,Y \in \g$.
+
Pro maticové grupy tak platí $\zuz{[X,Y]}{e} = XY-YX,\ \forall X,Y \in \g$.
 
}
 
}
 
\begin{proof}
 
\begin{proof}
$e = \mathbbm{1},\ R_{\e^{-tY}}R_{\e^{-tX}}R_{\e^{tY}}R_{\e^{tX}}(\mathbbm{1}) = \e^{tX}\e^{tY}\e^{-tX}\e^{-tY}$
+
$e = \mathbb{1},\ R_{\e^{-tY}}R_{\e^{-tX}}R_{\e^{tY}}R_{\e^{tX}}(\mathbb{1}) = \e^{tX}\e^{tY}\e^{-tX}\e^{-tY}$
 
\begin{align*}
 
\begin{align*}
[X,Y]f(e) = \lim_{t \to 0^+}\frac{1}{t^2}\Big(f\left( \e^{tX}\e^{tY}\e^{-tX}\e^{-tY} \right) - f(\mathbbm{1}) \Big) = \\
+
[X,Y]f(e) = \lim_{t \to 0^+}\frac{1}{t^2}\Big(f\left( \e^{tX}\e^{tY}\e^{-tX}\e^{-tY} \right) - f(\mathbb{1}) \Big) = \lim_{t \to 0^+}\frac{1}{t}\Big(f\left( \e^{\sqrt{t}X}\e^{\sqrt{t}Y}\e^{-\sqrt{t}X}\e^{-\sqrt{t}Y} \right) - f(\mathbb{1}) \Big)
= \lim_{t \to 0^+}\frac{1}{t}\Big(f\left( \e^{\sqrt{t}X}\e^{\sqrt{t}Y}\e^{-\sqrt{t}X}\e^{-\sqrt{t}Y} \right) - f(\mathbbm{1}) \Big)
+
 
\end{align*}
 
\end{align*}
 
\begin{align*}
 
\begin{align*}
\zuz{\td{}{t}}{0}\left( \e^{\sqrt{t}X}\e^{\sqrt{t}Y}\e^{-\sqrt{t}X}\e^{-\sqrt{t}Y} \right) =  \zuz{\td{}{t}}{0}\left( \left( \mathbbm{1} + \sqrt{t}X \right) + \frac{t}{2}X^2 \right)\times \\
+
\zuz{\td{}{t}}{t=0}\left( \e^{\sqrt{t}X}\e^{\sqrt{t}Y}\e^{-\sqrt{t}X}\e^{-\sqrt{t}Y} \right) =  \zuz{\td{}{t}}{t=0}\left( \left( \mathbb{1} + \sqrt{t}X \right) + \frac{t}{2}X^2 \right)\left( \left( \mathbb{1} + \sqrt{t}Y \right) + \frac{t}{2}Y^2 \right) \times \\
\times\left( \left( \mathbbm{1} + \sqrt{t}Y \right) + \frac{t}{2}Y^2 \right)\left( \left( \mathbbm{1} - \sqrt{t}X \right) + \frac{t}{2}X^2 \right)\left( \left( \mathbbm{1} - \sqrt{t}Y \right) + \frac{t}{2}Y^2 \right) = \\
+
\times \left( \left( \mathbb{1} - \sqrt{t}X \right) + \frac{t}{2}X^2 \right)\left( \left( \mathbb{1} - \sqrt{t}Y \right) + \frac{t}{2}Y^2 \right) = \zuz{\td{}{t}}{t=0}\left( \mathbb{1} + t\left( XY - YX \right) +O(\sqrt{t}^3) \right) = XY - YX
= \zuz{\td{}{t}}{0}\left( \mathbbm{1} + t\left( XY - YX \right) +O(\sqrt{t}^3) \right) = XY - YX
+
 
\end{align*}
 
\end{align*}
 
\begin{align*}
 
\begin{align*}
\Rightarrow \quad [X,Y]f(\mathbbm{1}) = \underbrace{(XY - YX)}_{\text{maticové násobení}}f(1) \rimpl \zuz{[X,Y]}{\mathbbm{1}} = \zuz{X}{\mathbbm{1}}\zuz{Y}{\mathbbm{1}} - \zuz{Y}{\mathbbm{1}}\zuz{X}{\mathbbm{1}}
+
\Rightarrow \quad [X,Y]f(\mathbb{1}) = \underbrace{(XY - YX)}_{\text{maticové násobení}}f(\mathbb{1}) \rimpl \zuz{[X,Y]}{\mathbb{1}} = \zuz{X}{\mathbb{1}}\zuz{Y}{\mathbb{1}} - \zuz{Y}{\mathbb{1}}\zuz{X}{\mathbb{1}}
 
\end{align*}
 
\end{align*}
 
\end{proof}  
 
\end{proof}  
Řádka 304: Řádka 322:
 
}
 
}
 
\Pzn{
 
\Pzn{
Obecně se nejedná o vložení. Uvažujme například $T^2=S^1[\varphi] \times S^1[\vartheta]$, \\$(\varphi_1,\theta_1)(\varphi_2,\theta_2) = (\varphi_1 + \varphi_ 2, \theta_1 +\theta_2),\ e=(0,0)$. Vektorové pole $X=a\partial_\varphi + b \partial_\vartheta \in \mathfrak{t}^2$, $\h =\mathrm{span} \{ X \}$ a $\frac{a}{b}\not \in \mathbb{Q}$, $\dot{\varphi} = a,\ \dot{\theta} = b \rimpl H = \{at, bt | t \in \R\}$. Protože $[X,X]=0$ je $\h$ jednorozměrná podalgebra. Pro $\frac{a}{b} \in \mathbb{Q}$ je křivka na toru uzavřená a jedná se o vložení, pro $\frac{a}{b}\not \in \mathbb{Q}$ ale v~topologii $T^2$ je $\overline{H}=T^2$, tj. nejedná se o vložení.
+
Obecně se nejedná o vložení. Uvažujme například $T^2=S^1[\varphi] \times S^1[\vartheta],\ (\varphi_1,\theta_1)(\varphi_2,\theta_2) = (\varphi_1 + \varphi_ 2, \theta_1 +\theta_2),\ e=(0,0)$. Vektorové pole $X=a\partial_\varphi + b \partial_\vartheta \in \mathfrak{t}^2$, $\h =\mathrm{span} \{ X \}$, $\dot{\varphi} = a,\ \dot{\theta} = b \rimpl H = \{at, bt | t \in \R\}$. Protože $[X,X]=0$ je $\h$ jednorozměrná podalgebra. Pro $\frac{a}{b} \in \mathbb{Q}$ je křivka na toru uzavřená a jedná se o vložení, pro $\frac{a}{b}\not \in \mathbb{Q}$ ale v~topologii $T^2$ je $\overline{H}=T^2$, tj. nejedná se o vložení.
 
