02TSFA:Kapitola7

Z WikiSkripta FJFI ČVUT v Praze
Přejít na: navigace, hledání
PDF [ znovu generovat, výstup z překladu ] Kompletní WikiSkriptum včetně všech podkapitol.
PDF Této kapitoly [ znovu generovat, výstup z překladu ] Přeložení pouze této kaptioly.
ZIPKompletní zdrojový kód včetně obrázků.

Součásti dokumentu 02TSFA

součástakcepopisposlední editacesoubor
Hlavní dokument editovatHlavní stránka dokumentu 02TSFAAdmin 1. 8. 201011:52
Řídící stránka editovatDefiniční stránka dokumentu a vložených obrázkůAdmin 7. 9. 201514:48
Header editovatHlavičkový souborKarel.brinda 27. 1. 201121:47 header.tex
Kapitola1 editovatMatematický aparátTomas 7. 9. 201013:10 kapitola1.tex
Kapitola2 editovatStatistický popis složitých soustavKrasejak 27. 6. 201413:56 kapitola2.tex
Kapitola3 editovatStatistický soubor a rozdělovací funkceKrasejak 27. 6. 201414:15 kapitola3.tex
Kapitola4 editovatNejpravděpodobnější rozděleníKrasejak 29. 3. 201403:23 kapitola4.tex
Kapitola5 editovatPartiční funkce systému a jeho podsystémůKrasejak 29. 3. 201404:02 kapitola5.tex
Kapitola6 editovatMikrokanonický souborKubuondr 18. 3. 201710:50 kapitola6.tex
Kapitola7 editovatKanonický souborMaresj23 5. 1. 201412:23 kapitola7.tex
Kapitola8 editovatGrandkanonický souborKubuondr 11. 3. 201710:04 kapitola8.tex
Kapitola9 editovatEkvivalence statistických souborůKubuondr 27. 5. 201710:52 kapitola9.tex
Kapitola10 editovatPrincipy termodynamikyKrasejak 29. 3. 201403:29 kapitola10.tex
Kapitola11 editovatTermodynamické potenciályTomas 7. 9. 201013:31 kapitola11.tex
Kapitola12 editovatZávislost termodynamických potenciálů na látkovém množstvíKrasejak 29. 3. 201403:33 kapitola12.tex
Kapitola13 editovatVztahy mezi derivacemi termodynamických veličinBatysfra 30. 8. 201115:22 kapitola13.tex
Kapitola14 editovatDalší termodynamické veličinyTomas 7. 9. 201015:53 kapitola14.tex
Kapitola15 editovatKvantověmechanický harmonický oscilátorKubuondr 29. 5. 201714:21 kapitola15.tex
Kapitola16 editovatMěření Poissonovy konstantyAdmin 1. 8. 201011:47 kapitola16.tex
Kapitola17 editovatTermodynamika směsí různých látekTomas 7. 9. 201013:38 kapitola17.tex
Kapitola18 editovatVratné a nevratné procesyKubuondr 26. 5. 201713:32 kapitola18.tex
Kapitola19 editovatUstálení dynamické rovnováhyTomas 7. 9. 201013:40 kapitola19.tex
Kapitola20 editovatDůsledky podmínek rovnováhyKubuondr 15. 4. 201709:26 kapitola20.tex
Kapitola21 editovatRovnováha systému o více fázíchTomas 7. 9. 201015:23 kapitola21.tex
Kapitola22 editovatKlasifikace fázových přechodůChladjar 14. 9. 202015:32 kapitola22.tex
Kapitola23 editovatJoule-Thompsonův pokusTomas 7. 9. 201019:43 kapitola23.tex
Kapitola24 editovatTermodynamické nerovnostiKarel.brinda 6. 2. 201121:44 kapitola24.tex
Kapitola25 editovatNarušení rovnováhy (Braun-Le Chatelierův princip)Tomas 7. 9. 201013:46 kapitola25.tex
Kapitola26 editovatStatistická rozdělení soustavy volných částicChladjar 15. 9. 202011:40 kapitola26.tex
Kapitola27 editovatOdvození termodynamiky IP statistickými metodamiKubuondr 27. 5. 201716:58 kapitola27.tex
Kapitola28 editovatFotonový plyn a záření absolutně černého tělesaGroveond 1. 7. 201421:35 kapitola28.tex
Kapitola29 editovatModely krystalůChladjar 17. 9. 202018:19 kapitola29.tex
Kapitola30 editovatJiný statistický přístup — kinetická teorieTomas 15. 2. 201100:22 kapitola30.tex
Kapitola31 editovatOtázky ke zkoušce z TSFAdmin 1. 8. 201011:51 kapitola31.tex
Kapitola32 editovatReferenceTomas 7. 9. 201013:54 reference.tex

