02TSFsbirka:Kapitola6

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02TSFsbirka

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02TSFsbirkaSteffy 9. 2. 201115:06
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201513:48
Header editovatHlavičkový souborSteffy 12. 2. 201212:21 header.tex
Kapitola1 editovatZáklady teorie pravděpodobnosti a matematické statistikyHoskoant 22. 2. 201716:57 kapitola1.tex
Kapitola2 editovatNejpravděpodobnější rozděleníSteffy 12. 2. 201211:58 kapitola2.tex
Kapitola3 editovatTermodynamické potenciály a identitySteffy 12. 2. 201211:59 kapitola3.tex
Kapitola4 editovatIdeální a neideální plynyKubuondr 10. 4. 201721:25 kapitola4.tex
Kapitola5 editovatStatistické soubory - Hamiltonovské systémyHoskoant 4. 6. 201310:07 kapitola5.tex
Kapitola6 editovatFluktuaceSteffy 12. 2. 201212:01 kapitola6.tex
Kapitola7 editovatStatistické soubory - diskrétní hladinySteffy 11. 2. 201315:05 kapitola7.tex
Kapitola8 editovatPřesné statistikyKubuondr 28. 4. 201708:40 kapitola8.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:2part_U.pdf 2part_U.pdf
Image:binomial.pdf binomial.pdf
Image:blackbody2.pdf blackbody2.pdf
Image:gauss2.pdf gauss2.pdf
Image:maxwell.pdf maxwell.pdf
Image:poisson.pdf poisson.pdf
Image:spin_C.pdf spin_C.pdf
Image:spin_M.pdf spin_M.pdf
Image:spin_S.pdf spin_S.pdf

Zdrojový kód

%\wikiskriptum{02TSFsbirka}
\chapter{Fluktuace}
 
\bc
Dokažte, že v kanonickém souboru platí vztah
$$
\left(\Delta U\right)^2 = kT^2 C.
$$
\ec
 
\bc
V rámci izotermicko-izobarického souboru dokažte platnost vztahu
$$
\left(\Delta U\Delta V\right) = kT\left[T\left(\frac{\partial V}{\partial T}\right)_P + P\left(\frac{\partial V}{\partial P}\right)_T\right].
$$
\ec
 
\bc
Dokažte, že pro fluktuace počtu částic v grandkanonickém souboru platí vztah
$$
\left(\Delta N\right)^2 = \frac{NkT}{V}\left(\frac{\partial N}{\partial P}\right)_{T,V}.
$$
Použijte Gibbs-Duhemův vztah.
\ec
 
\bc
Dokažte, že pro relativní fluktuace vnitřní energie souboru $N$ klasických jednorozměrných harmonických oscilátorů, které jsou v tepelné rovnováze s rezervoárem o teplotě $T$, platí vztah
$$
\frac{\Delta U}{U} = \frac{1}{\sqrt{N}}.
$$
\ec