}
 
}
 +
 +
\subsection{Vlastnosti homomrfismů (cvičení)}
 +
\begin{lmma}
 +
Nechť $G, \widetilde{G}$ jsou Lieovy grupy, $\phi: G \to \widetilde{G}$ hladký homomorfismus, tj. $\forall g,h \in G,\ \phi(gh) = \phi(g)\phi(h)$, pak platí:
 +
\begin{align*}
 +
\phi_*\circ L_{g*} = L_{\phi(g)*} \circ \phi_*, \qquad \qquad \phi_*X \in \zuz{\widetilde{\g}}{\phi(g)},\ \forall X \in \g.
 +
\end{align*}
 +
\end{lmma}
 +
\begin{proof}
 +
Z definice platí $\forall g,h \in G,\ \forall X \in \g$:
 +
\begin{align*}
 +
\left.\begin{array}{l}
 +
L_{g*}\zuz{X}{h} = \zuz{X}{gh} \\
 +
\phi(L_g h) = L_{\phi(g)} h \quad\Leftrightarrow\quad \phi \circ L_g = L_{\phi(g)} \circ \phi
 +
\end{array} \right\} \rimpl \phi_* \circ L_{g*} = L_{\phi(g)*} \circ \phi_*
 +
\end{align*}
 +
$\Rightarrow\quad \phi_*\zuz{X}{gh} = \phi_* L_{g*} \left( \zuz{X}{h} \right) = L_{\phi(g)*} \phi_* \zuz{X}{h}$. Dále nechť $\phi(g) = \widetilde{g}, \phi(h) = \widetilde{h}$, pak:
 +
\begin{align*}
 +
L_{\widetilde{g}*} \zuz{\left( \phi_* X \right)}{\widetilde{h}} &= L_{\phi(g)*} \zuz{\left( \phi_* X \right)}{\phi(h)} = L_{\phi(g)*} \circ \phi_* \left( \zuz{X}{h} \right) = \phi_* \circ L_{g*} \left( \zuz{X}{h} \right) = \\
 +
&= \phi_* \left( \zuz{X}{gh} \right) = \zuz{\left( \phi_* X \right)}{\phi(gh)} = \zuz{\left( \phi_* X \right)}{\widetilde{g}\widetilde{h}}
 +
\end{align*}
 +
$\Rightarrow\quad L_{\widetilde{g}*}\zuz{ \left( \phi_* X \right) }{\widetilde{h}} = \zuz{ \left( \phi_* X \right) }{\widetilde{g}\widetilde{h}} \rimpl \phi_* X \in \zuz{\widetilde{\g}}{\phi(g)},\ \forall X \in \g$.
 +
\end{proof}
 +
\begin{lmma}
 +
$\phi\left( \e^{tX} \right) = \e^{t\phi_* X}$
 +
\end{lmma}
 +
\begin{proof}
 +
Obě strany rovnice jsou díky $\phi(gh) = \phi(g)\phi(h)$ $1$-parametrické podgrupy$\rimpl$stačí ukázat, že tečné vektory v $e$ jsou stejné.
 +
\begin{align*}
 +
\zuz{\td{}{t}}{t=0} \phi\left( \e^{tX} \right) = \phi_* \zuz{\td{}{t}}{t=0} \e^{tX} = \zuz{\left( \phi_* X \right)}{\widetilde{e}} = \zuz{\td{}{t}}{t=0} \e^{t\phi_* X}
 +
\end{align*}
 +
Díky grupovosti tedy platí:
 +
\begin{align*}
 +
\td{}{t}\phi \left( \e^{tX} \right) &= \zuz{\td{}{s}}{s=0} \phi \left( \e^{(t+s)X} \right) = \zuz{\td{}{s}}{s=0} \phi \left( \e^{tX} \right) \phi \left( \e^{sX} \right) = L_{\phi \left( \e^{tX} \right)*} \zuz{\left( \phi_* X \right) }{\widetilde{e} } = \zuz{\left( \phi_*X \right)}{\phi\left( \e^{tX} \right)} \\
 +
\td{}{t} \e^{t\phi_* X} &= \zuz{ \left( \phi_*X \right) }{\e^{t\phi_* X}}
 +
\end{align*}
 +
$\Rightarrow\quad$obě strany lemmatu jsou řešení stejné ODR se stejnou počáteční podmínkou $\zuz{\phi \left( \e^{tX} \right)}{t=0} = \widetilde{e} =\zuz{\e^{t\phi_* X}}{t=0}$.
 +
\end{proof}
 +
\begin{lmma}
 +
$\left[ \phi_* X, \phi_* Y \right] = \phi_* \big( [X,Y] \big)$
 +
\end{lmma}
 +
\begin{proof}
 +
Mějme $f \in C^\infty(\widetilde{G})$:
 +
\begin{align*}
 +
\left( \phi_* Y \right) \zuz{f}{\phi(g)} = Y\zuz{(f\circ \phi)}{g} = \zuz{\td{}{t}}{t=0} f\left( \phi\left( g\e^{tY} \right) \right) = \zuz{\td{}{t}}{t=0} f\left( \phi(g) \phi\left( \e^{tX} \right) \right) = \zuz{ \td{}{t} }{t=0} \zuz{\left( f \circ R_{\phi\left( \e^{tX} \right)} \right) }{\phi(g)}
 +
\end{align*}
 +
\begin{align*}
 +
\left[ \phi_*X, \phi_*Y \right] \zuz{f}{\phi(p)} &= \zuz{ \td{}{s} }{s=0} \zuz{ \td{}{t} }{t=0} \left[ f \left( \phi(p) \phi \left( \e^{sX} \right) \phi \left( \e^{tY} \right) \right) - f \left( \phi(p) \phi \left( \e^{tY} \right) \phi \left( \e^{sX} \right) \right) \right] = \\
 +
&= \zuz{ \td{}{s}\td{}{t} }{s,t = 0} \left[ f \left( \phi \left( p\e^{sX}\e^{tY} \right) \right) - f \left( \phi \left( p\e^{tY}\e^{sX} \right) \right) \right] = \\
 +
&= \zuz{ \td{}{s}\td{}{t} }{s,t = 0} \left[ (f \circ \phi) \left( p\e^{sX}\e^{tY} \right) - (f \circ \phi) \left( p\e^{tY}\e^{sX} \right) \right] = \\
 +
&= [X,Y] \zuz{(f \circ \phi)}{p} = [X,Y]\zuz{(f \circ \phi)}{p} = \big( \phi_* [X,Y] \big) \zuz{f}{\phi(p)}
 +
\end{align*}
 +
$\Rightarrow\quad \left[ \phi_*X, \phi_* Y \right] = \phi_* \big( [X,Y] \big)$.
 +
\end{proof}