Vložené soubory

soubornázev souboru pro LaTeX
Image:Gauss.pdf Gauss.pdf
Image:Fcel1.pdf fcel1.pdf
Image:2krabab.pdf 2krabab.pdf
Image:Transw.pdf transw.pdf
Image:Syst.pdf syst.pdf
Image:3pt.pdf 3pt.pdf
Image:Cholesctv.pdf Cholesctv.pdf
Image:Oscpot.pdf Oscpot.pdf
Image:Spins.pdf spins.pdf
Image:Spins2.pdf spins2.pdf
Image:Spins3.pdf spins3.pdf
Image:Spins4.pdf spins4.pdf
Image:Ptdiag.pdf ptdiag.pdf
Image:Joulthom.pdf joulthom.pdf
Image:Trirozd.pdf trirozd.pdf
Image:FD_e_mu.jpg FD_e_mu.jpg
Image:Krystal.pdf krystal.pdf
Image:Krystal2.pdf krystal2.pdf
Image:Procesyr.pdf procesyr.pdf
Image:Hgraf.pdf hgraf.pdf

Zdrojový kód

%\wikiskriptum{02TSFA}
 
\section{Kanonický soubor}
\index{soubor, kanonický}
\label{kansoub}
 
V reálném případě nelze pozorovat absolutně uzavřený systém. Obvykle zkoumáme systémy, které nějakým způsobem
interagují se svým okolím. Nás budou nyní zajímat takové, které jsou s okolím v rovnováze. Takové 
okolí je například lázeň (termostat), ve které se nachází náš systém.
 
Vezměme si třeba plyn v nádobě. Jeho částice narážejí do stěn a předávají svou energii molekulám nádoby. Probíhá 
samozřejmě i opačný proces --- nádoba předává energii molekulám plynu. Následkem toho není energie v systému
konstantní, ale fluktuuje kolem nějaké střední hodnoty. Vezměme tedy vnitřní energii jako veličinu 
popisující systém. Potom
 
$$  U  \equiv \<H\>= \suma{\gamma}{}w_\gamma E_\gamma$$
 
Hodnoty $E_\gamma$ jsou hodnotami hamiltoniánu systému ve stavu $\gamma$. Lagrangeův multiplikátor příslušný k energii označme $\beta$ (konvence). 
 
\emph{Kanonický soubor} potom definujeme jako soubor systémů o stejné \uv{teplotě} $\beta$  a konstantních počtech částic jednotlivých komponent.
 
 
Pak:
 
 
\begin{center} 
\begin{tabular}[t]{|ll|}
 
\hline
 
Veličiny kanonického souboru & \\ \hline
 
$Z_C = \suma{\gamma}{}\exp( -\beta H_\gamma) = \suma{\gamma}{}\exp(-\beta E_\gamma)$ & Kanonická partiční funkce \tabularnewline[12pt]
$w_\gamma = \frac{1}{Z_C}\exp( -\beta H_\gamma) = \frac{1}{Z_C}\exp(-\beta E_\gamma)$ & Nejpravděpodobnější rozdělení \tabularnewline[12pt]
 
$U = - \pderivx{(\ln Z_C)}{\beta}$ &  Vnitřní energie \tabularnewline[12pt]
$S(U) = k_B \ln Z_C + k_B\beta U$ &  Entropie\tabularnewline[12pt]
$\left<(U - H_\gamma)^2\right>  = \left<H_\gamma^2\right>  - \left<H_\gamma\right> ^2 = \pderivxx{(\ln Z_c)}{\beta}$ & Fluktuace stř. h. energie\tabularnewline[12pt]
 
\hline
 
\end{tabular}
\end{center}
 
 
\begin{remark}
 
Některé energetické stavy mohou být degenerované, tj. několika mikrostavům může náležet stejná hodnota energie. Pak se zavádí
tzv. \index{koeficient, degenerace}\emph{koeficient degenerace} $g_n$, který udává počet stavů pro $n$-tou hladinu energie, a partiční funkci je pak možné zapsat jako sumu přes všechny hodnoty energie:
 
$$Z_C = \suma{E_n}{}g_n \exp(-\beta E_n)$$
 
\end{remark}