Aktuální verze z 5. 8. 2016, 17:27

PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02LIAG

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02LIAGHazalmat 3. 8. 201620:54
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůHazalmat 7. 7. 201606:04
Header editovatHlavičkový souborHazalmat 10. 7. 201621:12 header.tex
Kapitola0 editovatÚvodHazalmat 3. 8. 201621:12 LIAG_Kapitola0.tex
Kapitola1 editovatDefinice Lieovy grupy a Lieovy algebryHazalmat 5. 8. 201617:02 LIAG_Kapitola1.tex
Kapitola2 editovatVztah mezi Lieovou grupou a její algebrouHazalmat 5. 8. 201617:27 LIAG_Kapitola2.tex
Kapitola3 editovatNástin teorie integrabilních distribucíHazalmat 30. 7. 201614:10 LIAG_Kapitola3.tex
Kapitola4 editovatAkce grupy na varietěHazalmat 17. 7. 201619:23 LIAG_Kapitola4.tex
Kapitola5 editovatReprezentace Lieových grup a algeberHazalmat 4. 8. 201617:21 LIAG_Kapitola5.tex
Kapitola6 editovatSouvislost Lieových grup a algeberHazalmat 4. 8. 201618:51 LIAG_Kapitola6.tex
Kapitola7 editovatLieovy algebryHazalmat 5. 8. 201601:06 LIAG_Kapitola7.tex
Kapitola8 editovatCartanova kritériaHazalmat 5. 8. 201617:29 LIAG_Kapitola8.tex
Kapitola9 editovatKlasifikace pomocí kořenůHazalmat 5. 8. 201617:34 LIAG_Kapitola9.tex
Kapitola10 editovatKořenové diagramy, Cartanova marticeHazalmat 31. 7. 201615:32 LIAG_Kapitola10.tex
Kapitola11 editovatDynkinovy diagramyHazalmat 5. 8. 201617:39 LIAG_Kapitola11.tex
Kapitola12 editovatReálné formy komplexních poloprostých algeberHazalmat 31. 7. 201623:39 LIAG_Kapitola12.tex
Kapitola13 editovatVýznam kompaktních Lieových grupHazalmat 31. 7. 201623:45 LIAG_Kapitola13.tex
Kapitola14 editovatReprezentace poloprostých Lieových algeberHazalmat 1. 8. 201612:45 LIAG_Kapitola14.tex
Kapitola15 editovatSpinorové reprezentaceHazalmat 27. 7. 201620:38 LIAG_Kapitola15.tex
Kapitola16 editovatSymetrie v QMHazalmat 27. 7. 201621:21 LIAG_Kapitola16.tex
Kapitola17 editovatCvičeníHazalmat 6. 8. 201603:42 LIAG_Kapitola17.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:liag-1.pdf liag-1.pdf
Image:su3_1.pdf su3_1.pdf
Image:su3_2.pdf su3_2.pdf
Image:su3_3.pdf su3_3.pdf
Image:su3_4.pdf su3_4.pdf
Image:su3_5.pdf su3_5.pdf
Image:su3_6.pdf su3_6.pdf

Zdrojový kód

%\wikiskriptum{02LIAG}
\section{Vztah mezi Lieovou grupou a její algebrou}
 
\Def{ (Homomorfismus Lieových grup $G$ a $H$)
	\begin{itemize}
		\item \textbf{Homomorfismus $G$ a $H$} je libovolné hladké $\phi :G \to H$, $\phi(g\cdot_G h)=\phi(g) \cdot_H \phi(h)$, $\forall g,h \in G$.
		\item \textbf{Izomorfismus $G$ a $H$} je bijektivní homomorfismus s~hladkou inverzí.
	\end{itemize}
	}
\Def{
	\textbf{Jednoparametrická podgrupa v~$G$} je homomorfismus $\varphi: (\R,+) \to G$.
	}
\Dsl{
	Platí $\varphi(s+t)=\varphi(s)\varphi(t)=\varphi(t)\varphi(s)$, tedy nutně $\varphi (0)=e$.
	}
\Prl{
	$G$ Maticová grupa: 
	\begin{align*}
		\dot{g}(t) = g(t)\cdot\underbrace{\dot{g}(0)}_{konst.} &= L_{g(t)*}\left(\dot{g}(0)\right) \\
		&= \dot{g}(0)\cdot g(t) = R_{g(t)*}\left(\dot{g}(0)\right)		
		\end{align*}
	}
\Pzn{
	Obecně: 
	\begin{align*}
		g(s+t) = g(t)g(s)\equiv L_{g(t)}g(s) \rimpl \underbrace{\dot{g}(t)}_{T_{g(t)}G} = \zuz{\td{}{s}}{0}\left(L_{g(t)}g(s)\right) = L_{g(t)*}\underbrace{\in \dot{g}(0)}_{T_{\e} G}
		\end{align*}
	Označíme-li pro $X\in \g$, $\zuz{X}{e}=\dot{g}(0)$, pak $\dot{g}(t)=L_{g(t)*}(\zuz{X}{e})=\zuz{X}{g(t)}$.
	}
\Dsl{
	Jednoparametrické podgrupy jsou integrální křivky levoinvariantních vektorových polí, tj. elementů Lieovy algebry, vycházející z~$e$.
	}
 
\subsection{Exponenciální zobrazení}
%	Jak jsem zmínili ve větě \ref{ztotozneni g a TeG}, odpovídá prostor levoinvariatních vektorových polí Lieově algebře $T_eG$. Pokud chceme z~daného levoinvariantního pole $X$ získat vektor z~$T_eG$ stačí toto pole vyhodnotit v~$e$, tj. získáme $X|_e \in T_eG$.
	Na základě integrálních křivek můžeme definovat zobrazení $\g \to G$, které danému vektoru $X|_e \in \g$ přiřadí nějaký bod na příslušné integrální křivce levoinvariantního vektorového pole $X$, ke kterému je $X|_e$ tečným vektorem.	
\Def{
	$\exp : \g \to G$ definujeme $\exp (tX) =\varphi (t),\ \exp (X) =\varphi (1)$, kde $\varphi$ je jednoparametrická podgrupa generovaná $X \in \g$ (integrální křivka $X \in \g$).
	}
\Pzn{
	$\exp =:\e$ tedy splňuje $\varphi(t+s)=\e^{(t+s)X}=\varphi (t) \varphi (s) =\e^{tX}\e^{sX}$.
	}
\Prl{
	Exponenciela $\mfrk{af}(1) \to Af(1)$.
	}
	Hledáme integrální křivky vektorového pole z~příkladu \ref{grupa Af(1)}. Pro libovolné levoinvariantní pole jsou rovnice integrálních křivek $\dot{x}(t)=\alpha x(t)$ a $\dot{y}(t)=\beta x(t)$ s~počátečními podmínkami $(x(0),y(0))=(1,0)$, řešením je $(x(t),y(t))=\left( \e^{\alpha t}, \frac{\beta}{\alpha}(\e^{\alpha t}-1) \right)$. Exponencielu získáme dosazením $t=1$, tj. $\e^X=\e^{\alpha x \partial_x + \beta x\partial_y}=(\e^{\alpha}, \frac{\beta}{\alpha}(\e^{\alpha}-1))$ (pro $\alpha=0$ vyjde výsledek stejně jako provedením $\lim_{\alpha \to 0}$).
 
	V~maticovém vyjádření je pole
	$\left( \begin{smallmatrix}
	\alpha & \beta \\ 0 &0
	\end{smallmatrix} \right)$,
	platí
	$\left( \begin{smallmatrix}
	\alpha & \beta \\ 0 &0
	\end{smallmatrix} \right)^2 =
	\left( \begin{smallmatrix}
	\alpha^2 & \alpha \beta \\ 0 &0
	\end{smallmatrix} \right)$, \dots ,
	$\left( \begin{smallmatrix}
	\alpha & \beta \\ 0 &0
	\end{smallmatrix} \right)^k =
	\left( \begin{smallmatrix}
	\alpha^k & \alpha^{k-1} \beta \\ 0 &0
	\end{smallmatrix} \right)$,
	 takže získáme
	 $\exp \left( \begin{smallmatrix}
	 \alpha & \beta \\ 0 &0
	 \end{smallmatrix} \right)=
	 \sum_{n=0}^{+\infty} \frac{1}{n!}\left( \begin{smallmatrix}
	\alpha & \beta \\ 0 &0
	\end{smallmatrix} \right)^n=
	 \left( \begin{smallmatrix}
	 \sum_{n=0}^{+\infty}\frac{\alpha^n}{n!}, & \frac{\beta}{\alpha}\sum_{n=1}^{+\infty}\frac{\alpha^n}{n!} \\ 0, &1
	\end{smallmatrix} \right)=
	\left( \begin{smallmatrix}
	 \e^\alpha, & \frac{\beta}{\alpha}(\e^\alpha -1) \\ 0, &1
	 \end{smallmatrix} \right)$.
\Prl{
	Exponenciela maticových grup $G$.
	}
	Hledáme integrální křivku $\gamma (t)$ levoinvariantního vektorového pole, určenou $X \in \g$. Jak toto pole vypadá víme z~příkladu \ref{Maticove grupy} (značení převezmeme z~tohoto příkladu, tj. $X^i_j(e)=\alpha^i_j$). Máme tak pro složky pole $X^i_j(\gamma (t))=\gamma^i_k(t)X^k_j(e)$. Rovnice pro integrální křivky tohoto pole je
		\begin{align}
		\dot{\gamma}^i_j(t)=\gamma^i_k(t)X^k_j(e), \quad \gamma^i_j(0)=\delta^i_j \,,
		&& \Leftrightarrow &&
		\dot{\gamma}(t)= \gamma (t) X(e), \quad \gamma (0)=\mathbb{1} \,.
		\end{align}
Z~maticového zápisu vidíme, že řešením je maticová exponenciela $\gamma(t)=\e^{t X(e)}$, výsledkem je $\e^{X}=\gamma (1)=\e^{X(e)}$. 
\Vet{
	Pro libovolnou čtvercovou matici $A$ platí: $\in \gl(n,\C)$, potom $\det \e^A=\e^{\Tr A}$.
	}
\begin{proof}
	Předpokládame, že $\exists B$, tak, že $D=BAB^{-1}$ diagonální (diagonalizovatelné matice jsou husté v množine všech matic a obě strany rovnice jsou spojité$\rimpl$platí obecně).
	\begin{align*}
		\Tr D = \Tr BAB^{-1} = \Tr AB^{-1}B = \Tr A
		\end{align*}
	Platí $\e^{BAB^{-1}} = B\e^AB^{-1}$ z definice pomocí řady, proto $\det\,\e^{D} = \det\,B\det\,B^{-1}\det\,\e^A = \det\,\e^{A}$, a protože $D = \mrm{diag}(\lambda_1,\dots,\lambda_n) \rimpl \e^D = \mrm{diag}(\e^{\lambda_1},\dots,\e^{\lambda_n})$, tedy 
	\begin{align*}
		\det\,\e^D =\prod_{k=1}^{n}\e^{\lambda_k} = \e^{\sum_k \lambda_k} = \exp(\Tr D).
		\end{align*}
	\end{proof}	
\Vet{
	Buď $G$ Lieova grupa, pak $\exp: \g \to G:X\to \e^{X}$ je lokální difeomorfismus okolí $0 \in\g$ na okolí $e\in G$. (Toto zobrazení není obecně surjektivní ani injektivní na celé $G$).
	}
\begin{proof}
	$\g$ jako vektorový prostor lze chápat jako varietu, $T_0\g\cong\g \rimpl \exp$ je hladké zobrazení variet. $\left.\exp_*\right|_0:T_0\g\equiv\g \to \g\equiv T_{e} G, \exp (tX)$ je integrálí křivka procházející $e$, s tečným vektorem $X \rimpl \zuz{\exp_*}{0} = \text{identita}\rimpl$podle věty o inverzní funkci je $\exp$ lokální difeomorfismus.
	Detailně: $\exp:X \to \e^X$
	\begin{align*}
		\exp_*(\left.X\right|_0)f = \lim_{t \to 0}\frac{f(\e^{tX+0})-f(\e^0)}{t} = \lim_{t \to 0}\frac{f(\e^{tX})-f(e)}{t} \overset{\mrm{def.}}{=} \left.Xf\right|_e
		\end{align*}
	$\Rightarrow\quad \exp_*(\left.X\right|_0) = \left.\exp_*(X)\right|_e = \left.X\right|_e$.
	\end{proof}	
\Pzn{
	Pro matice platí: $\exp_*(X)=\left.\td{}{t}(\e^{tX})\right|_{t=0} = \left.\td{}{t}\left(1+tX+O(t^2)\right)\right|_{t=0} = X$.
	}
\Pzn{
	Je zřejmé, že $\exp$ nemůže být surjektivní pro grupy s~více komponentami souvislosti (nelze spojit křivkou body z~různých komponent). $\exp$ není obecně surjektivní ani pro souvislé $G$, pouze v~případě, že je $G$ kompaktní.
	}
 
\subsection{Vyšetřování souvislosti variet}
\Def{
	Buďte $V \subset M$ dif. variety ($V$ podvarieta $M$). $V$ je \textbf{deformační retrakt} $M$ právě tehdy, když $\exists$ $r: \langle 0,1 \rangle \times M \to M$ spojité, takové že
	\begin{itemize}
		\item $\forall m \in M$, $r(0,m)=m$,
		\item $\forall v \in V$, $\forall t \in \langle 0, 1\rangle$: $r(t,v)=v$,
		\item $\forall m \in M$, $r(1,m) \in V$.
	\end{itemize}
	}	
\Def{
	Souvislá varieta $M$ je jednoduše souvislá právě tehdy, když platí:
	\begin{itemize}
		\item $\forall \gamma: \langle 0,1 \rangle \to M$, spojité, $\gamma(0) = \gamma(1)$
		\item $\exists \phi: \langle 0,1 \rangle \times \langle 0,1 \rangle \to M$, spojité takové, že $\forall t \in \langle 0,1 \rangle,\ \phi(0,t)=\gamma(t),\ \phi(1,t)=\gamma(0)$
	\end{itemize}
	}
\Vet{
	$V$ je deformační retrakt $M$, pak
	\begin{itemize}
		\item $M$ souvislá $\Leftrightarrow$ $V$ souvislá,
		\item $M$ jednoduše souvislá $\Leftrightarrow$ $V$ jednoduše souvislá.
	\end{itemize}
	}
\begin{proof}
	Souvislost zřejmá. Jednoduchá souvislost plyne z toho, že pro křivky platí $\gamma_V(t) = r(1,\gamma_M(t))$. 
	\end{proof}
\Pzn{
	Souhrnné pojednání o souvislosti námi používaných grup je v~\emph{The American Mathematical Monthly}
Vol. 74, No. 8 (Oct., 1967), pp. 964-966.\footnote{
		\texttt{http://www.jstor.org/stable/2315278}
	}
	}
\Prl{
	$SL(2,\R) = \left(\begin{smallmatrix}
	x & y \\
	z & w 
	\end{smallmatrix}\right),\ xw-zy=1$ není jednoduše souvislá.
 
	Lze ji zdeformovat na $SO(2)$: Nejprve definujeme $V_1$ tak, aby 
	\begin{align*}\forall \begin{pmatrix}
	\tilde{x} & \tilde{y} \\
	\tilde{z} & \tilde{w}
	\end{pmatrix} \in V_1,\ \tilde{x}^2+\tilde{z}^2=1,\ \tilde{x}\tilde{w}-\tilde{z}\tilde{y}=1.
	\end{align*}
	Položíme $r_1\left( t,\left(\begin{smallmatrix}
			x & y \\
			z & w
			\end{smallmatrix}\right) \right) = \left(\begin{smallmatrix}
			\alpha(t)x & \frac{1}{\alpha(t)}y \\
			\alpha(t)z & \frac{1}{\alpha(t)}w		
			\end{smallmatrix}\right)$ , kde $\alpha(0) = 1$ a pro $\alpha(1)$ platí $\alpha^2(1) \left( x^2+z^2 \right) = 1$. Zvolime proto $\alpha(t) = \frac{1}{\left( x^2 + z^2 \right)^{t/2}}$ a $V_1 = \mrm{Im}\, r_1\left( 1,. \right) \subset SL(2,\R)$ už splňuje požadavky. Dále zdeformujeme $V_1$ tak, aby sloupce byly ortonormální vektory:
		\begin{align*}
			r_2\left( t,\begin{pmatrix}
			x & y \\
			z & w
			\end{pmatrix} \right) = \begin{pmatrix}
			x & y \\
			z & w
			\end{pmatrix} - t\left( xy + zw \right) \begin{pmatrix}
			0 & x \\
			0 & z
			\end{pmatrix}	\\
			V_2 = \mrm{Im}\, r_2 (1,.) = \left\{ \begin{pmatrix}
			x & y \\
			z & w
			\end{pmatrix} \in Sl(2,\R) \middle| x^2 + z^2 = 1,\ xy + zw = 0 \right\}
			\end{align*}
		\begin{align*}	
			xy + zw = 0 \rimpl x = -\frac{zw}{y} \quad \Rightarrow\quad \begin{array}{lllll} xw - zy &= -\frac{zw^2}{y}-zy = 1 &\Rightarrow w^2 + y^2 &= -\frac{y}{z}\\
			x^2 + z^2 &= \frac{z^2w^2}{y^2}+z^2 = 1 &\Rightarrow w^2 + y^2 &= \frac{y^2}{z^2} 
				\end{array}			
			\end{align*}
		$\Rightarrow\quad w^2 +y^2 = 1\rimpl V_2 = SO(2)=\left\{ \left(\begin{smallmatrix}
			\cos\theta & -\sin\theta \\
			\sin\theta & \cos\theta
			\end{smallmatrix}\right)\middle|\theta \in  \langle 0,2\pi \rangle \right\}$ souvislá a topologicky eqvivalentní $S^1$. $SL(2,\R)$ je tedy souvislá, ale není jednoduše souvislá. 
 
		Podíváme se ještě na $\exp: \mfrk{sl}(2,\R) \to SL(2,\R)$.
		\begin{align*}
			\mfrk{sl}(2,\R) = \left\{A = \begin{pmatrix}
			x & y \\
			z & -x
			\end{pmatrix}\middle| x,y,z \in \R \right\} \Rightarrow A^2 = \begin{pmatrix}
			x & y \\
			z & -x
			\end{pmatrix}^2 = \begin{pmatrix}
			x^2 + yz & 0 \\
			0 & zy + x^2
			\end{pmatrix} = -\det A \cdot \mathbb{1}
			\end{align*}
		\begin{align*}
			\e^A = \left\{ \begin{array}{lllllll}
				\cos\det A \cdot \mathbb{1} + \frac{1}{\sqrt{\det A}}\sin\sqrt{\det A}\cdot A &  & \det A > 0 & &  \Rightarrow & & \Tr\, e^A = 2\cos \sqrt{\det A} \in \langle -2,2 \rangle \\ 
				\cosh \sqrt{|\det A|}\cdot \mathbb{1} + \frac{1}{\sqrt{|\det A|}} \sinh \sqrt{|\det A|}\cdot A & & \det A < 0 & & \Rightarrow & & \Tr\, e^A = 2\cosh \sqrt{|\det A|} \geq 2 \\
				\mathbb{1}+A & & \det A = 0 & & \Rightarrow & & \Tr\, \e^A = 2 
				\end{array}\right.
			\end{align*}
			$\Rightarrow\quad \Tr\,\e^A \geq -2,\ \forall A \in \mfrk{sl}(2,\R)\rimpl$ např. $\left(\begin{smallmatrix}
				-2 & 0 \\
				0 & -\frac{1}{2}
				\end{smallmatrix}\right) \in SL(2,\R) \setminus \exp\big( \mfrk{sl}(2,\R) \big)$.
	}
\Dsl{
	$G$ nemusí být celé pokryté exponenciélou, pokud je jen souvislé. Pro $G$ jednoduše souvislé to už platí. Bez důkazu.		
	}
\Pzn{
	Lze ukázat, že $SL(n,\R)$ není jednoduše souvislá $\forall n \in \N$.
	}			
%\Vet{$G$ souvislá Lieova grupa, $\varphi: 0\in U=U^\circ \subset \g \to \varphi(U)=(\varphi (U))^\circ \subset G$ ($e \in \varphi (U)$) difeomorfismus. Pak libovolný $g \in G$ lze zapsat vepsat ve tvaru konečného součinu $g=g_1g_2 \cdots g_k$, kde $g_j\in \varphi (U)$. (V~případě $\varphi =\exp$ umí Vysouš ukázat, že $k=2$.)}
\Vet{
	Buď $G$ souvislá Lieova grupa, $g \in G$. Pak existuje $n \in \N,\ X_1,\dots,X_n \in \g$ takové, že $g=\e^{X_1}\e^{X_2}\dots\e^{X_n}$.
	}
\begin{proof}
	Mějme $e\in U_0 = U_0^\circ \subset G$. Předpokládame $(.)^{-1}: U_0 \to U_0$ (jinak bereme $\tilde{U}_0 = U_0 \cap U_0^{-1}$, kde $U_0^{-1} = \{ g^{-1}| g \in U_0 \}$). Konstruujeme $U_i = \bigcup_{g \in U_{i-1}} gU_0$, zřejmě $U_i \subset U_i+1$ a protože $L_g(U_0) = \left( L_g(U_0)\right)^\circ$, je taky $U_i = U_i^\circ$. Označme $U=\bigcup_{i \in \N_0}U_i$, pak $U = U^\circ$ a pro $V = G \setminus U$ platí $V = \overline{V}$. Chceme ukázat, že $\forall g \in V,\ gU_0 = L_g(U_0) = \left(L_g(U_0)\right)^\circ \subset V$.
	Sporem: $L_g(U_0) \cap U \neq \emptyset \rimpl \exists u_0 \in U_0,\ gu_0 \in U \rimpl g \in Uu_0^{-1} \subset U$, protože $U_iu_0^{-1} \subset U_iu_0 \subset U_{i+1} \subset U$, spor.$\rimpl V=V^\circ \rimpl U = \overline{U},\ e \in U \rimpl U \neq \emptyset \rimpl U = G$
	\end{proof}
 
\subsection{Tok levoinvariantního vektorového pole}
\Vet{
	Tok generovaný levoinvariatním $X$ (tj. $X \in \g \cong T_eG$) je jednoparametrická grupa pravých translací, tj.
	\begin{align*}
	\Phi^t_X(g)=g\e^{tX} \quad \Leftrightarrow \quad  \Phi^t_X=R_{\e^{tX}} \,.
	\end{align*}
	}
\begin{proof}
	Pro $X \in \g$ je $X|_e \in T_eG$ a $\e^{tX}$ je integrální křivka procházející $e$. Ukážeme, že integrální křivka tohoto pole procházející $g$ je $g \e^{t X}$:
	\begin{align*}
		\zuz{ \frac{\dd}{\dd t} }{t=0}g \e^{tX}=L_{g*}\zuz{\frac{\dd}{\dd t}}{t=0} \e^{tX}=L_{g*} \zuz{X}{e} = \zuz{X}{g},
		\end{align*}
	tj. $\dot{\gamma}(t)=X(\gamma(t))$.
	\begin{align*}
		\gamma(0) = e &\rimpl \gamma(t) = \e^{tX}		\\
		\gamma(0) = g &\rimpl \gamma(t) = g\e^{tX} = L_g\left( \e^{tX} \right) = R_{\e^{tX}}(g)
		\end{align*}
		$\Rightarrow \quad \Phi_X^t = R_{\e^{tX}}$
	\end{proof}	
\Dsl{
	$X \in \g$, $Y \in \Xs (G)$, $Y \circ R^*_g=R^*_g \circ Y$, potom $[X,Y]=0$. (To znamená, že levoinvariantní a pravoinvariantní pole komutují.)
	}
\begin{proof}
	\begin{align*}
		[ X,Y ] f = X(Yf) - Y(Xf) = \lim_{t \to 0^+}\frac{1}{t}\big( (Yf) \circ R_{\e^{tX}} - Yf - Y(f \circ R_{\e^{tX}}) + Yf \big) = \\
		= \lim_{t \to 0^+}\frac{1}{t}\big( (R_{\e^{tX}}^* \circ Y)f - (Y \circ R_{\e^{tX}}^*)f \big) = 0
		\end{align*}
	\end{proof} 
\Vet{
	$M$ dif. varieta, $X,Y \in \Xs (M)$, $\Phi_t^X$, $\Phi_t^Y$ jejich toky, $p\in M$. Potom
	\begin{align*}
	([X,Y]f)(p) = \lim_{t \to 0}\frac{f(\sigma (t))-f(p)}{t^2}\,,
	\end{align*}
	kde $\sigma(t)=(\Phi_{-t}^Y \circ \Phi_{-t}^X \circ \Phi_t^Y \circ \Phi_t^X \ )(p)$, tedy $\sigma(0) = p$.
	}
\begin{proof}
	Pro jednoduchost zavedeme následující značení:
	\begin{figure}[!h]
		\centering
		\includegraphics[pdf]{liag-1.pdf}
		\end{figure} 
	\begin{align*}
		f(4) - f(0) = \big( f(4) - f(3) \big) + \big( f(3) - f(2) \big) + \big( f(2) -f(1) \big) + \big( f(1) - f(0) \big)
		\end{align*}
	\begin{align*}
		f(1) - f(0) &= tXf(0) + \frac{t^2}{2}X(Xf)(0) + O(t^3) \\
		f(2) - f(1) &= tYf(1) + \frac{t^2}{2}Y(Yf)(1) + O(t^3) \\
		f(3) - f(2) &= -tXf(2) + \frac{t^2}{2}X(Xf)(2) + O(t^3) \\
		f(4) - f(3) &= -tYf(3) + \frac{t^2}{2}Y(Yf)(3) + O(t^3)
		\end{align*}
	\begin{align*}
		Xf(0) - Xf(2) &= Xf(0) - Xf(1) + Xf(1) - Xf(2) = -tX(Xf)(0) - tY(Xf)(1) + O(t^2) =\\
		&= -tX(Xf)(0) - tY(Xf)(0) +O(t^2) \\
		Yf(1) - Yf(3) &= Yf(1) - Yf(2) +Yf(2) - Yf(3) = -tY(Yf)(1) + tX(Yf)(2) + O(t^2) = \\
		&= -tY(Yf)(0) + tX(Yf)(0) + O(t^2)
		\end{align*}
	\begin{align*}
		f(4) - f(0) = -t^2X(Xf)(0) - t^2Y(Xf)(0)  - t^2Y(Yf)(0) + t^2 X(Yf)(0) +\\
		+ \frac{t^2}{2}X(Xf)(0) + \frac{t^2}{2}Y(Yf)(0) + \frac{t^2}{2}X(Xf)(0) + \frac{t^2}{2}Y(Yf)(0) + O(t^3)= \\
		= t^2\big( X(Yf) - Y(Xf) \big)(0) + O(t^3)
		\end{align*}	
	\begin{align*}
		\Rightarrow \quad \lim_{t \to 0^+}\frac{1}{t^2}\big( f(\sigma(t)) - f(p) \big) = \left[ X(Yf) - Y(Xf) \right](p)
		\end{align*}	
	\end{proof}
\Dsl{
	$X,Y \in \g \rimpl [X,Y]f(p) = \lim_{t \to 0^+}\frac{1}{t^2}\Big(f\big( R_{\e^{-tY}}R_{\e^{-tX}}R_{\e^{tY}}R_{\e^{tX}}(p) \big) - f(p) \Big)$
	} 
\Dsl{
	Pro maticové grupy tak platí $\zuz{[X,Y]}{e} = XY-YX,\ \forall X,Y \in \g$.
	}
\begin{proof}
	$e = \mathbb{1},\ R_{\e^{-tY}}R_{\e^{-tX}}R_{\e^{tY}}R_{\e^{tX}}(\mathbb{1}) = \e^{tX}\e^{tY}\e^{-tX}\e^{-tY}$
	\begin{align*}
		[X,Y]f(e) = \lim_{t \to 0^+}\frac{1}{t^2}\Big(f\left( \e^{tX}\e^{tY}\e^{-tX}\e^{-tY} \right) - f(\mathbb{1}) \Big) = \lim_{t \to 0^+}\frac{1}{t}\Big(f\left( \e^{\sqrt{t}X}\e^{\sqrt{t}Y}\e^{-\sqrt{t}X}\e^{-\sqrt{t}Y} \right) - f(\mathbb{1}) \Big)
		\end{align*}
	\begin{align*}
		\zuz{\td{}{t}}{t=0}\left( \e^{\sqrt{t}X}\e^{\sqrt{t}Y}\e^{-\sqrt{t}X}\e^{-\sqrt{t}Y} \right) =  \zuz{\td{}{t}}{t=0}\left( \left( \mathbb{1} + \sqrt{t}X \right) + \frac{t}{2}X^2 \right)\left( \left( \mathbb{1} + \sqrt{t}Y \right) + \frac{t}{2}Y^2 \right) \times \\
		\times \left( \left( \mathbb{1} - \sqrt{t}X \right) + \frac{t}{2}X^2 \right)\left( \left( \mathbb{1} - \sqrt{t}Y \right) + \frac{t}{2}Y^2 \right) = \zuz{\td{}{t}}{t=0}\left( \mathbb{1} + t\left( XY - YX \right) +O(\sqrt{t}^3) \right) = XY - YX
		\end{align*}
	\begin{align*}
		\Rightarrow \quad [X,Y]f(\mathbb{1}) = \underbrace{(XY - YX)}_{\text{maticové násobení}}f(\mathbb{1}) \rimpl \zuz{[X,Y]}{\mathbb{1}} = \zuz{X}{\mathbb{1}}\zuz{Y}{\mathbb{1}} - \zuz{Y}{\mathbb{1}}\zuz{X}{\mathbb{1}}
		\end{align*}		
	\end{proof} 
\Pzn{ \label{Veta}
	$G$ Lieova grupa, $\g$ Lieova algebra, $\h$ podalgebra $\g$. Potom existuje vnořená podvarieta $H \subset G$, taková, že $H$ je podgrupa $G$ a její Lieova algebra je přirozeně izomorfní $\h$.
	}
\Pzn{
	Obecně se nejedná o vložení. Uvažujme například $T^2=S^1[\varphi] \times S^1[\vartheta],\ (\varphi_1,\theta_1)(\varphi_2,\theta_2) = (\varphi_1 + \varphi_ 2, \theta_1 +\theta_2),\ e=(0,0)$. Vektorové pole $X=a\partial_\varphi + b \partial_\vartheta \in \mathfrak{t}^2$, $\h =\mathrm{span} \{ X \}$, $\dot{\varphi} = a,\ \dot{\theta} = b \rimpl H = \{at, bt | t \in \R\}$. Protože $[X,X]=0$ je $\h$ jednorozměrná podalgebra. Pro $\frac{a}{b} \in \mathbb{Q}$ je křivka na toru uzavřená a jedná se o vložení, pro $\frac{a}{b}\not \in \mathbb{Q}$ ale v~topologii $T^2$ je $\overline{H}=T^2$, tj. nejedná se o vložení.
	}
 
\subsection{Vlastnosti homomrfismů (cvičení)}
\begin{lmma}
	Nechť $G, \widetilde{G}$ jsou Lieovy grupy, $\phi: G \to \widetilde{G}$ hladký homomorfismus, tj. $\forall g,h \in G,\ \phi(gh) = \phi(g)\phi(h)$, pak platí:
	\begin{align*}
		\phi_*\circ L_{g*} = L_{\phi(g)*} \circ \phi_*, \qquad \qquad \phi_*X \in \zuz{\widetilde{\g}}{\phi(g)},\ \forall X \in \g.
		\end{align*}
	\end{lmma}
\begin{proof}
	Z definice platí $\forall g,h \in G,\ \forall X \in \g$:
	\begin{align*}
		\left.\begin{array}{l}
			L_{g*}\zuz{X}{h} = \zuz{X}{gh} \\
			\phi(L_g h) = L_{\phi(g)} h \quad\Leftrightarrow\quad \phi \circ L_g = L_{\phi(g)} \circ \phi 
			\end{array} \right\} \rimpl \phi_* \circ L_{g*} = L_{\phi(g)*} \circ \phi_*
		\end{align*}
	$\Rightarrow\quad \phi_*\zuz{X}{gh} = \phi_* L_{g*} \left( \zuz{X}{h} \right) = L_{\phi(g)*} \phi_* \zuz{X}{h}$. Dále nechť $\phi(g) = \widetilde{g}, \phi(h) = \widetilde{h}$, pak:
	\begin{align*}
		L_{\widetilde{g}*} \zuz{\left( \phi_* X \right)}{\widetilde{h}} &= L_{\phi(g)*} \zuz{\left( \phi_* X \right)}{\phi(h)} = L_{\phi(g)*} \circ \phi_* \left( \zuz{X}{h} \right) = \phi_* \circ L_{g*} \left( \zuz{X}{h} \right) = \\
		&= \phi_* \left( \zuz{X}{gh} \right) = \zuz{\left( \phi_* X \right)}{\phi(gh)} = \zuz{\left( \phi_* X \right)}{\widetilde{g}\widetilde{h}}
		\end{align*} 
	$\Rightarrow\quad L_{\widetilde{g}*}\zuz{ \left( \phi_* X \right) }{\widetilde{h}} = \zuz{ \left( \phi_* X \right) }{\widetilde{g}\widetilde{h}} \rimpl \phi_* X \in \zuz{\widetilde{\g}}{\phi(g)},\ \forall X \in \g$.
	\end{proof}
\begin{lmma}
	$\phi\left( \e^{tX} \right) = \e^{t\phi_* X}$
	\end{lmma}
\begin{proof}
	Obě strany rovnice jsou díky $\phi(gh) = \phi(g)\phi(h)$ $1$-parametrické podgrupy$\rimpl$stačí ukázat, že tečné vektory v $e$ jsou stejné.
	\begin{align*}
		\zuz{\td{}{t}}{t=0} \phi\left( \e^{tX} \right) = \phi_* \zuz{\td{}{t}}{t=0} \e^{tX} = \zuz{\left( \phi_* X \right)}{\widetilde{e}} = \zuz{\td{}{t}}{t=0} \e^{t\phi_* X}
		\end{align*} 
	Díky grupovosti tedy platí:
	\begin{align*}
		\td{}{t}\phi \left( \e^{tX} \right) &= \zuz{\td{}{s}}{s=0} \phi \left( \e^{(t+s)X} \right) = \zuz{\td{}{s}}{s=0} \phi \left( \e^{tX} \right) \phi \left( \e^{sX} \right) = L_{\phi \left( \e^{tX} \right)*} \zuz{\left( \phi_* X \right) }{\widetilde{e} } = \zuz{\left( \phi_*X \right)}{\phi\left( \e^{tX} \right)} \\
	\td{}{t} \e^{t\phi_* X} &= \zuz{ \left( \phi_*X \right) }{\e^{t\phi_* X}}
		\end{align*}
	$\Rightarrow\quad$obě strany lemmatu jsou řešení stejné ODR se stejnou počáteční podmínkou $\zuz{\phi \left( \e^{tX} \right)}{t=0} = \widetilde{e} =\zuz{\e^{t\phi_* X}}{t=0}$. 
	\end{proof}
\begin{lmma}
	$\left[ \phi_* X, \phi_* Y \right] = \phi_* \big( [X,Y] \big)$
	\end{lmma}
\begin{proof}
	Mějme $f \in C^\infty(\widetilde{G})$:
	\begin{align*}
		\left( \phi_* Y \right) \zuz{f}{\phi(g)} = Y\zuz{(f\circ \phi)}{g} = \zuz{\td{}{t}}{t=0} f\left( \phi\left( g\e^{tY} \right) \right) = \zuz{\td{}{t}}{t=0} f\left( \phi(g) \phi\left( \e^{tX} \right) \right) = \zuz{ \td{}{t} }{t=0} \zuz{\left( f \circ R_{\phi\left( \e^{tX} \right)} \right) }{\phi(g)}
		\end{align*}
	\begin{align*}
		\left[ \phi_*X, \phi_*Y \right] \zuz{f}{\phi(p)} &= \zuz{ \td{}{s} }{s=0} \zuz{ \td{}{t} }{t=0} \left[ f \left( \phi(p) \phi \left( \e^{sX} \right) \phi \left( \e^{tY} \right) \right) - f \left( \phi(p) \phi \left( \e^{tY} \right) \phi \left( \e^{sX} \right) \right) \right] = \\
		&= \zuz{ \td{}{s}\td{}{t} }{s,t = 0} \left[ f \left( \phi \left( p\e^{sX}\e^{tY} \right) \right) - f \left( \phi \left( p\e^{tY}\e^{sX} \right) \right) \right] = \\
		&= \zuz{ \td{}{s}\td{}{t} }{s,t = 0} \left[ (f \circ \phi) \left( p\e^{sX}\e^{tY} \right) - (f \circ \phi) \left( p\e^{tY}\e^{sX} \right) \right] = \\
		&= [X,Y] \zuz{(f \circ \phi)}{p} = [X,Y]\zuz{(f \circ \phi)}{p} = \big( \phi_* [X,Y] \big) \zuz{f}{\phi(p)}
		\end{align*}
	$\Rightarrow\quad \left[ \phi_*X, \phi_* Y \right] = \phi_* \big( [X,Y] \big)$.
	\end{proof}